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Abstract

We construct inhomogeneous isoparametric families of hypersurfaces with non-austere
focal set on each symmetric space of non-compact type and rank ≥3. If the rank is ≥4,
there are infinitely many such examples. Our construction yields the first examples of
isoparametric families on any Riemannian manifold known to have a non-austere focal
set. They can be obtained from a new general extension method of submanifolds from
Euclidean spaces to symmetric spaces of non-compact type. This method preserves the
mean curvature and isoparametricity, among other geometric properties.

1. Introduction

An isoparametric family of hypersurfaces is a decomposition of a Riemannian manifold into
equidistant hypersurfaces of constant mean curvature and possibly one or two focal submani-
folds with codimension greater than one. An isoparametric family is called homogeneous if it
is the orbit foliation of an isometric action. In this article we provide a construction method of
isoparametric hypersurfaces from where the next result follows.

Theorem A. Each symmetric space M of non-compact type and rank at least three admits
inhomogeneous isoparametric families of hypersurfaces with non-austere focal submanifolds.
If the rank is greater than or equal to four, there exist uncountably many such examples, up to
congruence.

We emphasize three novel and surprising features of this result.
First, among the symmetric spaces of non-compact type, only those in the very special class of

(BCr) type (namely, those with non-reduced root system) were known to admit inhomogeneous
isoparametric hypersurfaces [DD13, Dom15, DDR21]. In this paper we construct examples in
symmetric spaces of any type and rank at least three.

Second, Theorem A provides the first isoparametric hypersurfaces which are known to have
a non-austere focal submanifold in any Riemannian manifold. We recall that a submanifold is
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said to be austere if its multiset of principal curvatures is invariant under change of sign [HL82].
In particular, austere submanifolds are minimal. The focal submanifolds of an isoparametric
family of hypersurfaces are always minimal [GT14], and Theorem A shows that they do not need
to be austere. We highlight the contrast with homogeneous hypersurfaces, as singular orbits of
cohomogeneity-one actions are always austere [Pod97]. More generally, the focal submanifolds of
isoparametric families of hypersurfaces with constant principal curvatures [GT14] (such as the
famous inhomogeneous examples in spheres [FKM81]), or of previous constructions in symmetric
spaces of non-compact type [DD13, Dom15, DDR21], are known to be austere. Indeed, the
austerity of the focal submanifolds has played a crucial role in the classification of isoparametric
hypersurfaces in spheres [Miy13] and complex hyperbolic spaces [DDS17]. Theorem A reveals
that this property does not hold in general, even in spaces with a large isometry group. For more
information on isoparametric hypersurfaces, see [BCO16, CR15, Chi20a, Chi20b].

Third, Theorem A also holds for reducible spaces and yields the first inhomogeneous examples
that are not extrinsic products in any reducible symmetric space. For instance, any product of at
least three rank-one symmetric spaces of non-compact type turns out to admit inhomogeneous
isoparametric hypersurfaces. Particularly remarkable is the case of the product of three real
hyperbolic planes, RH2 × RH2 × RH2, which admits such an inhomogeneous example, despite
the fact that the isoparametric hypersurfaces of the irreducible factors are all homogeneous.
Together with the complex hyperbolic space CH3 (see [DD13]), this reducible space seems to be
the lowest-dimensional symmetric space that is known to admit inhomogeneous isoparametric
hypersurfaces.

We now describe the construction of the new examples. Let M ∼= G/K be a symmetric space
of non-compact type, where G is the connected component of the identity of the isometry group
of M , and K is the isotropy group at some point o ∈ M . Let g = k ⊕ p be the corresponding
Cartan decomposition, and a a maximal abelian subspace of p. Consider the restricted root space
decomposition g = g0 ⊕ (

⊕
λ∈Δ gλ) with respect to a, where Δ ⊂ a∗ is the set of restricted roots.

Let Δ+ be a choice of positive roots in Δ, and define n =
⊕

λ∈Δ+ gλ. Consider the connected
Lie subgroups A, N and AN of G with Lie algebras a, n and a ⊕ n, respectively. The Iwasawa
decomposition theorem for G implies that M ∼= G/K is isometric to the solvable Lie group AN
equipped with a left-invariant metric 〈·, ·〉. For each λ ∈ Δ, we define Hλ ∈ a by 〈H, Hλ〉 = λ(H)
for all H ∈ a, and put

Hδ =
1
2

∑
λ∈Δ+

dim gλHλ.

Theorem B. Let M be a symmetric space of non-compact type and rank ≥ 3. Let S be the
connected Lie subgroup of AN with Lie algebra s = b ⊕ n, where b is any subspace of codimension
at least two of a such that Hδ ∈ b. Then we have the following.

(i) The orbit S · o is a minimal submanifold. It is non-austere for a generic choice of b as above,
or if dim b = 1.

(ii) The distance tubes around S · o define an inhomogeneous isoparametric family of hypersur-
faces with non-constant principal curvatures on M .

