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THE COMPLETION OF A TOPOLOGICAL GROUP

ERIC C. NUMMELA

During the 1920's and 30's, two distinct theories of

"completions" for topological spaces were being developed: the

French school of mathematics was describing the familiar notion

of "complete relative to a uniformity", and the Russian school

the less well-known idea of "absolutely closed". The two agree

precisely for compact spaces.

The first part of this article describes these two notions of

completeness; the remainder is a presentation of the

interesting, but apparently unrecorded, fact that the two ideas

coincide when put in the context of topological groups.

The completion of a topological space

What does i t mean to say that a topological space X i s complete?

(For convenience, we will assume that a l l topological spaces sat isfy the

Hausdorff separation axiom.) The reader 's answer to th i s question in the

case where if i s a metric space would probably be:

(A) X i s a complete metric space i f and only if every Cauchy

sequence converges.

If (A) i s taken as a correct answer, another familiar property of complete

metric spaces can be expressed as follows:

(B) a complete subspace Y of a metric space X i s closed in

X (whether X i s complete or not) .
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408 Er i c C. NummeI a

The study of topology was at first largely confined to metric spaces. Just

as Cantor completed the rational numbers, so can an arbitrary metric space

X be completed by means of Cauchy sequences. The completion X contains

X as a dense subspace, and the metric on X extends the metric on X .

The first thorough treatment of metric spaces was given by Hausdorff in

Unfortunately, statement (A) depends on the metric on X ; that is,

X may admit two metrics compatible with its topology, and be complete

relative to one but not the other. Consider the following example.

EXAMPLE 1 . Let d denote the usual metric on R , the set of real

numbers; that is, d (x, y) = \x-y\ . Then neither Q , the rationals,

nor I , the irrationals, is closed in R ; hence by (B) neither is

d -complete. Following [?5, p. 591, we define another metric d on R

as follows: let {r.} be an enumeration of Q , and set

d (x, y) = \x-y\ + I 2 infjl,
i=l l

Then d adds to the d -distance between x and y an amount less than

or equal to one which somehow reflects the relative distances of x and y

from the rationals {r.} . If B.{p, e) (for i = 1, 2) is the open

d.-ball of radius £ about the point p , then i t is clear that

B2(p, E) c B (p, e) . Thus the d.-topology on R is finer than the

d -topology.

The converse fa i ls , however. Note f irst that if p is rational and

e is sufficiently small, then B (p, e) = {p} . Thus Q is d -open in

R , and the d -topology restricted to 6 is discrete. Second, if p is

irrational and £ is given, then we can always find 6 such that

B-, (P> ^) c ^o(P) £) • Thus <i induces on I the same topology as d. .
J. — ^ d ±

Finally, note that I is (^-complete. Any (fp-Cauchy sequence {x }

in J is d -Cauchy, and hence d -converges to some x in R . If

x = r, for some k , then for any n there exists m > n such that
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dn(x , x 1 5 \x -x I + 2~ - a contradiction. Thus x (. I ; and thus
21- n mJ ' n m'

{x } d -converges to x . That is, / is d -complete. (On the other

hand, since Q with its usual topology is not a Baire space, no metric

compatible with that topology can "be complete [6, IX,5.3, Theorem 1].

In 192U, the Russian school of mathematics took a different view of

"completeness". In a fundamental article [3], Alexandroff and Urysohn

defined compact spaces. The fact that a compact subspace K of a

topological space X is always closed in X is analogous to statement

(B), and seems to have motivated the definition, also in [3], of absolutely

closed space. A topological space is said to be absolutely closed provided

it is closed in every extending space. Since every completely regular

space admits a compactification, an absolutely closed space which is

completely regular must be compact. In particular, an absolutely closed

metric space is compact. The following theorem characterizes absolutely

closed spaces.

THEOREM 2. A spaoe is absolutely closed if and only if it is almost

compact:, which means that any collection of open sets which covers the

space has a finite subcollection whose closures cover the space

[3, Satz II].

