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A NOTE ON THE DIRICHLET CONDITION FOR 
SECOND-ORDER DIFFERENTIAL EXPRESSIONS 

W. N. EVERITT 

1. Let M denote the formally symmetric , second-order differential expression 
given by, for suitably differentiable complex-valued functions / , 

(1.1) M[f] = -(Pf'Y + qf on [a, b) ( ' = d/dx). 

The coefficients p and q are real-valued, Lebesgue measurable on the half-
closed, half-open interval [a, b) of the real line, with -co < a < b ^ oo , and 
satisfy the basic conditions: 

(i) p(x) > 0 (almost all x G [a, b)) and p~l is locally Lebesgue 
(1.2) integrable on [a, b), and 

(ii) q is locally Lebesgue integrable on [a, b). 
A property is said to be 'local' on [a, b) if it is satisfied on all compact sub-
intervals of [a, b). L(a, b) and L2(a, b) denote the classical Lebesgue, complex 
integration spaces. 

Consider the differential equat ion 

(1.3) M[y] = 0 on [a, b]. 

The function y is said to be a solution of (1.3) on [a, b) if both y and py' are 
locally absolutely continuous on [a, b) and 

(1.4) M[y](x) = -(p(x)y'(x)Y + q(x)y(x) = 0 (almost all x G [a, b)). 

With the basic conditions (1.2) satisfied the differential expression M is 
regular a t all points of [a, b), i.e. if £ £ [a, b) then the initial value problem 

(1.5) y(0 = a (py')ti) = fi M[y] = 0 on [a, b) 

can be solved for arbi t rary complex numbers a, /3; for this result see the 
existence theorem in [8, Section 16.1]. 

M is said to be singular a t the open end-point b if either b = oo , or if b < oo 
then the initial value problem (1.5) cannot be solved a t b for a rb i t ra ry a and /3. 
We note t ha t if 6 < oo and the conditions (1.2) hold then M is singular a t b 
if and only if 

(1.6) either p~l g L(a, b), or q $ L(a, b) or bo th ; 

this result follows from an examination of the theorem in [8, Section 16.1]. 
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If M is singular a t b then M is classified as either limit-point (LP) or limit-
circle (LC) a t b; for this now standard terminology see [8, Section 17.5]. If M 
is LP (LC) a t b then the differential equation (1.3) has a t least one solution 
(all solutions) not in (in) the space L2(a, b). 

Let the linear manifold A = A(p, q) of L2(a, b) (A depends on the coefficients 
p and q) be defined by: / G A if (i) / £ L2(a, b), (ii) / and pf are both locally 
absolutely continuous on [a, b), and (iii) M[f] G £2(&, &). 

W h e n / , g G A it is known, from Green's formula, tha t the limit 

(1.7) l im/>(/* ' - / ' « ) = lim *>(*)(/(*)«'(*) - / ' ( * ) g ( * ) ) 

exists and is finite. A necessary and sufficient condition for M to be LP a t & is 
t ha t the limit (1.7) should be zero for all / , g G A; for this result see [2] or 
[8, Section 17.4]. 

M is said to be a strong limit-point (SLP) a t b if 

(1.8) l i m # g ' = 0 ( / , g G A). 
6 -

For this definition see [3] but , in particular, [6, Section 1]. Clearly SLP a t b 
implies LP a t b, bu t it is known tha t the converse result is false; for these 
results see [6, Sections 2 and 8]. 

M is said to have the Dirichlet (D) property a t b if 

(1.9) p"*f and \q\"*f £ L*(a,b) ( / 6 A), 

and the conditional Dirichlet (CD) property a t b if 

(1.10) p1/2f ' G L2(a, b) and lim I g/g exists and is finite, ( / , g G A). 
x->b— J a 

For these definitions see [5, Section 1] and [4, Sections 1 and 2]; in particular 
[4] discusses earlier work in this field. Clearly D a t b implies CD a t b bu t the 
converse is known to be false; for this result see the remarks in [4, Sections 1 
and 2] and [1, Sections 8, 9 and 10]. 