(iii) If two choices of subspaces b1, b2 of a as above produce congruent isoparametric families,
then b2 = ϕ(b1) for some ϕ in the finite group Aut(Δ) of linear isometries of a that leave
the subset {Hλ ∈ a : λ ∈ Δ} invariant.

The condition Hδ ∈ b ⊂ a ensures that the orbit S · o is not only minimal, but an
Einstein solvmanifold whenever M is Einstein (for instance, if M is irreducible); see Remark 2.1.
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Theorem B guarantees that any choice of subspace b of codimension at least two in a containing
Hδ gives rise to an inhomogeneous isoparametric family of M . The genericity condition in item
(i) is only needed for the non-austerity of the focal submanifold S · o. Here, by a generic choice
we mean that b can be selected in an open dense subset of the Grassmannian of k-dimensional
subspaces of a containing Hδ, for some k ∈ {1, . . . , rankM − 2}. However, genericity can be
substituted by explicit computable conditions in terms of the roots. In any case, it is easy to
produce concrete examples of non-austere focal sets, the simplest method being just taking
b = RHδ. This implies the first claim of Theorem A. However, Theorem B provides more exam-
ples of isoparametric families than Theorem A, as tubes around S · o are always isoparametric
with non-constant principal curvatures, independently on whether S · o is austere or not, and
S · o is actually austere for certain choices of b. See the discussion around (4)–(6), as well as
Remark 2.3, for further details.

If rankM = dim a ≥ 4, then there are uncountably many subspaces b of codimension at least
two in a with Hδ ∈ b. By the generic property in Theorem B(i), an uncountable number of such
subspaces produce non-austere submanifolds of the form S · o. Now, according to Theorem B(iii),
tubes around the latter give rise to uncountably many congruence classes of isoparametric families
with non-austere focal set. This proves the infiniteness claim in Theorem A. In conclusion,
Theorem B clearly implies Theorem A.

We would like to point out that Theorem B(iii) and its proof may play an important role
in the determination of the congruence classes of homogeneous hyperpolar foliations [BDT10],
which is still an open problem. The relation to hyperpolar foliations stems from the fact that the
group S acts hyperpolarly on M (see the paragraph below and § 2.4). Our proof of Theorem B(iii)
is conceptual and case-free, and does not make use of the assumptions on the rank of M , the
codimension of b or Hδ ∈ b. The particular case of b of codimension one in a has been completely
characterized in [BT03, pp. 9–20] and [Sol21] in terms of the automorphisms of the Dynkin
diagram of M .

We will provide two proofs of the claims of isoparametricity and inhomogeneity in
Theorem B(ii). The first is a direct approach based on the study of the extrinsic geometry
of the examples via standard Jacobi field theory. The second arises as a straightforward conse-
quence of a new extension method of submanifolds and foliations in symmetric spaces from totally
geodesic, flat submanifolds. This method is of independent interest, and seems to have remained
unnoticed, despite being an application of the results from [BDT10] and [Dom15]. Specifically,
the action of a group S as in Theorem B on a symmetric space M happens to be free, hyper-
polar and with minimal orbits [BDT10]. Then, a general extension result (for free, polar actions
with minimal orbits on Riemannian manifolds) given in [Dom15] by the first author applies,
thus allowing submanifolds and singular Riemannian foliations to be extended from a section Σ
of the polar S-action to M . Importantly, this extension procedure preserves various geometric
properties such as minimality, polarity or isoparametricity. We refer to [Dom15] (see also [AB15]
and [HLO06]) for the definitions of isoparametric submanifold of arbitrary codimension, singular
Riemannian foliation, and polar, hyperpolar or isoparametric foliation.

Theorem C. Let M be a symmetric space of non-compact type and rank ≥3, and S the
connected Lie subgroup of AN with Lie algebra s = b ⊕ n, where b is a subspace of codimension
at least two of a such that Hδ ∈ b. Let Σ ∼= Rd be a section of the hyperpolar S-action on M ,
where d := rankM − dim b.

Let P and F be a connected submanifold and a singular Riemannian foliation of codimension
k in the Euclidean space Σ ∼= Rd, respectively. Then

S · P := {s(p) : s ∈ S, p ∈ P} and S · F := {S · L : L ∈ F}
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are a connected submanifold and a singular Riemannian foliation of codimension k in the
symmetric space M , respectively. Moreover, we have the following.

(i) If P has parallel mean curvature, is minimal, has flat normal bundle or is isoparametric as
a submanifold of Σ, the same is true for S · P as a submanifold of M . However, S · P is
never totally geodesic.

(ii) If F is a polar (or equivalently, isoparametric) singular Riemannian foliation of Σ, then
S · F is an isoparametric and hyperpolar singular Riemannian foliation of M .

(iii) The submanifold S · P (respectively, foliation S · F) is inhomogeneous in M , except if P is
an affine subspace (respectively, except if F is a foliation given by parallel affine subspaces)
of Σ ∼= Rd.

