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1. Introduction

In this article the concept of Dedekind semidomain is denned, and it is shown
that certain structures of this kind are Noetherian, have integral closure, and
have the property that their prime fc-ideals are maximal. The second section
provides the appropriate transportation theorems, while the third gives the
main result concerning Dedekind semidomains. Examples are given throughout
the paper to show that the hypothesies of certain theorems in the paper can-
not be greatly weakened.

2. Transportation theorems

An additive identity of a semiring is the zero of the semiring if xO = Ox = 0
for all x in the semiring. A left semi-ideal of a semiring Sis a non-empty subset A
of S such that, for x,yeA and seS, x + ye A and sx e A. If further x + seA
or s + xeA implies seA, then A is a left k-ideal. Dropping "left" from these
terms allows absorption from the right also. A semiring S is left semisubtractive
if for each x,yeS there is z e S with z + x = y or x = z + y.

A hemiring is a semiring with commutative addition and zero. A commu-
tative semiring (hemiring) is a semiring (hemiring) with commutative multi-
plication. The zeroid of a semiring S is {xeS\x + y = y for some yeS}.

A halfring is a hemiring with additive cancellation. It is known that a semi-
ring can be imbedded in a ring called its ring of differences if and only if the
semiring is a halfring. If the halfring is R, then R denotes its ring of differences.
A semifield is a hemiring whose nonzero elements form an abelian group under
multiplication. A hemiring is Noetherian if it contains 1, has commutative
multiplication, and satisfies the ascending chain condition on fc-ideals.

PROPOSITION 1. Let Sand S' be two semirings, S' having an additive identity
0. IfS is left semisubtractive, if{0} is the zeroid of S', and iff is a homomorphism
of S onto S', then there is a one-to-one correspondence between the left k-ideals
of S containing ker(/) and the left k-ideals of S'.
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PROOF. The correspondence we desire is A ->f(A). If f(x)+f(w) = f(y)
where x, y e A and weS, then z + w = y or w = z + y for some zeS. In the
second case

f(x + z)+f(y)=f(y),

so that x + z e ker(/) a. A. Hence zeA and consequently we A. In the first
case V + X = ZOTX=V + Z for some veS. If i> + x = z, then

and yeker(/) <=A, so that zeA and hence weA.I{x = v + z, again we A.
Similarly

implies/(w)e/04). Therefore f(A) is a left /c-ideal of S'.
Consider two left fc-ideals A and B of S that contain ker(/) where/(yl) =/(B).

For 6eB, /(a) = f(b) for some a e A and hence x + a = foora=x + fo for
some xeS. Ifx + a = b, then

f(b) = /(x + a) = /(x) +/(a) = /(x) +/(fo)

and /(x) = 0. Hence xeker(/) c A and b = x + aeA. If a = x + b, then
again x e ker(/) c A, so that x,x + b = ae A imply & e ̂ 4. Hence Bcz A;
similarly Ac B meaning A = B and the mapping is one-to-one.

If C is a left fc-ideal of S', t h e n / - 1 ^ ) is clearly a left fc-ideal of S that
contains ker(/). Since

the mapping is onto, completing the proof.
Examples will be given now to show the hypothesis of Proposition 1 cannot

be relaxed.

EXAMPLE 1. Let

A = {(x,0,0)\xeZt},

B = {(0,x,0)|x6Z+},
and

C = {(0,0,x)| xeZ j}

where z£ is the set of non-negative integers. Denote (x, 0,0) by x(' \ (0, x, 0) by x(2)

and (0,0, x) by x(3).
Define © o n C = 4 U B u C a s follows:

xw®yw = (x + y)(i\ i = 1,2,3,

x(i)®yU) = (x + j;) ( 3 ) , 15* 7.
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Define 0 on D to be the zero multiplication. It is easy to show that under these
operations D is a commutative hemiring that is not semisubtractive. If E is the
non-negative integers under usual addition and zero multiplication, and if
f:D -> E is defined by/(x(0) = x, i = 1,2,3, then A and B are distinct k-ideals
of D that contain ker(/) with f(A) = E =/(B) . Note that D and E have {0}
as their zeroids.

