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0. Introduction

Suppose F is an additively written free group of countably infinite rank with basis
T and let E = End(F). If we add endomorphisms pointwise on T and multiply them
by map composition, E becomes a near-ring. In her paper "On Varieties of Groups
and their Associated Near Rings" Hanna Neumann studied the sub-near-ring of E
consisting of the endomorphisms of F of finite support, that is, those endomorphisms
taking almost all of the elements of T to zero. She called this near-ring <!>„. Now it
happens that the ideals of <&„ are in one to one correspondence with varieties of
groups. Moreover this correspondence is a monoid isomorphism where the ideals of
<&„ are multiplied pointwise. The aim of Neumann's paper was to use this isomor-
phism to show that any variety can be written uniquely as a finite product of primes,
and it was in this near-ring theoretic context that this problem was first raised. She
succeeded in showing that the left cancellation law holds for varieties (namely,
U(V) = U'(V) implies U = U') and that any variety can be written as a finite product
of primes. The other cancellation law proved intractable. Later, unique prime fac-
torization of varieties was proved by Neumann, Neumann and Neumann, in (7). A
concise proof using these same wreath product techniques was also given in H.
Neumann's book (6). These proofs, however, bear no relation to the original near-ring
theoretic statement of the problem.

The present paper originated in an attempt to find a near-ring theoretic proof of
unique prime factorization of varieties. In the course of this it was found that not only
does the set V_, of varieties (or equivalently, fully invariant subgroups of F) possess a
natural monoid structure, but this can be extended to an equally natural multiplication
on C, the set of characteristic subgroups of F. Moreover, all results that could be
obtained near-ring theoretically about the arithmetic of V_ could also be obtained for
C. As a further indication that arithmetic in C is similar to arithmetic in V_, Lemma
23.21 of (6), which H. Neumann uses to prove unique prime factorization of varieties,
can be restated verbatim for characteristic subgroups, and a proof of this would
amount to a proof of unique prime factorization in C.

The advantage of considering the full endomorphism near-ring E instead of &„
for the study of subgroups of F, is that the ordered bases of infinite rank subgroups
are elements of E. The set of ordered bases for elements of C, denoted BC, turns out
to be a multiplicative subset of E and contains a submonoid BV, consisting of the
ordered bases of elements of V_. The problem of unique prime factorization in C
amounts to the problem of unique prime factorization up to multiplication by units in
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104 R. WARWICK ZEAMER

BC. As a possible indication that unique prime factorization holds in C we can show
that both cancellation laws hold in BC.

Arithmetically, V_ is a very special submonoid of C. In fact,

K,K' £ C, K(K') £ V implies that K,K' £ V.

This means that unique prime factorization in C implies unique prime factorization in
V_. The wreath product proof of unique prime factorization in V_ does not extend to a
proof of that result for C. We conjecture that unique prime factorization does hold in
C but it is likely that much deeper methods than those developed in this paper will be
necessary to prove this.

The rest of the paper is divided into two sections. In the first we give some purely
near-ring theoretic results about E. We show, for instance, that the set of two sided
ideals of £ is a monoid under pointwise multiplication and that the closed ideals of E
form a monoid isomorphic to V_. In the second section we investigate the arithmetic of
C.

1. The Near-Ring End(F)

For a set A, let Z(A) denote the free group on A. Let T = {tj}"=.i be a countably
infinite set and let F = F* = Z(T). Let E be the near-ring with underlying set End(F)
and with addition and multiplication defined as follows:

For /, g e End(F), (f + g)(t) = f(t) + g(t) for all t £ T and / <> g = / ° g, where maps
are composed on the left.

Let S = {5j}r=i be a countably infinite set disjoint from T. For f, £ T, let ti = s, and
Si = ti. The elements of E can be represented uniquely as infinite sums of the form:
2j°=i WjSj, Wj S F. Addition is given by (2 WiS,) + (S M,Si) = 2 (w, + M,)S,; multiplication by
(2 WjSi) ° (2 Uiit^Si) = 2 Uiiw^Si. We will use this infinite sum notation throughout this
paper, 2 w,Sj is understood to mean 2f=i M>,S,.