Under the perspective of the extension procedure described in Theorem C, the isoparametric
families of hypersurfaces constructed in Theorem B are nothing but extensions S · F of the most
basic examples of isoparametric foliations F with a singular leaf on a Euclidean space Rd, namely
those given by concentric spheres and their common center. In other words, a tube of radius t > 0
around S · o (which is a leaf of the isoparametric foliation mentioned in Theorem B(ii)) is the
union of S-orbits passing through the points of a sphere of radius t in Σ = Exp(b⊥) · o centered
at o, where b⊥ is the orthogonal complement of b in a.

The general extension result in [Dom15] was applied, in that paper, to a different class of free
polar actions with minimal orbits on symmetric spaces of non-compact type. The resulting exten-
sion method for symmetric spaces allowed to enlarge submanifolds and foliations from semisimple
symmetric spaces of lower rank embedded in a particular totally geodesic manner (namely, as so-
called boundary components). This contrasts with the method provided in Theorem C, where one
extends submanifolds or foliations from Euclidean spaces. Even more striking is the fact that,
whereas the method in [Dom15] preserved the homogeneity of the examples, Theorem C(iii)
reveals that this is almost never the case for the extension procedure we present in this article.
The ultimate reason for this difference is that the connected component of the identity of the
isometry group of a Euclidean space, embedded as a maximal flat in M , does not embed into the
isometry group of M (only translations do), whereas such an embedding does exist for boundary
components of M .

At the topological level, the extension method in Theorem C works as extending submanifolds
of a subspace of a Euclidean space by perpendicularly attaching parallel affine subspaces, thus
giving rise to a cylinder over the original submanifold. This is so because the S-orbit foliation on
M is diffeomorphically equivalent to a foliation of Rdim M by affine d-codimensional subspaces.
However, geometrically speaking, the extension procedure in Theorem C is not trivial at all, in
that the attached fibers (i.e. the S-orbits) are minimal, but never totally geodesic.

Although it is not the purpose of this paper to exploit the whole potential of Theorem C
to produce interesting examples of submanifolds in symmetric spaces of non-compact type, we
will briefly illustrate it with some simple applications. For instance, by extending a catenoid
in a 3-dimensional Euclidean space, we can obtain a complete minimal hypersurface diffeomor-
phic to S1 × Rdim M−2 on any symmetric space of non-compact type and rank at least 4. This
can, of course, be generalized in several ways, for example by extending (extrinsic products of)
minimal surfaces with more complicated topologies. In a different direction, by extending polar
foliations on Euclidean spaces, one can obtain (to the best of the authors’ knowledge, the first
known examples of) inhomogeneous, isoparametric, hyperpolar, singular Riemannian foliations
of codimension higher than one on a non-compact symmetric space M . Such foliations have no
totally geodesic leaves, and can take any codimension k ∈ {1, . . . , rankM − 2}. Moreover, by

454

https://doi.org/10.1112/S0010437X23007650 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007650


Isoparametric hypersurfaces in symmetric spaces of higher rank

considering a symmetric space M of sufficiently large rank, one can construct examples with any
prescribed polar infinitesimal foliation.

2. Proof of the main theorems

We start by introducing some notation and known facts on symmetric spaces of non-compact
type. For more information, we refer the reader to [DDS21] and [Ebe96, Chapter 2], and to
[Kna02, Sections II.5, VI. 4–5] for the theory of root systems.

As in the introduction, let M ∼= G/K be a symmetric space of non-compact type, and g =
k ⊕ p the Cartan decomposition determined by the point o ∈ M whose isotropy subgroup of
G is precisely K. Given a maximal abelian subspace a of p, and a covector λ ∈ a∗, we define
gλ = {X ∈ g : [H, X] = λ(H)X for all H ∈ a}. The choice of a determines the set of restricted
roots, Δ = {λ ∈ a∗ : gλ 	= 0} \ {0}, and the restricted root space decomposition of g, namely
g = g0 ⊕ (

⊕
λ∈Δ gλ). The relation [gλ, gμ] ⊂ gλ+μ holds for any λ, μ ∈ a∗.

When a∗ is endowed with the inner product induced by the Killing form of g, the subset Δ
of a∗ turns out to be a (possibly non-reduced) root system. Let Δ+ be a set of positive roots for
Δ, defined as the subset of roots lying at one side of a linear hyperplane in a∗ not intersecting
Δ. Thus, Δ is the disjoint union of Δ+ and −Δ+. We denote by Π ⊂ Δ+ the corresponding set
of simple roots, which is made of all positive roots that are not sums of two positive roots. In
particular, Π is a basis of a∗, and every λ ∈ Δ is a linear combination of elements in Π whose
coefficients are all either non-negative or non-positive integers.