Proof. Assume X is absolutely closed, let U = {j/.}. (where I

is an arbitrary index set) be an open cover of X , and assume no finite

subcollection of closures of elements of U covers X . Then, for each

finite subset F c I , the set U = X - U U. is a non-empty open subset
t iZF %

of X . Adjoin a new point p to X , and let

[Up I F is a finite subset of i]

be a fundamental system of neighborhoods of p . Then X u {p} is a

(Hausdorff) topological space extending X , and X is not closed in

X u {p} . This contradiction shows that for some F , X = U U. .

Conversely, assume X is almost compact, assume X is a subspace of

the space Y , and let p € Y-X . Then for each x € X we can find a

neighborhood U of x in Y such that p \ U . Since {x n U } is an
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open cover of X , some f i n i t e subcollection sa t i s f i e s the property that

t h e i r closures in X cover X ; hence their closures in Y cover X .

But p i s not in the union of this f in i t e col lect ion of closed se t s . Thus

X i s closed in Y ; and hence X i s absolutely closed.

That absolutely closed spaces may be non-compact i s shown by the

following example.

EXAMPLE 3 [7 5, pp. 119-120]. Let A be the l inear ly ordered set

Cl, 2, 3 , . . . , <*>, . . . , - 3 , - 2 , - l} with the interval topology, and l e t Z

be the set of pos i t ive integers with the discrete topology. We define X

to be A x Z together with two ideal points a and -a . The topology

on X i s determined by the product topology on A x Z together with

bas is neighborhoods M (a) = ia) u {(i, j) | i < to and j > n) and

M~(-a) = i-a} u i(i, j) | i > ID and j > n] . Then X i s a Hausdorff

topological space; however, X is not regular , since for a l l posit ive

integers m and n ,

M+(a) n M (-a) = {(u, I) | i > max(m, n)} # 0 .

Hence X is not compact. Nevertheless, X is almost compact, for any

collection of open sets which covers X must contain open sets containing

a and -a , and the closures of these two open sets contain all but

finitely many of the points (w, j) .

In 1939, Alexandroff [2] showed that if X is a regular space, then

X has a universal absolute closure; that is, there exists an absolutely

closed regular space X* which contains X as a dense subspace and such

that any continuous function from X into an absolutely closed regular

space has a continuous extension to X* [2]. For an elegant exposition of

Alexandroff's work, as well as a partial (and best possible) extension to

arbitrary spaces, see [70]. An excellent expository treatment of the

general problem of determining extensions of topological spaces is given in

W].

Also in the late 1930's there were two developments in the French

school of mathematics that served to extend the metric notion of

completeness to a much larger class of spaces. One was the invention of

filters by Cartan [7], [«] . A filter on a set AT is a collection of
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subsets of X which is closed with respect to supersets and finite

intersections. For example, the set of all neighborhoods of a point in a

topological space is a filter, called the neighborhood filter of the point.

(A neighborhood of x need not be open, but it must contain an open subset

containing x .) Filters provide a generalization of sequences to

arbitrary topological spaces: a filter is said to converge to a point x

if it is contained in the neighborhood filter of x .

The second development was the invention of uniform spaces by Weil

[76]. The presence of a metric on a space X provides a way of comparing

the "closeness", one to another, of any pair of points of X . But, as

recognized by WeiI, the properties of closeness can be specified fully as

well by a suitably chosen collection of subsets of X x X , each containing

the diagonal A . More specifically, a uniformity u on a set X is a

filter of subsets, called entourages, of X x X satisfying the following

conditions:

(1) for each U € U , A c V ;

(2) if M l ) , then U'1 = {(x, y) \ (y, x) € U} € y ;

(3) for each U € y , there exists V € y such that

V o V = {(x, y) | there exists z (. X with (x, z), (a, y) £ V) e U ;

{k) n{u I U € y} = A .

All pairs of points belonging to the same entourage satisfy the same

"closeness" property. A uniformity M on X induces a topology on X by

taking for the neighborhood filter of a; € A' the collection of subsets

{£/(*) | U € y} , where U(x) = {y | (x, y) i U} . Note that it is

condition (h) above which guarantees that such a topology is Hausdorff.