If we let F have the discrete topology and then let Fa = E have the induced
product topology, P, (E, P) is a topological near-ring. Note that x, -» x in P if and only if
f or N > 1 there exists an M s= 1 such that i & Af implies (JC,);- = (x), for 1 «£ / *£ N. It is easy
to see from this that a, -» a, &,- -» fc in P implies that a, + b,^*a + b, a, °bi-* a°b in
P. Since P has a countable basis addition and multiplication are continuous in P. From
now on, by a convergent sequence in E we mean a sequence convergent with respect
to P.

Using the above topology we can define in E both infinite sums and infinite
products though in both cases we must specify the direction in which the sum or
product is taken.

For / £ E, let (/), = /(«,). Given {f^U Q E, 2JT, /, is the limit of {/, + •• • +/„}„*,;
2£1 fi is the limit of {/„ + •• • +/,}nS=1. Whenever we write 2f=i /; we mean 2 ^ / f . Also
define 11^, / ( = lim{/,/2.. ./„}„*, 117^/, = lim{/n.. . /2 /1W Let e = idF be £ ' s multi-
plicative identity.
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ON THE ENDOMORPHISM NEAR-RING OF A FREE GROUP 105

Proposition 1. Let {f;}^, C E.
(a) 1TA ft converges if and only if for N 3= 0 there is an M 3= 0 such that for i *£ M,

(fdN = 0. Moreover, 2.TA /. converges if and only if 27i" - /• converges, if and only if
27^1 /, converges.

(b) Ilyt" /, converges if and only if for N 3= 1 there is an M 3= 1 such that (fM... fi)s
is a fixed point of ft for i > M.

(c) /, -» e implies UTA f, converges.

Proof, (a) 2ii°i/, converges if and only if {2"=,/,}„=! converges, if and only if for
all N 3= 1 there exists an M 3= 1 such that j , i^M => 2{=, (fk)N = 2L i (/ON- For all
N3=l , there exists an M 3= 1 such that i =£ M ^> (/;)N = 0. Therefore Sj;0;/,
convergesOSyt"-/, converges<=>{Sr=i -/i}nSi converges»{£'=„ /,}ns,i converges
O S7i" /; converges.

(b) n^ l / i converges<»{/„.. ./i}nSi converges <Z> for all N 3= 1 there exists an
M 3= 1 such that i, jssM implies (/;... ft)N = ( / ; . . . /i)N <» for all N 3= 1 there exists
M ^ 1 such that i 3=M => (ft.. . / , ) N = (f«. . . / , ) N , i.e. / , ( /« . . . / , ) N = (/M- • ./ ,)„ for all
«3=M.

(c) Let /, -» c. Then for AT 3= 1 there exists M 3= 1 such that i 3= M implies (f,)N = tN.
Therefore / 3= M implies ( / i . . . /;)N =(J\... /M)N- Hence for TV 3= 1 there exists an
M 3= 1 such that i, j 3= M => ( / i . . . /j)N = ( / i . . . /j)N. Hence 117^ /, converges.

We now use infinite products to express any automorphism of Z(T) in terms of
elementary Nielsen transformations. We take all facts concerning Nielsen reduced
subsets of F from Section 3.2 of (4). Following the definition given there we define an
elementary Nielsen transformation in our notation as follows:

Definition 1. An elementary Nielsen transformation is an element of E of one of
the following forms:

(1) S**, tksk + (ti + ti)si where iV /.
(2) 2^ , j tksk + tft + tfr where iV /.
(3) 2k*i,tksk + -tiSi.