We consider the nilpotent Lie algebra n =
⊕

λ∈Δ+ gλ, and the connected Lie subgroups A,
N and AN of G with Lie algebras a, n and a ⊕ n, respectively. The Iwasawa decomposition
theorem for G implies that M ∼= G/K is diffeomorphic to the solvable Lie group AN . We denote
by 〈·, ·〉 both the Riemannian metric on M and the pullback metric on AN that makes M and
AN (as well as ToM and a ⊕ n) isometric. It turns out that such metric on AN is left-invariant.
Thus, by Koszul’s formula, the Levi-Civita connection of AN is determined by the expression
2〈∇XY, Z〉 = 〈[X, Y ], Z〉 + 〈[Z, X], Y 〉 + 〈X, [Z, Y ]〉, for any X, Y , Z ∈ a ⊕ n. In particular, if
H ∈ a and X ∈ a ⊕ n, we have

∇XH = −[H, X]. (1)

For each λ ∈ a∗, we define the vector Hλ ∈ a by the relation 〈Hλ, H〉 = λ(H) for all H ∈ a.
Particular instances of this definition are the vectors Hλ ∈ a where λ ∈ Δ ⊂ a∗ is a root, and
also the vector Hδ ∈ a, where δ = 1

2

∑
λ∈Δ+(dim gλ)λ ∈ a∗. We will denote also by 〈·, ·〉 the inner

product on a∗ given by 〈λ, μ〉 = 〈Hλ, Hμ〉, for any λ, μ ∈ a∗. With respect to this inner product
of a∗, Δ is also a (possibly non-reduced) root system on a∗.

If k is an isometry of M fixing o and such that Ad(k)a = a, then it is a standard fact that
Ad(k) permutes the root spaces gλ with λ 	= 0, and given λ, μ ∈ Δ, the relations

Ad(k)Hλ = Hμ, μ = λ ◦ Ad(k−1)|a, Ad(k)gλ = gμ (2)

are equivalent to each other. This follows from the definitions and the fact that Ad(k) is an
automorphism of g and a linear isometry when restricted to a.

In the following subsections we will prove Theorems B and C. As already mentioned,
Theorem A follows directly from Theorem B.

Let S be the connected Lie subgroup of AN with Lie algebra s = b ⊕ n, where b is a proper
vector subspace of a. We put b⊥ := a � b. Hereafter, � denotes orthogonal complement.
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2.1 Extrinsic geometry and non-austerity of the focal set
In this subsection we will prove Theorem B(i). We first calculate the shape operator S of S · o
as a submanifold of M . By homogeneity, it will be enough to calculate S at o. Thanks to the
isometry M ∼= AN and using (1), S can be computed as SξX = −(∇Xξ)� = −[ξ, X]�, where
ξ ∈ b⊥ and X ∈ s are left-invariant vector fields on AN , and � denotes orthogonal projection
onto the tangent space s. Using (1), we have

SξH = 0 and SξXλ = λ(ξ)Xλ, for any ξ ∈ b⊥, H ∈ b and Xλ ∈ gλ ⊂ n. (3)

Hence, the mean curvature vector H of S · o is determined by the relation 〈H, ξ〉 = trSξ =∑
λ∈Δ+ dim gλλ(ξ) = 2〈Hδ, ξ〉, for each ξ ∈ b⊥. Thus, S · o is minimal if and only if Hδ ∈ s or,

equivalently, Hδ ∈ b. This proves the first claim in Theorem B(i).

Remark 2.1. The condition Hδ ∈ b ⊂ a also arises in the study of Einstein solvmanifolds. Indeed,
this assumption means that s contains the mean curvature vector H = 2Hδ of the solvmanifold
AN and, thus, if the symmetric metric on M is Einstein (for example, if M is irreducible),
then the orbit S · o is known to be Einstein as well, see [Heb98, Theorem 4.18]. Moreover, in
this situation, the S-action on M is free and polar with mutually isometric minimal orbits
(see § 2.4). The proof of the existence of such an action on any Einstein manifold of negative
scalar curvature in the presence of symmetry is one of the key steps in the recent outstanding
proof of the Alekseevskii conjecture by Böhm and Lafuente [BL23].

From now on in this subsection and the next (except in Remark 2.2 below), we will assume
that Hδ ∈ b and dim b⊥ ≥ 2 and, hence, rankM ≥ 3.