EXAMPLE 2. Let S = ZQ and S' = {1} U {xeZj | x is even}. In S and S'
define ® by a®b = max{a,ft} and 0 by a 0 b - min{a,b}. Under these
operations both structures are commutative hemirings, S is semisubtractive,
and S' is the zeroid of S'. Define / : S -> S' as follows: f(x) = x + 1, if x > 1
and odd,/(x) = x otherwise. Clearly/is a homomorphism of S onto S' with
ker(/) = {0}. As well A = {x e S | x ^ 3} and B = {x e S | x ^ 4} are fc-ideals
of S, B 5* X, and f(A) = {0,1,2,4} =/(£*).

The following is an easy extension to Proposition 1.

PROPOSITION 2. If R is a semisubtractive halfring and R is its ring of dif-
ferences, then there is a one-to-one correspondence between the ideals of R
and the k-ideals of R. If A is a k-ideal of R, then {xeR\ xeA or x = -y for
some ye A} is the ideal of R corresponding to A. Conversely, if B is an ideal
of R, then {X£JRJ xeA) is the k-ideal of R corresponding to B.

PROPOSITION 3. / / S is a semisubtractive hemiring, and if A is a k-ideal
of S, then A contains the zeroid Z of S if and only if S/A has additive cancel-
lation. (Bourne in [1] denoted SI A by S — A.)

We give an example to show the necessity of semisubtraction in Propo-
sition 3.

EXAMPLE 3. Let A = {(x,0)| xeZ0
+} and B = {(0,x) | x e Z j } .

Denote (x,0) by x(1) and (0,x) by x(2). On S = A(JB define © as follows:
( i ) ° = (x + yf\ i = 1,2,

and define 0 on S to be zero multiplication. Under these operations S is a com-
mutative hemiring that is not semisubtractive. Also A is a /c-ideal of S, the zeroid
of S is zero, and SjA = {A,B}, where A and B are now considered as the classes
in SI A. Since B + B = B = A + B and A ^ B, S/A does not have additive
cancellation.

COROLLARY. / / S is a semisubtractive hemiring with A as a k-ideal of
S containing Z, then SI A = S [ / ] 4 . (See LaTorre [2].)

Proposition 3 states that the fc-ideals that contain Z and the /i-ideals of a
semisubtractive semiring with commutative addition are the same. It is to be
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noted that there exist fc-ideals properly contained in Z and semi-ideals that are
not fc-ideals properly contained in Z.

EXAMPLE 4. Considering the hemiring S as described in Example 2, the
zeroid Z of Sis S. UneS,

An = {xeS\x ^ n}

is a fc-ideal which is obviously in the zeroid and which is not an /i-ideal.

EXAMPLE 5. Let S = {(x,y)eZ x Z\ x, y ^ 0 or y ^ x S 0} and define
© and 0 on S as follows:

(0,0) © (a, b) = (a,b)©(0,0) = (a,b) for all (a,b)eS,

(x,y)@(a,b) = (max{|x|, |a|}, max{|y|,| b\}) if x, y ^ 0
or a, b ^ 0 where (x,y) and (a,b) are not (0,0),

(x,y)®(a,b) = (-max{|x| , |f l |}, -max{|y|, | b\}) otherwise
where (x,y) and (a,b) are not (0,0),

(x,y)Q(a,b) = ( m i n { | x j , | a . } , min{\y\,\b\}) if x,y ^ 0

or a, b~£ 0 ,

otherwise.

With these operations S is a hemiring; if A = {(0,0),(0,l)}, then A is a semi-
ideal of S that is in the zeroid of S which is S. Since (0, -1 ) © (0,1) = (0,1) e A
but (0, -1) <£A, A is not a fc-ideal.

PROPOSITION 4. / / P is a prime k-ideal in a semisubtractive hemiring
with commutative multiplication and if Z <= P, then S/P is multiplicatively
cancellable.