Let Aut denote the group of automorphisms of F. Let N = {1,2,3,. . .}. For any
T G Aut, T = 2,ieN.A t^i + S,e/4 T,S, where T,# f, for all i £ A. We write T as T = 2,e/i T,S(

with the understanding that for if£A (T), =/,. Now for J V / , (t,, + e/,)s;,=
(etjSj)((ti + tj)Si)(etjSj). Similarly (e<, + f,)s, can be written as a product of elemen-
tary Nielsen transformations. Thus any automorphism of F fixing all but finitely many
elements of T can be written as a finite product of elementary Nielsen trans-
formations. (See Section 3.2 of (4).)

Proposition 2. (a) With the relative topology from E, Aut is a topological group.
(b) IlyT; T, = T, Il~£\ a-, = a, where a,, r,, a, r £ Aut, implies
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106 R. WARWICK ZEAMER

(c) Every T E Aut can be represented in the form,

where 77, TJ are elementary Nielsen transformations.

Proof, (a) As E is a topological near-ring, we need only show that r >-* r~l is a
continuous map Aut -» Aut. For this it suffices to show that T,-»T implies TF'-^T"1.

Now if Xi E Aut and x, -» e, then for all N s* 1 there exists a n M ^ l such that i s* M
implies that for 1 =sj =sN(jc,-)y = f; and so (xr')j = fy. Therefore x,-»e if and only if
xf1 -» e. Since multiplication is continuous in E, TI-*T => T"1^ -> e => TF'T -» e => iT1 -»

(b) Since nyi" T, = r where T,, rGAut, {Il"=i T,}n3,i^T and so by part (a)
{Ill=nTTl}nS,i-*T~l. Thus n ^ r r ^ T " 1 . Similarly, IIT^ cr; = cr implies that a"1 =
nr=" ar1.

(c) Given T E Aut, define trn E Aut by induction as follows: Let a\ = e. Suppose cr,
has been defined for i =s n, n s» 1. Let pn = TO-J . . . crn and let crn+i e Aut be such that
crn+i(fi) = f, for all i > n + 1 and ((pntrn+i)i,..., (pncrn+1)n+i) is the result of Nielsen
reducing ((pR)i, • • •, (pn)n+i) and putting those t, that occur in this result first, arranging
them in the order of their indices. One can verify by induction on n that

gP((Pn)l, • • • , (Pn)n) =

Thus for N s= 1 there exists an M & 1 such that M'^M implies f,,..., tN £ gp(T,)il'i
and so ((BAT)I. . . . , (J>M)M) = (h, •••, ^(PM^N+I, • • •, (PM)M)- This follows from the
fact that if f £ T is an element of a subgroup H of F and B is a Nielsen reduced basis
for H, then ±t £ JB. Thus {pn}n»i^«, and so nyl" a-, = T"'T = 11̂ 5 aj1. Each o-f1 is a
finite product of elementary Nielsen transformations we have half of our result. The
other half is obtained by applying our representation for T to T"' and then using part
(b).

We now apply the theory of Nielsen transformations to characterise the idem-
potents of Hanna Neumann's near-ring <!>„ = { /£E\( / ) , = 0 for almost all /}. For
x £ E we write (JC), = xt = x(() and x, = (x), = (x), as long as this causes no confusion.

Proposition 3. For a £ 3>m, a2 = a if and only if a = T/T"1 where T £ Aut and
f £ *„ is of the form f = 2,e A (t + K,)t, A a finite subset of T, K, £ ngp(T - A) for
tGA.

Proof, a = 2r e B a(F where B = {f E T | a, ̂  0} is finite. Now there exists an x £ Aut
such that x, = t for t£B and {(ax),^0|f £ B } is_ Nielsen reduced. Let A =
{f ET | (ax ) ,*0}cB . Then / = x"'ax = 2,ey, x-1((ax),)f is idempotent with kernel
ngp(T - A) and {/,},eA = Kx~lax)t}teA is free.

/ 2 = / => / ( / - e) = 0. For t £ A, /, - ( is in ngp(T - A) so /, = t + K, where K, £
ngp(T - A). Therefore / = 1,eA (t + Kt)t and a = xfx~\ completing the proof.

