Note on a special determinant

By A. C. Aitken, University of Edinburgh.
Suppose a polynomial or convergent power series

$$
\begin{equation*}
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots \tag{1}
\end{equation*}
$$

is raised to powers $j=0,1,2,3, \ldots \ldots$. The coefficients of x^{k} in $[f(x)]^{j}, k=0,1,2, \ldots$, , may be entered as elements in positions (j, k) in an array or matrix F, thus:

$$
F=\left[\begin{array}{lllll}
1 & \cdot & \cdot & \cdots \tag{2}\\
a_{0} & a_{1} & a_{2} & a_{3} & \cdots \\
a_{0}^{2} & 2 a_{0} a_{1} & a_{1}^{2}+2 a_{0} a_{2} & 2\left(a_{0} a_{3}+a_{1} a_{2}\right) & \cdots \\
a_{0}^{3} & 3 a_{0}^{2} a_{1} & 3\left(a_{0}^{2} a_{2}+a_{0} a_{1}^{2}\right) & a_{1}^{3}+3 a_{0}^{2} a_{3}+6 a_{0} a_{1} a_{2} \ldots \\
\cdots & \cdots \cdots
\end{array}\right] .
$$

By construction all elements in column (k) have weight (sum of suffixes) equal to k.

The array F has interesting properties, which have been considered in detail by H. W. Turnbull, Proc. London Math. Soc. 37 (1934), 106-146. The reciprocal array F^{-1} corresponds to the reversion of the series (1). One of the theorems proved (p. 121) is that the determinant $\left|F^{\prime}\right|_{n}$ obtained by taking the first n rows and columns of F has the value $a_{1}^{\frac{1}{2} n(n-1)}$.

The following simple proof of this may be put on record. Consider $\left[f(x)-a_{0}\right]^{j}$; it does not contain a_{0}. Translating this operation on $f(x)$, for $j=0,1,2, \ldots$, into an operation on F, we have at once
the right-hand array being F with a_{0} obliterated. Taking now determinants of both sides, we have

$$
|\boldsymbol{F}|_{n}=a_{1}^{0+1+2+\ldots+(n-1)}=\boldsymbol{a}_{1}^{\ln (n-1)} .
$$

x x viii
We may prove in the same way that if F_{m} is the array formed from the rows of F beginning at $j=m$ instead of $j=0$, then the determinant formed from the first n rows and columns of F_{m} has the value

$$
\left|F_{m}\right|_{n}=a_{0}^{m n} a_{1}^{\frac{1}{2}(n-1)} .
$$

To prove this we observe that $[f(x)]^{m}\left[f(x)-a_{0}\right]^{j}$, with m fixed, $j=0,1,2, \ldots$, can possess no power of a_{0} higher than a_{0}^{m}. Obliterating from F_{m} such higher powers, we have

It follows as before that

$$
\left|F_{m}\right|_{n}=a_{0}^{m n} a_{1}^{\frac{1 n}{1 n}(n-1)} .
$$

The substitution of various special functions such as $e^{a x},(1+a x)^{p}$, and so on for $f(x)$ gives nothing very new, mostly variations on the old theme, that the difference-product of the numbers $0,1,2, \ldots, n$ is $n!(n-1)!\ldots 3!2!1!$ or $1^{n} 2^{n-1} 3^{n-2} \ldots n^{1}$, or the equally old theme, that the difference-product of $0,1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}$ is $\left(1^{1} 2^{2} 3^{3} \ldots n^{n}\right)^{-1}$.