We will now prove the second claim in Theorem B(i) by showing that S · o is not austere if
b = RHδ, and that S · o is not austere for a generic choice of a subspace b of a containing Hδ.
From (3) we know that the principal curvatures of S · o, regarded as linear functionals on the
normal space b⊥, are 0 and the restrictions λ|b⊥ of the positive roots λ ∈ Δ+. Let λ1, . . . , λ� be
an enumeration of the positive roots in Δ+, where each root λi is repeated as many times as the
dimension dim gλi of its associated root space; in particular, � = dim n. Thus, S · o is austere if
and only if

there is a permutation σ of λ1, . . . , λ� with (λi + σ(λi))|b⊥ = 0 for all i ∈ {1, . . . , �}. (4)

Note that if λ, μ ∈ Δ+, then λ + μ vanishes on b⊥ if and only if Hλ+μ ∈ b. Therefore, if
for some λ ∈ Δ+ we have Hλ+μ /∈ b for all μ ∈ Δ+, then S · o cannot be austere. Assume for a
moment that

there is λ ∈ Δ+ such that λ + μ is not collinear to δ for any μ ∈ Δ+. (5)

Then it follows that S · o is not austere for the choice b = RHδ. More generally, any subspace b

of a such that
Hδ ∈ b, and Hλ+μ /∈ b for any μ ∈ Δ+ (6)

will produce a non-austere minimal S · o, where λ is a fixed root satisfying (5). Observe that the
k-dimensional subspaces b of a satisfying the conditions in (6) constitute an open and dense
subset of the space of k-dimensional subspaces of a containing Hδ, for any k ∈ {1, . . . ,
rankM − 1}. This is because, for any given λ ∈ Δ+ as in (5), {Hλ+μ : μ ∈ Δ+} is a finite
subset of a not intersecting RHδ.

Thus, in order to conclude the proof of Theorem B(i), we just have to show that (5) is true
for any (possibly non-reduced) root system of rank at least 3. This is probably well known,
but since we did not find an appropriate reference in the literature, we shall give a proof here.
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We will make frequent use of known properties of root systems, particularly those in [Kna02,
Proposition 2.48]. We will also use the fact that 〈δ, ν〉 > 0 for all ν ∈ Δ+. This can be easily
shown by adapting the proof of [Kna02, Proposition 2.69]. Thus, (5) will be proved if we show
that

there is λ ∈ Δ+ such that for each μ ∈ Δ+ we have 〈λ + μ, ν〉 ≤ 0 for some ν ∈ Δ+. (7)

We first consider the case that Δ = Δ1 ⊕ Δ2 is a reducible root system. Since Δ has rank
at least 3, we can assume that the (possibly reducible) factor Δ1 has rank 2 or higher. Fix
λ ∈ Π ∩ Δ1 a simple root in the factor Δ1, and let μ ∈ Δ+ be arbitrary. If μ ∈ Δ1, then any
ν ∈ Δ+

2 satisfies 〈λ + μ, ν〉 = 0. Otherwise, if μ ∈ Δ2, since rank Δ1 ≥ 2, there exists ν ∈ Π ∩ Δ1,
ν 	= λ, and, hence, 〈λ + μ, ν〉 = 〈λ, ν〉 ≤ 0, since λ and ν are simple. This shows (7), and hence (5),
in the reducible case.

Now assume that Δ is irreducible. Let λ ∈ Δ+ be such that |λ| ≥ |μ| for every μ ∈ Δ+, and
λ ∈ Π or λ/2 ∈ Π (if Δ is non-reduced). Let μ ∈ Δ+ be arbitrary. If μ ∈ Π or if μ/2 ∈ Π (in
case μ is non-reduced), then any simple root ν ∈ Π \ span{λ, μ} (which exists since rank Δ ≥ 3)
satisfies 〈λ, ν〉 ≤ 0 and 〈μ, ν〉 ≤ 0, from where we get (7). Otherwise, assume that Rμ ∩ Π = ∅.
Take ν ∈ Π joined to λ (or to λ/2 if λ is non-reduced) in the Dynkin diagram associated with Π.
Then 〈λ, ν〉 = −|λ|2/2, and 〈μ, ν〉 ≤ max{|μ|2, |ν|2}/2 ≤ |λ|2/2, where we have used that neither
λ nor μ are proportional to ν. This implies (7) and, thus, we have concluded the proof of (5),
and hence of Theorem B(i).

Remark 2.2. The assumption that rankM ≥ 3 is essential for the proof of the non-austerity
claim in Theorem B(i). Specifically, it was crucial in the proof of (7). We did not consider the
case rank M = 2 (with dim b = 1) in Theorem B, as it would lead to a minimal leaf S · o of a
homogeneous (hence, isoparametric) codimension-one regular foliation, and these were classified
in [BDT10]. However, in this case, the austerity of the hypersurface S · o depends on M . Indeed,
using the characterization in (4), one can check, for instance, that if M is of type A2, then S · o
is austere, whereas if M is of type B2, then it is not.

Remark 2.3. The problem of completely determining the subspaces b of a that produce austere
orbits S · o seems to be a non-straightforward combinatorial problem. In this article, we content
ourselves with proving that non-austere examples are generic, and with giving some examples
(necessarily with RHδ � b) which show that austere orbits S · o indeed exist.