Problem. The above characterisation of the idempotents of <&„ can be extended
to the whole of E if the following is true:
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/ £ E = > there exists an x £ Aut such that {(/*),* 0|f £ T} is free. This is
equivalent to saying that if / £ End(F), Ker(f) = ngp(B') for some B' C B, B is a basis
for F. As yet we have been unable to prove or disprove this.

Though E is not d.g., it is topologically d.g., as noted by Tharmaratnam in (8).
Thus every / £ E can be written as an infinite convergent sum of distributive
elements.

Consider {tjS;}i,j>i- These are clearly distributive elements. For / £ E, / =
2r=i w,(fij)s, = w\{t\jS\)+ wi(t1>sd+ • • • + wi(tijsi)+ • • • which is clearly a convergent
sum of distributive elements. This infinite sum representation gives multiplication in E
the same convenient structure it has in a d.g. near ring.

Proposition 4. The monoid of distributive elements of E is D = {2"=i d,s, |d, £ T0},
where T°=TU{0}.

Proof. Let D denote E's monoid of distributive elements. Clearly x £ T° implies
xsi £ D. Thus if d = 27= i djS,, d, £ 7° then if a, be E,

(a + b)d = 2f-, (a + b)(diSi) = 2f=, (a(diSi) + b(diSi)) = ad + bd,

singe multiplication in E is continuous.
Now suppose d £ D. Since *,.$, £ D we have dis, £ D. Let d, = vv(f,| tm) in F

and let x = 2;=i fas8. For k s* 1, (Jbc)(d,s,) = k(x(d,s,)) and so w(fcf,,,..., kt^) = kw. Thus
w = Mt for some Af£Z and t £ T. Afts,£D implies that (f,r + f2OAffs, =
(Mfi + Mf2)Sj = M (t i + r2)Si- Hence M is 1 or 0 and d, £ T°, completing the proof.

We will now consider the ideal theory of E. First we need some notation. If x £ E,
denote {Xj|i^l} by cmp(x). Let gp(x) = gp(cmp(x)) and ngp(x) = ngp(cmp(x)). If
ACE, let gp(A) = gp( U aEA cmp(a)fand ngp(A) = ngp( U a6Acmp(a)).

Note that the underlying group of the near-ring E is F" so we will often refer to
subsets of E of the form HM where H is a subset of F and HM = H" D <J>U.

Definition 2. For A C E, A is te/f dosed if E AC A. A is right closed if
A • E C A. A is two-sided if A is right and left closed.

Remark 1. For x £ E, x • E = gp(x)w.

Remark 2. For a subgroup H of F, H" C E is a right closed subgroup of E.

Proposition 5. The following are equivalent:
(1) A C E i s an ideal;
(2) AQEis a two-sided normal subgroup of E;
(3) AQE is a two-sided subgroup and ngp(a)" C A for aGA.

Proof. (1) => (2): If A C E an ideal then A < E, EA = A and for x, y £ E, a £ A,
(x + a)y - xy £ A. Letting x = 0, we have that A is right closed.

(2) ̂  (3): Since \S\ = to we may write S as a disjoint union, S = U/ E F {Si,}f=i- Let
x=2/ e F2:r . i /Si f£E, y = 2/6F2r-itiSi /eE. Take aGA. z = x + a y - x £ A so for
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108 R. WARWICK ZEAMER

/ e F, i ss 1 Zj, = xif + (ay\ - xf/ = f + at - f. By Remark 1, zE = gp(z)w = ngp(a)w C A.
(3) => (1): We need only show that x,yE.E, a G A implies that (x + a)y - xy G A.

But (x + a)y —xy = d + xy — xy where d G ngp(a)" C A. This completes the proof.

We now give explicit formulas for the two-sided subgroup, ideal, and right closed
subgroup generated by a subset of E.

Proposition 6. For any AGE,

(1) The two-sided subgroup generated by A is

RL(A) = U {gp(B)™ | B a finite subset of EA}.