A general survey of Dirichlet type results a t both finite and infinite singu
larities is given in [7]. 

I t is known tha t when b = oo it is possible for M to be SLP a t GO but not 
D or even CD a t oo. An example to illustrate this phenomena is given in [6, 
Sections 3 and 4]. 

This note concerns the problem of the relationship between the LP, SLP 
classification of M a t b, and the D, CD property of M a t b. In an addendum to 
[7] it is shown tha t if M is D a t b, with b ^ oo , then M is SLP a t b. Here we 
give a more direct proof of this result and additionally prove tha t if M is CD 
a t oo then M is SLP a t oo . 

The results are contained in the following theorems. 

T H E O R E M 1. Let the differential expression M be defined on the interval [a, b) 
by (1.1); let the real-valued coefficients p and q satisfy the basic conditions (1.2); 
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let the definitions of regular and singular points, LP, SLP, D and CD of M at b 
hold, as given above. Then 

(i) if' b = oo then M is CD at co implies M is SLP at oo , and 
(ii) if b < oo and M is singular at b then M is D at b implies M is SLP at b. 

Proof. This is given in Sections 3 and 4 below. 

Remarks 1. Note t ha t when b = oo , i.e. M is defined on the half-line [a, oo ), 
we have the following chain of (strict) implications 

(1.11) D=ÏCD=I SLP => LP. 

From the examples referred to above it follows t ha t all these implications are 
false, in general, if taken in the opposite direction. 

2. Note t ha t when b < oo it is necessary to st ipulate t ha t M is singular a t b, 
since if the conditions (1.2) hold and M is regular a t b it may be shown tha t 
M is D a t b and this case has to be eliminated. 

3. Two questions remain unanswered: 
(i) Do examples exist to show tha t ifb<oo then M can be CD bu t not D 

a t b; also SLP bu t not D or CD a t 6? 
(ii) If b < oo and if M is CD a t b is it the case t ha t M is SLP a t 6? I t seems 

unlikely tha t there is an affirmative answer. 

T H E O R E M 2. Let all the conditions and definitions of Theorem 1 hold on the 
interval [a, oo). Then 

(i) if AI is SLP at oo then 

lim J (1.12) lim I {p\f'YJrq\f\ ) exists and is finite for all f £ A. 

If p~l (L L(a, oo ) and the limit condition (1.12) above is satisfied then M is SLP 
at oo. 

(ii) M is CD at oo if and only if 

lim I q\f\2 exists and is finite for all f G A. 

(iii) M is D at oo if and only if 

lim I 1^11/|2 < oo, i .e . | g | 1 / 2 / G L\a,^),forallf G A. 

Proof. This is given in Section 5 below. 

Remarks 1. I t is not clear, bu t it seems unlikely, t ha t corresponding results 
hold a t a finite singularity for the differential expression M. 

2. In the case of a singular point a t oo results (ii) and (iii) give necessary 
and sufficient conditions on the elements of the linear manifold A in order to 
classify M as CD or D a t oo . I t is not clear if a similar condition always exists for 
M to be SLP a t oo since in the sufficiency par t of (i) the addit ional condition 
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p~l d L(a , oo ) is required; it is an open question as to whether or not the limit 
condition (1.12) is sufficient for M to be SLP a t oo if p~l £ L(a, oo ). 

Acknowledgements: The author thanks: Professor F . V. Atkinson, University 
of Toronto , for several helpful discussions during his visit to the University of 
Dundee, under the auspices of the Science Research Council of the United 
Kingdom, in the spring and summer of 1974; and Dr. H. Kalf, Technical 
University of Aachen, for the opportuni ty to see the manuscript of [7] prior 
to publication. 

2. We commence the proof of the above theorems by noting tha t it is 
sufficient throughout to argue only with real-valued elements f, g (z A, since 
otherwise we work separately with the real and imaginary par ts of / and g. 
This is a consequence of the assumption tha t the coefficients p and q are real-
valued on [a, b). We denote by A^ the set of all real-valued elements of A and 
work only with A^ in the proof of both Theorems 1 and 2. 