Consider M = SL5/SO5, let Δ+ be a set of positive restricted roots (which has 10 elements),
and Π = {α1, α2, α3, α4} ⊂ Δ+ the corresponding set of simple roots (ordered in the standard
way, so that α1 and α4 correspond to the extremal nodes of the A4-Dynkin diagram). Then b =
span{Hλ, Hα2+α3} yields an austere orbit S · o, where λ =

∑4
i=1 αi is the highest root. Indeed, the

permutation σ of Δ+ given in cycle notation by (α1 λ − α1)(α2 α3)(α4 λ − α4)(α1 + α2 α3 + α4)
satisfies the characterization in (4). For an example in the reducible setting, let M = (RH2)4 and
denote by α1, α2, α3, α4 the roots in Δ+ = Π. Then, the subspace b = span{Hα1+α2 , Hα3+α4} of a

produces an austere orbit S · o, as the permutation σ of Δ+ given by (α1 α2)(α3 α4) satisfies (4).

Remark 2.4. An important subclass of austere submanifolds is that determined by the property
that all shape operators for unit normal vectors are isospectral. These were called CPC subman-
ifolds in [BS21]. Their importance stems from the fact that focal sets of isoparametric families
of hypersurfaces with constant principal curvatures have this property [GT14], and indeed, in
the context of spaces of constant curvature, the classification of CPC submanifolds is equivalent
to that of isoparametric hypersurfaces. One may ask if, for some choices b ⊂ a, our construction
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method produces CPC orbits S · o. The argument in the last paragraph of § 2.2 will show that
this is never the case.

2.2 Tubes around S · o are isoparametric with non-constant principal curvatures
In this subsection we will prove Theorem B(ii). To this purpose, we will calculate the extrin-
sic geometry of the distance tubes around S · o using Jacobi field theory; we refer the reader
to [BCO16, § 10.2] for details on this method. Let γ be a unit speed geodesic in M with γ(0) = o
and γ̇(0) = ξ ∈ νo(S · o), where ν(S · o) is the normal bundle of S · o. Given X ∈ ToM , we will
denote by PX the parallel vector field along γ with PX(0) = X. For each X ∈ ToM ∼= a ⊕ n

orthogonal to ξ ∈ νo(S · o) ∼= b⊥ ⊂ a, let JX be the adapted Jacobi vector field along γ that is
solution to the initial value problem

J ′′
X + R(JX , γ̇)γ̇ = 0, JX(0) = X�, J ′

X(0) = X⊥ − SξX
�,

where R is the curvature tensor of M , and �, ⊥ denote the projections onto the tangent and
normal spaces of S · o, respectively.

Let H ∈ a and Xλ ∈ gλ, λ ∈ Δ+, be arbitrary vectors, which we regard as tangent vectors to
M at o. It is well known (see [Ebe96, § 2.15], and note that ξ ∈ a) that the parallel vector fields PH

and PXλ
along the homogeneous geodesic γ are eigenvectors of the Jacobi operator Rγ̇ = R(·, γ̇)γ̇

with respective eigenvalues 0 and −λ(ξ)2. Thus, given arbitrary vectors η ∈ b⊥ � Rξ, H ∈ b ⊂ s

and Xλ ∈ gλ ⊂ s, one can easily verify, taking (3) into account, that the adapted Jacobi fields
Jη, JH and JXλ

are given by

Jη(t) = tPη(t), JH(t) = PH(t), JXλ
(t) = e−tλ(ξ)PXλ

(t). (8)

Since for any t > 0 and unit normal vector ξ ∈ νo(S · o), the set {JX(t) : X ∈ ToM � Rξ} spans a
(dimM − 1)-dimensional subspace of Tγ(t)M , and taking into account the homogeneity of S · o,
it follows that the tube W t := {exp(tξ) : ξ ∈ ν(S · o), |ξ| = 1} of radius t around S · o is indeed
a hypersurface of M , for any t > 0. Moreover, the shape operator St of W t with respect to the
normal vector γ̇(t) can be calculated by StJX(t) = −J ′

X(t), for each X ∈ ToM � Rξ. Therefore,
inserting (8) into the previous relation, we obtain

StPη(t) = −1
t
Pη(t), StPH(t) = 0, StPXλ

(t) = λ(ξ)PXλ
(t), (9)

for any η ∈ b⊥ � Rξ, H ∈ b ⊂ s and Xλ ∈ gλ ⊂ s. Thus, the mean curvature of W t is

Ht = trSt = −1
t
(dim b⊥ − 1) +

∑
λ∈Δ+

dim gλλ(ξ) = −1
t
(dim b⊥ − 1),

where in the last equality we have used the assumption that Hδ is orthogonal to any normal
vector ξ. This shows that each tube W t has constant mean curvature. As discussed in the
introduction, each W t is the union of the S-orbits passing through the points of a sphere of
radius t centered at o in the Euclidean space Σ := Exp(b⊥) · o. Since the action of S ⊂ AN on
M is free and, by construction, the tubes W t are equidistant to each other and to S · o, we
conclude that {W t : t > 0} ∪ {S · o} is a isoparametric family of hypersurfaces with focal set
S · o.