(2) The ideal generated by A is

Ideal(A) = U {ngp(B)" | B a finite subset of EA}.

(3) The right closed subgroup generated by A is

R(A) = U {gp(BT\B a finite subset of A}.

Proof. (1): x, y G RL(A) >̂ x G gp(B)", y G gpCQ", B, C C EA finite x + yG
gp(B U CT and so x + y G RL(A). Thus RL(A) is a subgroup and similarly Ideal(A)
and R(A) is a subgroup. All three sets are right closed by Remark 2. Therefore R(A)
is a right closed subgroup.

For x 6 £ and a finite B c E A , JcngpCB)" C ngp(xB)w and x + ngp(B)w - x is
contained in ngp(B)". Hence Ideal(A) is an ideal of E. Similarly one can show that
RL(A) is a two-sided subgroup of E.

Now suppose K D A, where K is a two-sided subgroup of E. Then K D I J A
Suppose that {bu ..., bn} = B C EA, finite. Write S = U H=i {s(J}JLi, a disjoint union of
countably infinite sets. Let /( = 2JL, ^ for 1 =s / =s n. Then b = 2"=, b/f is in K. Thus
bE = gpCb)" = gp(B)w C K. This proves (1) and a similar argument proves (3).

To~prove (2")~suppose KDA is an ideal. Take a finite B C EA. As in the proof of
(1) we have b G. K such that gp(b) = gp(B). Hence ngp(b) = ngp(B) and by Pro-
position 5, ngp(B)™ = ngp(b)" C K~. Therefore K D Ideal(A), completing the proof.

We now turn to the multiplicative structure of the set of two-sided subgroups of E
which we denote by RL.

Definition 3. For A, B G RL, define A • B = AB = {2?=, afa \ a, G A, b, G B}.
AB is certainly a left closed subgroup of E but we do not know a priori whether it

is right closed since E is not d.g.. The following theorem shows that it is. The proof is
an adaption to E of H. Neumann's proof that ideal multiplication is associative in <£„.

Notation. For w G Z(X), let

X(w) = {x G X\x occurs in the reduced X-form of w.}

For / G E let

supp(/) = {i G T | / , ^0} .
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Theorem 1. A, BE RL implies AB = {2T=i ofa | a, £ A, b, £B} =
{ab | a £ A, i> £ B}. Thus RL /ornis a monoid under pointwise multiplication.

Proof. Take A, B £ RL. It suffices to show that for au a2 £ A, ft,, b2 £ B,

+ O2&2 = at for some a E A, b E B.

Since F = Z(T) and T is infinite we may take right distributive elements (Proposition
4) / , /', g, g' in £ such that / / ' = gg' = e and T(f'(F)) (1 supp(g) = t(g'(F)) n supptf) =
0, and so g/' = g'/ = 0. Let a = aj + a2g, b=f'bi + g'b2. Then a £ A , b £ B , and

ab = (aj + a2g)f'bi + (aj + a2g)g'b2

= (a iff' + aigf')bi + (ajg' + aigg')b2

= {axe + a2<S)b\ + (aiO + a2e)b2 = a\b\ + a2b2.

This monoid RL is also a lattice with respect to containment and can be written as
a disjoint union of sublattices in the following way: Let V_ denote the set of fully
invariant subgroups of F. Then

RL = U v ey RLV, where RLV = {A £ RL | V*"' C A C Vw}.

To see this suppose A is right closed, AC.E. For i > 1 define pf: E -» F, an additive
homomorphism by Pi(/) = /i for / £ E. A • (*,«,) = pi(A)Sj C A since A is right
closed. Hence pJ(p,(A)s,)Cp,(A), and so p,(A)Cp,(A). Thus for all i,j,pi(A) =
p,{A) = H,a subgroup of F. Clearly AQH" and since A D Hs, for all i, A D H ( B ) . If A
is left closed H £ V.