I t is helpful to begin with the following lemma which applies to both finite 
and infinite singular points. 

LEMMA. Suppose b ^ oo and that all the conditions of Theorem 1 are satisfied; 
suppose that for some pair f, g £ A^ 

(i) lim&_ pfg' exists and is finite, and 
(ii) there is a sequence \bn : n = 1, 2, 3, . . .} for which a < bn < bb+i < b 

(n = 1, 2, 3, . . .) and lim bn = b such that limn^œf(bn) = 0 or + GO or — oo . 
Then lim6_ pfg' = 0. 

Proof. Suppose the conclusion of the lemma is false; then from (i) lim&_ pfg' 
= ii 9^ 0, i.e. V\mb-p\fg'\ = |/x| > 0. Thus for some b0 Ç [a, b) we have \f(x)\ > 
0 (x Ç [bo, b)) and so, without loss of generality, we may assume t h a t / ( x ) > 0 
(x G [bo,b)). Hence, with a possible change of b0l 

p(x)\g'(x)\ ^ hWfix) (xe [bo,b))t 

i.e. p(x)\f(x)g'(x)\ ^ *IMII/'(*)!//(*) (* e [&«,&)). 
Integrat ing this last result gives 

Ç P\f'g'\^\\A f | / ' | / /^W I f'f'/f 
^ bo * *J bo & I " bo 

log ( / (*) / / (6o) ) 

for all x G [bo, b). The integral on the left of this inequality is bounded for all 
x G [bo, b) for, from the assumptions in (i) and (ii) of Theorem 1, both p1/2f 
and pll2g' Ç L2(a, b), since M is either D or CD a t b. The term on the extreme 
right of the inequality is however unbounded on the sequence \bn',n = 1, 2, 3 , . . . } 
in view of condition (ii) of the lemma. This gives a contradiction and so /x = 0. 

This completes the proof. 
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3. In this section we give the proof of part (i) of Theorem 1. We note that 
b = oo and that M is defined on the half-line [a, oo ). 

We have the following identity 

(3.1) T \Pf'g' + qfg] = (Pfg')(x) - (Pfg')(a) + fXfM[g] 

valid for a l l / , g G A# and all x G [a, oo). From the hypothesis in (i) of the 
theorem, i.e. M is CD at oo , it follows from (1.10) that 

(3.2) lim J pfg' and lim P qfg 

both exist and are finite. Also the integral on the right of (3.1) is convergent 
as x —> oo since both / and M[g] are in L2(a, oo ). Thus 

(3.3) lim p(x)f(x)g'(x) exists and is finite (/, g G àR). 

Since/ G L2(a, oo ) it follows from known results that there is a monotonie 
increasing sequence {bn; n = 1, 2, 3, . . .} such that 

(3.4) lim bn = oo and lim/(6n) = 0. 

From (3.3) and (3.4) we see that conditions (i) and (ii), respectively, of the 
lemma of Section 2 are satisfied. Thus from that lemma 

\im pfg' = 0 (f,g G AR) 
oo 

and M is SLP at oo. 
This completes the proof of part (i) of Theorem 1. 

4. In this section we give the proof of part (ii) of Theorem 1. We note that 
a < b < oo and that M is singular and D at b. 

Firstly suppose that additionally 

(4.1) M is LP at b. 

Then to show that M is SLP at b it is sufficient to prove (see also [6, Section 4]) 

(4.2) l i m # / ' = 0 ( / € Aa). 

For suppose (4.2) holds; then given any pair / , g £ AR 

0 = lim p(f + g)(f + g)' = lim (/>//' + pfg' +pffg + pggf) 

= \imp(fg' +f'g). 
b-

Now (see (4.1)) since M is LP at b it follows from (1.7) that 

Ihn p(fg'-f'g) = 0 
b— 

https://doi.org/10.4153/CJM-1976-033-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-033-3


DIRICHLET CONDITIONS 317 

and from these two results 

lim pfg' = 0 (/, g € AB). 
b-

Thus (4.1) and (4.2) imply tha t M is SLP a t b. 
We now prove tha t (4.2) follows from (4.1) and the assumption tha t M is D 

a t b. 
We note tha t the identi ty (3.1), taken over [a, b), and M is D a t b imply tha t 