Finally, the non-constancy of the principal curvatures of W t, and hence the inhomogeneity
of W t, follows directly from [GT14, Theorem 1.2] when S · o is not austere. However, we can
provide an easy argument, based on (9), which works in general, independently of whether S · o
is austere or not. Indeed, if the principal curvatures of some tube W t around S · o were constant,
the set {λ(ξ) : λ ∈ Δ+, ξ ∈ b⊥, |ξ| = 1} would be finite. Note that such set is also constant if
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S · o is assumed to be CPC (cf. Remark 2.4). Since dim b⊥ ≥ 2, this would necessarily imply
b⊥ ⊂ kerλ for all λ ∈ Δ+, which is impossible, as Δ+ generates a∗. This concludes the proof of
item (ii) of Theorem B and of Remark 2.4.

2.3 Congruence of the examples
This subsection contains the proof of Theorem B(iii). More specifically, let b1, b2 be two vector
subspaces of a, and let Si be the connected Lie subgroup of AN with Lie algebra si = bi ⊕ n,
i ∈ {1, 2}. We will prove that if the orbits S1 · o and S2 · o are congruent, then b2 = ϕ(b1) for some
linear isometry ϕ of a of the form ϕ = Ad(k)|a, k ∈ N

K̂
(a). Here N

K̂
(a) denotes the normalizer

of a in the full isotropy group K̂ = {k ∈ Isom(M) : k(o) = o}. Note that the group {Ad(k)|a :
k ∈ N

K̂
(a)} leaves the finite set {Hλ ∈ a : λ ∈ Δ} invariant, see (2). It is therefore a finite group,

as the Hλ, λ ∈ Δ, generate a.
We will not assume any restriction on the rank of M or on the subspaces b1 and b2. Observe

that Theorem B(iii) will then follow directly, since two choices of subspaces b1, b2 of a in the
conditions of Theorem B produce congruent isoparametric families if and only if the orbits S1 · o
and S2 · o are congruent.

Assume that S1 · o and S2 · o are congruent submanifolds of M . By composing with an
element of S2 if necessary, we can assume that there is an isometry k ∈ K̂ of M fixing o and such
that k(S1 · o) = S2 · o. Then k∗(νo(S1 · o)) = νo(S2 · o), which translates into Ad(k)b⊥1 = b⊥2 , as
b⊥i = a � bi is a subspace of p, for each i ∈ {1, 2}. Now, Theorem B(iii) follows directly from the
following.

Lemma 2.5. Let b1, b2 be subspaces of a such that Ad(k)b⊥1 = b⊥2 for some k ∈ K̂. Then, there
exists k̃ ∈ N

K̂
(a) such that Ad(k̃)b1 = b2.

Proof. For each i ∈ {1, 2}, define Δ+
i := {λ ∈ Δ+ : λ(b⊥i ) = 0} and ai :=

⋂
λ∈Δ+

i
ker λ. By

definition, b⊥i ⊂ ai. It turns out that the centralizer of b⊥i in p is a Lie triple system of the form
Zp(b⊥i ) = ai ⊕ ci, where ci = (a � ai) ⊕ (

⊕
λ∈Δ+

i
pλ), pλ = (1 − θ)gλ ⊂ p, and θ is the Cartan

involution associated with the decomposition g = k ⊕ p; see [Ebe96, § 2.20] for details. Both ai and
ci are also (mutually orthogonal) Lie triple systems, corresponding to a totally geodesic flat sub-
manifold Exp(ai) · o ∼= Rr−ri and a totally geodesic semisimple symmetric space of non-compact
type Ci := Exp(ci) · o of rank ri, respectively, where r := rankM = |Π| and ri = dim(a � ai) is
the maximum number of linearly independent roots in Δ+

i . Since Ad(k)b⊥1 = b⊥2 , we also have
Ad(k)Zp(b⊥1 ) = Zp(b⊥2 ) and, hence, Ad(k)(a1 ⊕ c1) = a2 ⊕ c2. Thus, k maps the totally geodesic
submanifold Rr−r1 × C1 to Rr−r2 × C2, and then k necessarily preserves the Euclidean and
semisimple factors, from where Ad(k)a1 = a2 and Ad(k)c1 = c2.

Let Ki be the connected component of the identity of the isotropy group of Ci at o. Its Lie
algebra is ki = [ci, ci]. Note that a � a2 and Ad(k)(a � a1) ⊂ Ad(k)c1 = c2 are maximal abelian
subspaces of c2. Since any two maximal abelian subspaces of the tangent space of a symmetric
space are conjugate, there exists k′ ∈ K2 such that the element k̃ := k′k ∈ K̂ satisfies Ad(k̃)(a �
a1) = a � a2. As k2 = [c2, c2] centralizes a2, then Ad(k′) leaves a2 (and, hence, b⊥2 ) pointwise
invariant. This, together with Ad(k)b⊥1 = b⊥2 , Ad(k)a1 = a2 and Ad(k̃)(a � a1) = a � a2, implies
Ad(k̃)a = a and Ad(k̃)b1 = b2, as we wanted to show. �

