Note on a special determinant

By A. C. AITKEN, University of Edinburgh.

Suppose a polynomial or convergent power series

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$
(1)

is raised to powers $j = 0, 1, 2, 3, \ldots$. The coefficients of x^k in $[f(x)]^j$, $k = 0, 1, 2, \ldots$, may be entered as elements in positions (j, k) in an array or matrix F, thus:

By construction all elements in column (k) have weight (sum of suffixes) equal to k.

The array F has interesting properties, which have been considered in detail by H. W. Turnbull, *Proc. London Math. Soc.* 37 (1934), 106-146. The reciprocal array F^{-1} corresponds to the reversion of the series (1). One of the theorems proved (p. 121) is that the determinant $|F|_n$ obtained by taking the first n rows and columns of F has the value $a_i^{\frac{1}{2}n(n-1)}$.

The following simple proof of this may be put on record. Consider $[f(x) - a_0]^j$; it does not contain a_0 . Translating this operation on f(x), for $j = 0, 1, 2, \ldots$, into an operation on F, we have at once

-				ĩ					-	n i	
1.	•	•			1	•	•	•			
$-a_0$ 1	•	•	••••		•	a_1	a_2	a_3			
$a_0^2 - 2a$	0 1	•	• • • •	F =	•	•	a_{1}^{2}	$2a_1a_2$,	(3)
$\begin{vmatrix} -a_0 & 1 \\ a_0^2 & -2a \\ -a_0^3 & 3a \end{vmatrix}$	$a_0^2 - 3a_0$	1				•	•	a_1^3			
•••••				E	•••	• • •	•••	• • • • • • •			
J				1						J	

the right-hand array being F with a_0 obliterated. Taking now determinants of both sides, we have

$$|F|_n = a_1^{0+1+2+\ldots+(n-1)} = a_1^{\frac{1}{n}(n-1)}$$
.

xxviii

We may prove in the same way that if F_m is the array formed from the rows of F beginning at j = m instead of j = 0, then the determinant formed from the first n rows and columns of F_m has the value

$$|F_m|_n = a_0^{mn} a_1^{\frac{1}{2}n(n-1)}$$

To prove this we observe that $[f(x)]^m [f(x) - a_0]^j$, with *m* fixed, $j = 0, 1, 2, \ldots$, can possess no power of a_0 higher than a_0^m . Obliterating from F_m such higher powers, we have

					_	i					_
ļ	1		•				a_0^m	ma_0^{m-1}		••••	• • •
	$-a_0$	1	1	•	• • • •			$a_0^m a_1$		• • • • • • •	• • •
	$-a_0 \\ a_0^2$	$-2a_0$	1	•	••••	$F_m =$	•	•	$a_0^m a_1^2$.
	$-a_0^3$	$3a_{0}^{2}$	$-3a_{0}$	1	• • • •				•	$a_0^m a_1^3$.	
	••••		· • • • • • •	•••			• • •		••••		•••
2	_				_	ļ					

It follows as before that

$$|F_m|_n = a_0^{mn} a_1^{\frac{1}{2}n(n-1)}.$$

The substitution of various special functions such as e^{ax} , $(1+ax)^p$, and so on for f(x) gives nothing very new, mostly variations on the old theme, that the difference-product of the numbers 0, 1, 2, ..., nis $n!(n-1)!\ldots 3! 2! 1!$ or $1^n 2^{n-1} 3^{n-2} \ldots n^1$, or the equally old theme, that the difference-product of 0, 1, $\frac{1}{2}$, $\frac{1}{3}$, ..., $\frac{1}{n}$ is $(1^1 2^2 3^3 \ldots n^n)^{-1}$.