(4.3) lim pff ' exists and is finite ( / G AB). 
& — 

Suppose now tha t (4.2) does not hold; then for s o m e / G àR and some M > 0 

(4.4) (a) lim pff = M > 0 or (b) lim pff = - /x > 0. 
b- b— 

If (a) of (4.4) holds then from (i) of (1.2) it follows t h a t / / > 0 near b and 
hence t ha t / 2 is monotonie increasing near b, i.e. lim6_ / 2 = L, say, where 
0 < L g oo. 

If L = oo then an application of the lemma of Section 2 shows tha t (4.2) 
holds, i.e. /* = 0, and this is a contradiction. 

If 0 < L < oo then from the assumption tha t M is D a t &, which implies 

/ : 
| g | / 2 < c o , 

it follows tha t q G L(a,b). Also from (a) of (4.4) we have, for some b0 G [a, b), 

P(x)f(x)ff(x) ^ | M (* G [&o, &)), tha t is, 

m2-f(bo)2 = 2 P / / ' è M f%_1 (x G [6o,&)); 

since lim&_ f2 = L < oo we now obtain p _ 1 G L(a , 6). Thus both p - 1 and 
q G L(a,b); however this implies from (1.6) tha t Mis regular a t b in contradic
tion to (4.1). 

Thus (a) of (4.4) is impossible. 
If (b) of (4.4) holds then / / ' < 0 near b and this implies tha t l im&_/2 = L 

with 0 ^ L < oo . As before both the cases L = 0 (using the lemma of Section 
2) and 0 < L < oo (using (4.1)) lead to contradictions. 

Thus (4.4) is impossible and consequently (4.2) must hold. As we have seen, 
taken with (4.1), this implies t ha t M is SLP a t b. 

Secondly suppose, and since M is singular a t b this is the only al ternat ive to 
(4.1), t ha t additionally M is LC a t b. With M in D a t b we shall show tha t 
this case is impossible. 

Let 0 and \p be any two linearly independent solutions of the differential 
equation (1.3) such tha t 

(4.5) p(x)(4>(xW(x) - * ' (* )* (* ) ) = 1 (x e [a, &)). 
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(Note the left-hand side of (4.5) is always constant on [a, b) for any two 
solutions of (1.3)). Both $ and \p are in L2(a, b), since M is LC a t b, and hence 
both are in A^. 

If 3> is any linearly independent solution of (1.3) then $ Ç Afl and lim&_ p$& 
exists and is finite; see (4.3). As in the proof of (4.2) the assumption t h a t 
lim&_ p$& 9^ 0 leads to a contradiction on repeating the analysis following 
(4.4). Now pu t <£ = <j> + \p to obtain 

0 = Km p$& = lim p((/>(// + W + 0V + W ) = hm PiW + *V) 
( 4 . 0 ) &_ &_ &_ 

From (4.5) and (4.6) it follows t h a t 

(4.7) lim p4>yp' = - and lim p<t>'\p = - - . 

This last result shows t h a t yf/' mus t be of one sign in some neighbourhood of 
b and so lim&_ \p = L, say, where wi thout loss of generality, we may assume 
tha t 0 rg L g o o . H L = Oorco then an application of the lemma in Section 2 
gives a contradiction to (4.7). If 0 < L < oo then on repeating the analysis 
following (4.4) we find t ha t M is regular a t b in contradict ion to the assump
tion t ha t M is singular a t b. 

Thus it is impossible for M to be D and LC a t 5. 
This completes the proof of pa r t (ii) of Theorem 1, and so the theorem itself 

is now established. 