2.4 Extension method and proof of Theorem C
The Lie group AN acts simply transitively on M . Hence, the connected Lie subgroup S of
AN with Lie algebra s = b ⊕ n acts freely on M . Moreover, the S-action on M is hyper-
polar with section Σ := Exp(b⊥) · o ∼= Rd, where d = dim b⊥ = rankM − dim b. Indeed, such
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an S-action is one of the examples of hyperpolar actions with no singular orbits classified
in [BDT10]. Furthermore, Σ intersects each S-orbit exactly once, as follows from the fact
that AN = Exp(b⊥)S = S Exp(b⊥) acts simply transitively on M . Since Hδ ∈ b, the orbit S · o
is a minimal submanifold of M , as shown in § 2.1. By polarity, any S-orbit is of the form
S · a(o) = a(a−1Sa · o) = a(S · o), for some a ∈ Exp(b⊥), where we have used that the group
A normalizes S. Thus, all S-orbits are mutually congruent and, hence, minimal (cf. [BDT10]).
Therefore, the action of S on M satisfies the hypotheses of [Dom15, Theorem 2.1], from where
the first claim in item (i) as well as item (ii) in Theorem C follow immediately (for item (ii), note
that polar singular Riemannian foliations on Euclidean spaces are hyperpolar and isoparametric).

As discussed in [Dom15], the shape operator of an extended submanifold S · P of M , where
P is a submanifold of Σ, is block diagonal, with one block corresponding to the shape operator
of P , and the other block to the shape operator of the orbit S · o. Since the latter never vanishes
identically, as follows from (3) and the argument in the last paragraph of § 2.2, we have that
S · P is never totally geodesic, which completes the proof of Theorem C(i).

We will finally prove item (iii) of Theorem C. Let P be a submanifold of Σ, and S · P the
extended submanifold of M . We will show that S · P is a homogeneous submanifold of M if
and only if P is an affine subspace of Σ ∼= Rd; the analogous claim for foliations stated in item
(iii) follows immediately. Note that P is an affine subspace of Σ = Exp(b⊥) · o if and only if P
is an orbit L · p, p ∈ Σ, of the connected Lie subgroup L of A whose Lie algebra is a vector
subspace l of b⊥. In this case, S · P is the orbit of the group LS through p and, thus, it is
homogeneous.

Conversely, assume that S · P is homogeneous. By applying an isometry in A if necessary,
we can assume that o ∈ P . Thus, in particular, for each p ∈ P = (S · P ) ∩ Σ there exists gp ∈
Isom(M) such that gp(o) = p and gp(S · P ) = S · P . Moreover, for each such p there is exactly one
ap ∈ Exp(b⊥) ⊂ A such that ap(p) = o. Recall that K̂ = {k ∈ Isom(M) : k(o) = o}. Define k :=
apgp ∈ K̂, which satisfies k(S · P ) = ap(S · P ) = S · ap(P ), since ap ∈ A normalizes S. Consider
the normal spaces at o to the submanifolds S · P and S · ap(P ). Since such normal spaces are
tangent to Σ, we can identify νo(S · P ) ∼= b⊥1 and νo(S · ap(P )) ∼= b⊥2 , for subspaces b⊥1 and b⊥2 of
b⊥ ⊂ a. Since k∗(νo(S · P )) = νo(S · ap(P )), we have Ad(k)b⊥1 = b⊥2 . Thus, from Lemma 2.5 we
deduce the existence of an element k̃ ∈ N

K̂
(a) such that Ad(k̃)b1 = b2, and hence Ad(k̃)b⊥1 = b⊥2 .

Since {Ad(k̂)|a : k̂ ∈ N
K̂

(a)} is a finite group of linear isometries of a, then there is only a
finite number of normal spaces νo(S · ap(P )) for p ∈ P . But by the connectedness of P and
the continuous dependence of ap on p, we must have νo(S · ap(P )) = νo(S · P ), for all p ∈ P .
Equivalently, regarding P and ap(P ) as submanifolds of Σ ∼= Rd, we have νo(ap(P )) = νo(P ),
for all p ∈ P . But the only submanifolds of a Euclidean space Rd with this property (where
the isometries ap are translations of Rd) are open parts of affine subspaces. The homogeneity
of S · P implies that P must indeed be a complete affine subspace. This concludes the proof of
Theorem C.
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tional Consortium of Chinese Mathematicians 2018 (International Press, Boston, MA, 2020),
197–260.

DD13 J. C. Dı́az-Ramos and M. Domı́nguez-Vázquez, Isoparametric hypersurfaces in Damek-Ricci
spaces, Adv. Math. 239 (2013), 1–17.

DDR21 J. C. Dı́az-Ramos, M. Domı́nguez-Vázquez and A. Rodŕıguez-Vázquez, Homogeneous and inho-
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