Theorem 2. (1) RLV • RLV C RLytv,.
(2) TTie minimal and maximal ideals of RLV are Iv and V respectively, where

Iv = UingpCA)"11A a finite subset of V}.
(3) The minimal and maximal elements of RLv are MV = U{gp(A)™||A a finite

subset of V} and V respectively.
(4) For U, VE V, Mv • Mv = MU(V) and V • U* = U(V)°. Thus {Mv}vey and

{V}vey ore submonoids of RL anti-isomorphic to V_.

Proof. Take A £ RLV, B E RLV. Then VM • UM C AB C V" • U" C (U(V))U. H.
Neumann proved in (5) that V*"' • UM= U(V)M. This proves (1).

(2): V is clearly a two-sided normal subgroup of E and hence the maximal ideal
and the maximal element of RLV. Following the proof of Proposition 6, Iv is easily
checked to be an ideal of E. Suppose K £ RLv is an ideal. For A = {au ..., an] C V,
f = aiSi + ••• + ansn E VM C K so by Proposition 5, ngp(A)w = ngp(/)" c K. Hence
Iv C K. This proves (2).

(3): Mv is easily checked to be in RLV. Now if K D VM and K E RLV then for
A = {a , , . . . , a n }C V , / = a,s,+ -- + ansn£ VMQK. Hence gp(Ar = gp(f)a C K and
so K 2 Mv. This proves (3).

(4): By (1), Mv • Mv 2 AfU(V). Take t> £ Mv, u £ My. Then v E gp(A)", u £ gp(B)w

where A, B are finite, A C V, B C I/. But «u £ gp(f«)" C gp(uB)". Therefore since
»B C l/(V) is finite, vu £ M[/(v). Hence Mv • Mu C M[/(v>
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It remains to show l/(V)" = V • U" where U, VcF are verbal. Now consider
/ = 2r=iM,(Ui/)"L1s1e U(V)a. T= ur=1Ti, a disjoint union where each T,{r(f}i"L|. / =
(2r«i SfL, Ufjfi/XSf.i Mj(t(,)5i)e V • U". Thus [/(V)" C V" • IT. On the other hand if
u = 2r=ifiS, and u = 2f=i Wi(*i/)"ii «» then i> • M =2f=i ".(Uf,)^! s, E U(V)a. Hence

= V" • U", proving (4).

Corollary 1. The closed ideals of E form a monoid anti-isomorphic to the monoid of
varieties. The anti-isomorphism is: V^B V>-* V".

Proof. In light of Theorem 2, we need only show that A is a closed ideal of E if
and only if A has form V" for some V £ V . First V" is an ideal and it is clearly
closed. If A is a closed ideal then A E RLV for some V e V and so V""' C A. Now if
c 6 V " , then for all n 3= l,2"=i u,S; = pn E A. Since pn->u and A is closed, u E A .
Therefore A = V.

2. The Monoid of Characteristic Subgroups of F

In this section we use E to study the multiplicative structure of the set of
subgroups of F.

Definition 1. For M C E a semigroup, call x E £ an M-element if gpOO is M
invariant, that is, M • gp(x). In particular, if x is an E-element we say x is verbal. If x
is an Aut-element, we~iay x is characteristic.

Definition 2. Suppose KQF is infinite rank. We say x E E is basic for K if
cmp(x) is a basis for X. By convention, 0 E E is basic for {0}. We call x E E free if
cmp(x) is free.

Remark 1. If M C £ is a multiplicative semigroup then x is an M-element if and
only if m E M => mx = xm' for some m' E E.

Remark 2. {x | x is basic for some KcF, rank(K) = <u} = Mon(F, F) = {x E E \ x is
free}.

Remark 3. The free elements of E form a multiplicative monoid.