Weil proved that the class of uniform spaces coincides with the class of

completely regular spaces, and thus contains all compact spaces and all

metric spaces.

A filter F on a uniform space X is a Cauchy filter if, given any

entourage U , there exists F £ F with F x F c_U . (if we think of U

as being a measure of "closeness", then any pair of points from F are

"close" together.) Every convergent filter on X is Cauchy; and if every

Cauchy filter on X converges, then X is complete. Just as for metric

spaces, every uniform space X can be embedded as a dense subspace of a
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complete uniform space X , and the uniformity of X extends the

uniformity of X [6, I I , §3.7]. Moreover, X is universal; that i s ,

every uniformly continuous function from X to a complete uniform space

has a uniformly continuous extension to X . [Of course, a function

f : X -* X' of uniform spaces is uniformly continuous if i ts behavior with

respect to entourages is analogous to the behavior of a continuous function

with respect to neighborhoods; that is , given any entourage V of X' ,

there exists an entourage V of X such that (x, y) € V implies

(fM, f(y)) f v .)

Although we have seen that the question at the beginning of this

section is ambiguous, we shall see in the next section that the ambiguity

vanishes in the context of topological groups.

The completion of a topological group

The first comprehensive approach to completing topological groups was

suggested by Weil . While he was laying the foundations of the theory of

uniform spaces ['6], he noted that there are two natural ways of describing

a uniform structure on a topological group G : the elements x and y

of G are said to be K-close, where K is a neighborhood of the identity

e in G , if y is carried into V by translation by x . Since

multiplication in G is, in general, not commutative, we should expect to

obtain two notions of V-closeness, depending on whether we multiply y by

x on the right or on the left. More specifically, we denote by V,

(respectively V ) the set of all (x, y) in G x G such that yx~l € V
s

(respectively, x y € V J . Then as V runs through a fundamental system

of neighborhoods of e , the sets 7, (respectively 7g ) describe a

fundamental system of entourages of the right (respectively left)

uniformity of G . Each uniformity is compatible with the topology of G ,

and in general the two uniformities are distinct. (Obviously, the

uniformities coincide if G is abelian; they also coincide if G is

compact, since a compact space admits only one uniformity compatible with

its topology. An interesting characterization of groups with equal

uniformities is given in terms of nets by Yang [JS].) Weil also proved

that every continuous homomorphism of topological groups is both right and
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left uniformly continuous (see [6, III, §3.1]).

Although Weil considered the problem of completing a topological group

relative to its right (or left) uniformity, definitive results were not

published until 19*+2, when Bourbaki proved that a topological group G is

isomorphic to a dense subgroup of a complete (relative to either the right

or left uniformity) group if and only if every right Cauchy filter is also

a left Cauchy filter [5]. Bourbaki then asked if every topological group

satisfied this latter property [5, p. 28]. Dieudonne showed in 19UU that

the answer to Bourbaki's question was negative [9]. We present his example

below.

EXAMPLE 4. Let I denote the unit interval [0, l] , and let G be

the group of homeomorphisms of J onto itself. (if u, v € G , then uv

denotes the composite homeomorphism x 1—• u[v{x)) , and u denotes the

inverse of u .) Endow G with the topology of uniform convergence on

I , or what amounts to the same thing, the topology defined by the metric

sup |w(x)-v(x)| . It is easily verified that this topology is compatible
xdl

with the group structure of G ; that is, G is a topological group.

Since G is a metric group, we allow ourselves to use Cauchy sequences in

place of Cauchy filters. A sequence \u } in G is right (respectively

left) Cauchy if and only if for any e > 0 there exists N such that

n, m > N implies ~{ 5 e (respectively, u u (x)-x 5 e ) for
m n

all x 6 J . Now consider the sequence {u } , where u is the

homeomorphism which is equal to 0 if x = 0 , to 1 if x = 1 , to

1/n if x = h , and linear for 0 5 x 5 % and % 2 x 2 1 . Then {u }

is a right Cauchy sequence - the details are messy, but straightforward.