EXAMPLE 6. Letting A, B, and C be as in Example l , o n C =

define © and 0 as follows:

= (x + y)(i\ i = 1,2,3,
1 = yU)®x{i) = (x + y)U), i<j,

= (xyf\ i = 1,2,3,

3t(l) 0 y<J) = >> ( i ) 0 x ( I ) = (xj ; ) ( 0 , i < j .

Under these operations D is a hemiring with commutative multiplication, with
zero for its zeroid, and with A as a prime fc-ideal. Since S/A = {A,B,C} and
BC = B2 but B =?£ C, S/A does not have multiplicative cancellation, pointing
up the necessity of semi subtraction in Proposition 4.
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PROPOSITION 5. / / S is a semiring with commutative addition and mul-
tiplication and with additive identity, if P is a k-ideal of S, and if SjP is multi-
plicatively cancellable, then P is prime.

PROPOSITION 6. If M is a maximal semi-ideal of a semisubtractive semiring
S with commutative addition and multiplication, then S[ / ]M is zero or S[/]M
is a semifield. (See Mosher [4], p. 61.)

PROPOSITION 7. / / M is a maximal semi-ideal of a hemiring with commu-
tative multiplication and multiplicative identity 1, and if M is also a k-idea
then S/M is a semifield.

Let S be a commutative halfring and S its ring of differences. If A is an
ideal in S, Ac denotes the set of xeS with xeA which is clearly a /c-ideal of S
and is called the contraction of A. If A is a k-ideal of S, Ae denotes the ideal
of S generated by A and is called the extension of A.

The following facts hold:
(1) SC=S, Se = S, (0)' = (0);
(2) if A <= B, then Ac c Bc; if A <= B, then Ae <= Be;
(3) i M c i ; Aec ZDA;
(4) Acec = Ac; Aece = Ae;

(5) {A n B)c = Ac nSc; (An B)e cAenBe;

(6) (ABf = AeBe provided AB is a fc-ideal; (AB)C=>ACBC.
If S is also semisubtractive, then we can characterize the ideals of >J that

have the form Ae,Aa fc-ideal of S. It is that

Ae = A\j{-xeS\xeA}.

In this setting we have

Ae r\Be = (A C\B)e, Ace = A, Aec = A, and (AB)C = ACBC.

Also, if A and B are fc-ideals of S, then AB = AecBec = (AeBe)c is a k-ideal.
In working with sums and products of k-ideals in semirings in general we

encounter the following problem: the sum or product might not be a /c-ideal.

EXAMPLE 7. The non-negative integers ZQ under usual operations is a
semisubtractive halfring. The multiples of 2 and the multiples of 3 are /c-ideals
but their sum is ZQ — {1} which is not a /c-ideal.

EXAMPLE 8. Define © on Zj as follows: a@b = ma\{a,b} if a ^ 6 or
bS6,a®b = a + b otherwise. Define 0 onZj as follows; aQb = min{a,b)
ifaS6orbgL6,aOb = ab otherwise. With these operations Z% is a hemi-
ring which is not semisubtractive. Also
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A = {xeZ o
+ | 0g x ^ 6 } U {8,10,12,-}

and
B = {xeZo\ 0 g x ^ 6 } u {9,12,15,-}

are /c-ideals but the semi-ideal AB contains 96 and 120 = 96 © 24 but not 24
which implies AB is not a fc-ideal.

In the light of these examples it is difficult to work with extensions and
contractions of sums and products without strong conditions being placed on
the semirings.

3. Dedekind semidomains

A semidomain is a commutative halfring with multiplicative cancellation
and with a multiplicative identity. A Dedekind semidomain is a semidomain
in which every fc-ideal is a product of prime fc-ideals.

The non-negative integers under the usual operations is a Dedekind semi-
domain. In fact, any principal ideal semidomain (a semidomain in which every
fc-ideal is principal) is a Dedekind semidomain.