5. In this section we give the proof of Theorem 2. 
(i) Suppose tha t M is SLP dit oo ; then it follows from a suitable application 

of the identi ty (3.1) t ha t the limit condition (1.12) is satisfied for a l l / Ç A. 
Conversely, suppose tha t the limit condition (1.12) is satisfied and t h a t 

p~l g L(a, oo ). I t follows from (1.12) and the identi ty (3.1) t ha t 

(5.1) lim pff ' exists and is finite for a l l / G A^. 
oo 

For a n y / £ A# suppose tha t a t + oo we have lim pff = jn ^ 0. If /* > 0 then, 
recalling (i) of (1.2), ff > 0 in some neighbourhood of + oo and this is a 
contradiction on / G L2(a, oo ). If /* < 0 then for some c £ (a, oo ) 

-f(x)f(x) > h(-^)iPix)}-1 (x e [c, oo)) 

which gives, on integrating, 

/(C)2 - f{xf ^ (-M) f p-1 (x e [coo)); 

this implies t h a t p~l £ L(a, co ) and this is not the case. T h u s 

(5.2) lim pff = 0 ( / É A s ) . 
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Assume now tha t M is LC a t co ; then on using (5.2) and repeating the 
argument in Section 4 from (4.5) onwards it follows tha t the two real-valued 
solutions (j) and \f/ of the differential equation (1.3) on [a, co ) satisfy 

(5.3) limpet' = - and l i m ^ ^ V = - 5 

(compare with (4.7)). This result shows tha t all of $, \p, </>' and \p' are of one 
sign in some neighbourhood (c, 00 ) of +00 ; suppose, without loss of generality, 
t ha t </>' < 0 on (c, 00 ) ; then 0 is decreasing and so, since </> Ç L2(a, 00 ), <f> > 0 
on (c, co ) and lim <j> = 0 a t + 0 0 . From the first par t of (5.3) it follows t ha t 
\pf > 0 and from the second par t t ha t ^ > 0, i.e. \p\p' > 0 on (c, co), and this is 
a contradiction to \p £ L2(a, co). Thus i f is L P a t 00. 

Returning again to Section 4 we now repeat the argument following (4.1) 
and (4.2) since both these conditions are now seen to hold bu t with b = 00 . 
We obtain 

(5.4) limpfg' = 0 (f,g e AR) 
00 

and so M is SLP a t 00 as required. 

I t does not seem to be possible to avoid the condition p~l d L(a, 00 ) in 
this a rgument bu t this is an open question. Note, however, tha t this condition 
is satisfied in the special case p(x) = 1 (x Ç [a, co)). 

(ii) Suppose now it is known only tha t 

lim J (5.5) lim I qf exists and is finite for all / 6 AR} 

i.e. the integral is in general conditionally convergent only. We show tha t this 
condition implies tha t M is CD (and hence SLP) a t 00 , i.e. tha t (1.10) holds. 

From the identi ty (3.1) we obtain 

fM[f[ 

valid for all x (E W, °° ) and all / G A^. Thus on using (5.5) it follows tha t if 
p1/2f $ L2(a, co) then lim pff = 00 a t +co, ff > 0 in some neighbourhood 
of +00 and this is inconsistent w i t h / Ç L2(a, co). Hence (^>.^)) implies tha t 

(5.6) ? 1 / ! / ' a ! ( « , « ) ( / 6 A S ) . 

I t now follows from (5.5), (5.6) and the identi ty (3.1) tha t (5.1) is satisfied. 
An application of the lemma of Section 2 then shows tha t (5.2) also is satisfied. 
Repeat ing the argument following (5.2) in par t (i) above it follows tha t M is 
not LC a t co , M is LP a t 00 and then M is SLP a t co , i.e. (5.4) holds. Return
ing to the identi ty (3.1), and using (5.4) and (5.6) it now follows tha t 

£-K» r. (5.7) lim I qfg exists and is finite for a l l / , g G AR. 
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Taken together (5.6) and (5.7) show that M is CD at GO as required. 
Conversely, it is clear that (5.5) holds when M is CD at oo. 

(iii) If 

(5.8) \q\^f 6 L*(a, oo ) (/ £ AR) 

then following the argument in part (ii) above it follows that (5.6) is satisfied 
and together this implies that M is D at oo . Conversely (5.8) is satisfied directly 
from the definition of the D condition of M at oo. 

This completes the proof of Theorem 2. 
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