On the other hand, \u } is not a left Cauchy sequence. To see this, note

that if x = % and m > n , then

-1
u~ u (x)-x
n m

= \(m-n)/2m\ .

Now, regardless of how large N is, we take n fixed (with n > N ) and

let m ->•<". Then \(m-n)/2m\ •* % . If {u } were left Cauchy, then by

taking N sufficiently large, we could always make |(m-n)/2m| as small

as we please; since this is not the case, {u } is not left Cauchy.

https://doi.org/10.1017/S0004972700006250 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700006250


4 14 Er i c C. Nummela

Only as an exercise did Bourbaki note that every topological group is

completable relative to i t s two-sided uniformity, which is the smallest

uniformity containing both the right and left uniformities (see [5, I I I ,

§3, Ex. 6], or the same exercise in [6]). Further, the two-sided

completion is universal. That i s , le t G and C be topological groups,

and le t / : G -*• G' be a continuous homomorphism. Since f is both right

and left uniformly continuous, / is uniformly continuous relative to the

two-sided uniformities on G and G' . Thus if G' is complete relative

to i t s two-sided uniformity, then / extends uniquely to a continuous

homomorphism from the two-sided completion of G into G' .

Meanwhile, the Russians were applying the notion of absolutely closed

to topological groups. In 19^2, A.D. Alexandroff noted that every

topological group can be densely embedded in an absolutely closed

topological group [ ' ] . Of course, by an absolutely closed topological

group, Alexandroff meant a topological group which is closed in every

extending topological group. In 19̂ *6, Ra i kov gave a comprehensive account

of "completions" of topological groups, via the concept of "funnel" [73].

Raikov's funnels are simply f i l ters which are both right and left Cauchy;

thus his completions are two-sided completions. Yet he identified his

complete groups with AIexandroff's absolutely closed groups, and did not

mention uniformities explicitly. (On the other hand, Bourbaki did not

mention absolutely closed groups.) Moreover, Raikov proved the

universality of the absolute closure of a topological group. That i s ,

every continuous homomorphism from a topological group G into an

absolutely closed topological group C extends uniquely to a continuous

homomorphism from the absolute closure of G into G' .

Finally, several authors have noted that in the context of metrizable

topological groups, absolutely closed is equivalent to complete in the

two-sided uniformity (see [72], [74], [77], and the review of [77] in

Mathematical Reviews).

Thus there seems to be no good reason for the following theorem not to

have been stated explicitly before now, except for the disparate vocabulary

of the Russian and French schools of mathematics. The proof we provide is

based on the universality of both completions and absolute closures.

THEOREM 5. Let G be a topological group, let G* be the absolute
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closure of G , and let G be the two-sided completion of G . Then G*
and G are isomorphic as topological groups, via an isomorphism fixing the
elements of G .

Proof. Since G* is both closed and dense in (G*)" , ve have

G* = (<7*)~ ; that i s , G* is complete in i t s two-sided uniformity. Hence

the inclusion G -*• G* extends uniquely to a continuous homomorphism

f : G + G* :

G

f

G*

Also, G i s dense i n ((?)* . Since t h e two-sided un i fo rmi ty of (G)*

extends t h e two-sided un i formi ty of G , wi th r e s p e c t t o which G i s

complete, then G i s c losed in (G)* , and hence G = (G)* ; t h a t i s , G

i s a b s o l u t e l y c lo sed . Hence t h e i n c l u s i o n G •*• G extends uniquely t o a

continuous homomorphism g : G* •* G :

G*

Now fg : G* -*• G* extends the inclusion G -*• G* , and so does the identity

homomorphism on G* . By uniqueness, then, fg is the identity.

Similarly, gf is the identity homomorphism on G . Thus we have the

desired isomorphism.

Thus for any topological group G , the two-sided completion of G ,

which always exists and is absolutely closed, deserves to be called the

completion of G .
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