If R is a semisubtractive Dedekind semidomain, and if M is a multiplicative
subsemigroup of R with O^M, one can show RM is a Dsdekind semidomain.
(For the construction of RM, see [3].)

LEMMA. / / R is a semisubtractive commutative halfring, and if P is a
k-ideal of R such that Pec = P, where extension and contraction are relative
to RM, M a multiplicative subsemigroup of R with 0£M, then Pe is a k-ideal
of RM-

For the proof see [4], Lemma 5.13, or the reader can easily supply the proof.
Continuing with the discussion just before the lemma, if A is a fc-ideal of

RM, then A" = A (see [3], Theorem 13). Since Ac is a fc-ideal of R, Ac = nPt

where Pt is a prime fc-ideal of R. Thus

where Pf = RM or is a prime fc-ideal of RM for each i (this second possibility
follows from Theorem 16 of [3] and the lemma above). ThusRM is a Dedekind
semidomain.

Let R be a semidomain, Q its quotient semifield. Let R be the ring of dif-
ferences of R. Letting R be semisubtractive, R becomes an integral domain.
The converse is false, however, because with QQ denoting the non-negative
rationals QQ [X] is a semidomain without semisubtraction whereas its ring of
differences is Q£[x],Qo the rationals, which is an integral domain. If Q' is
the field of quotients of R, does Q' = Q, the ring of differences of Ql If z e Q,
then z e g o r z = - y , y e < 2 , due to the fact that R is semisubtractive. In the
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first case z = a/b, where a, beR c R . Thus zeQ' and Q <= Q'. In the second
case z = — (alb), where a, beR. Thus

z = -(a/b) = (-a)/beQ>

since — a. beR. Hence Q<=-Q'. If weQ', then w = a/b, where a, beR.
If a, beR, then w = ajbeQ. Suppose —a,beR; then

since (-a)/beQ. For a, -beR,

w= -(f l/(-i))eg
since a/(-b)eQ. Lastly for - a , -beR, w = (~a)/(-b)eQ. Thus Q' = (5.
We say M e Q is integral over i? if there exist al5 •••, an and ftj, •••, &„ in R such that

u" + a^"'1 + ••• + an = bX'1 + ••• + K.

We say R is integrally closed if R is the set of elements of Q that are integral
over R.

PROPOSITION 8. The semisubtractive semidomain R is integrally closed if
and only if R is integrally closed.

PROOF. Suppose R is integrally closed and let ueQ be intgeral over R.
For some au---,an and bu---,bn in R,

Hence u" + (at - bju" *+ ••• + (an — bn) = 0 meaning a e ^ since ueQ <=Q.
Therefore ueRr\Q = R and R is integrally closed.

Suppose R is integrally closed and let ueQ.' be integral over R. Thus

«" + Oi -b1)u
n~1 + -+(an- bn) = 0

where at = 0 or bt = 0 for each j since R is semisubtractive. Hence

u"+a1u
n-1 + --+an = b1u"-i + - + bn.

Since Q is semisubtractive and Q' = Q, u = ajbeQ or M = -(a/b), ajbeQ.
If M = a/beQ, then « is integral over i? and hence ueRcR. Suppose
u = -(a/b), a/beQ. If n is even, then

(a/by+b^a/by-'+a^a/by-2 + b3(a/b)-3 + - + bn^(a/b) + an

= a^a/b)"-1 + b2(a/b)n-2 + a^a/b)"^ + - + a^^a/b) + bn

and hence a/b e R. If n is odd, then

a^a/b)-1 + b2(a/by~2 + a3(a/b)n-3 + - + b^^a/b) + an

= (a/by+b^a/by-1 + a2(a/b)n-2 + b3(.ajby~3 + - + aH-t(alb) + bn
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and hence ajbeR. In either case u = — (a/b)eR. Therefore R is integrally
closed and the proposition is proved.

Let R be Dadekind semisubtractive semidomain and R its ring of differences.
Is R a Dedekind ring? We have already observed that R is an integral domain.
Let A be an ideal in R. Now A = Ac is a fc-ideal in R. By hypothesis A = jrPf,
a product of prime fc-ideals of R. Thus

A = Ace = Ae = (nPtf = n(Pf).

Is P' prime in^? The answer is yes. Let x, yeR such that xyePf. If Jc = xeR
and y = yeR, then xy = xyePt, so that

x = x e Pt
e or y = y e Pf

e.

If x = xeR and y — — y, y eR, then

xy = x( -y) = -

so that xyePt. Thus xeP, or yePt; i.e., x = xePe)ory = —yePf. If Jc = —x
and j = — y where x, ye /? , then

xy = ( -*) ( - jO = (0 - x)(0 - y) = (0 + xy) - (0 + 0) = xy eP;
e ,

so that xyePi and hence x e P ; or y£P; ; i.e., x = —xeP,e or — yeP,". Thus
P," is a prime ideal of R. Thus ^ is a Dedekind ring.

By [6, Theorem 13, page 275], R is Nostherian, integrally closed, and every
proper prime ideal of R is maximal. By Proposition 2, there is a one-to-one
correspondence between the prime fc-ideals of R and the prime ideals of R.
Thus each prime /c-ideal of R is maximal. By [5] R is Noetherian since R is.
By Proposition 8, R is integrally closed. Therefore, if R is Dedekind, it is Noe-
therian, integrally closed, and each of its prime /c-ideals is maximal.

Suppose now that R is Noetherian, integrally closed, and that each of its
prime fe-ideals is maximal. By [5] R is Noetherian since R is semisubtractive.
Let A be a prime ideal in R. By Proposition 2, A corresponds to a unique prime
fc-ideal A of R. Since A is then maximal, so is A. Thus in R prime ideals are
maximal. By Proposition 8, R is also integrally closed. Therefore by [6] again,
R is Dedefind. If A is a £>ideal of R, then A corresponds uniquely to an ideal
A' of R by Proposition 2. Since A' = nP[, each P,'a prime ideal of R, and
since each P- corresponds to a unique prime &-ideal P; of R by Proposition 2,

Thus R is Dedekind, and the following theorem has been proved.

THEOREM 1. / / R is a semisubtractive semidomain, then R is Dedekind
if and only if R is Noetherian, integrally closed, and each of its prime k-ideals
is maximal.
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EXAMPLE 9. Let A be the set of subsets of finite set B with more than 2 ele-
ments. Let addition on A be union of sets and multiplication intersection of sets;
A is a commutative hemiring with 0 as its zero and B as its multiplicative identity.
Let K be a semi-ideal of A, and let D be the union of the elements of K. We
claim K is the set F of subsets of D. Clearly K c f ; if M e F , then for each
x e M w e have

{x} = H n { x ) e X

for any HeK and since B is finite

M = U {{x}\ xeM}eK.

Hence K = F, so that every semi-ideal of A is the set of subsets of some subset
of B. Easily then every semi-ideal is a fc-ideal. A prime fc-ideal of A is any set
of all subsets of a set of the form B — {x}, xeB. Clearly any fc-ideal of A is the
product of prime fc-ideals. Therefore a hemiring can have the Dedekind property
though it is not a semidomain.

EXAMPLE 10. Let QQ be the non-negative rationals under the usual opera-
tions and Q the rationals under the usual operations. Letting QQ [X] and 2 M
be the set of polynomials over Q% and Q, respectively, it is true that Q o H is
a Dedekind semidomain that is not semisubtractive, yet Q,\x] = QoM is a

Dedekind ring.

EXAMPLE 11. (Stone, [5].) Let S be the set of all positive rational sequences
and the constant sequence 0 = {0,0,•••}. Under componentwise addition and
multiplication, S is a semifield without semisubtraction. Its ring of differences
is a countable direct product of copies of the rationals which is not an integral
domain. Thus this example shows the necessity of semisubtraction in Theorem 1,
since S is Dedekind and S is not Dedekind.
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