Now suppose that K,UQF are subgroups where K is of infinite rank and U? 0 is
characteristic. Then we may take k,uEE such that k is basic for K, u is basic for U.
Define the product of subgroups K • U = U(K) = gp(ku). To show this product is well
defined we must show it is independent of our choice of k and u. So take k' and u'
basic for K and U respectively. Then there are x, y E Aut such that k' = kx and
u' = uy. k'u' = fcxuy = kux'y and so gp(k'u') Cgp(fcH). By symmetry we have equality
and hence the product of subgroups, U(K), is well defined. Note that k basic for K, u
basic for U implies that ku is basic for U(K). Note also that according to our
definitions, 0(X) = 1/(0) = 0.
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It happens that the above definition of l/(K) for U characteristic extends the
usual definition of U(K) for U verbal. To see this suppose U is verbal and take u
basic for U, k basic for K. gp(fcu) = kU C{u(ai , . . . , an)\ u £ U, a,,6 X}. But if x =
u(au...,an) where uEU and a, = a,-(kjj)jii, k// E cmp(k), then 1/ verbal implies
x£gp(fcji). Therefore gp(ku) = {M(<JI, • . . , an)\u G I/, a,; £ K}, which is the usual
definition of U(K). ~

Proposition 1. The set C of characteristic subgroups of F has a natural monoid
structure extending the monoid structure on V_.

Proof. C will be multiplicatively closed if for k basic for K E C . x £ Aut implies
that x' in xk = kx' is an element of Aut. But this must be so since k and xk are basic
for K. Thus C is multiplicatively closed. Clearly it has identity F. It remains to show
that the multiplication we have defined is associative: Take K, H, L E C with k,h,l
basic for K, H, L respectively. (KH)L = gp((kh)l) = gp(k(hl)) = K(HL) since hi is basic
for HL.

We now introduce two multiplicative submonoids of (E, •) which will play a central
role throughout the rest of this paper.

Let BC = {x £ E\x is basic for some K £ C}, and let BV = {x £ E\x is basic for
some V £ V}.

Proposition 2. BV C BC are multiplicative submonoids of E such that
(1) BV = {x £ E | For y £ E, yx = xy' for some unique y' £ £}.
(2) BC = {x £ E | For y £ Aut, yx = xy' /or some y' unique in E}.
(3) gp:BC-* C and gp:BV^*V_are monoid epimorphisms. For a,bE BC gp(a) =

gp(b) if and only if a = bx for some x £ Aut.

Proof, a, b E B V, f £ £ implies /ab = a/'b = ab/" for some / ' , /" in E since a, b
are both E-elements. Hence ab £ BV since a, b are free. Now suppose a,b £ BC.
x £ Aut =£> xab = ax'b = abx" for some x\ x" £ Aut by the proof of Proposition 1. ab
is therefore characteristic. It is free since a and b are free. Thus ab £ BC.

Since for x free xz = xy implies z = y and any x basic for K £ C is an Aut-
element, C holds in (2). Now take x in the right hand side of (2). gp(x) is characteristic
and it remains to show that x is free. If not, there exists a k, 0 ̂  k £ E, such that
xk = 0. But then e • x = x • e = x • (c + k), a contradiction of the uniqueness of the e'
such that c • x = x • e'. Thus x is free and hence in BC. (1) is proved similarly.

(3): Since gp :BC-*C is a monoid homomorphism by the definition of multi-
plication in C and is onto since every 0 ^ K £ C has a countably infinite basis and 0 is
basic for 0 £ C, the first statement of (3) is proved.

Suppose a, b G BC. gp(a) = gp(b) ^ cmp(a), cmp(b) are bases for the same sub-
group of F => there exists x £ Aut such that a = bx.

Proposition 2 allows us to define the following multiplicative homomorphisms.

Definition 3. For a £ B V define Ya:E^E such that for x £ E , xa = a(x)ya. For
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a £ BC define Ca: Aut-» Aut such that x £ Aut implies that xa = a(x)Ca. Both maps
are well defined by Proposition 2.

Proposition 3. (1) For aGBV, Ya\Aut = Ca.
(2) For a, be. BV, Yab = Ya°Yb; for a, b £ BC, Cab = Ca ° Cb.
(3) For a £ Aut, (x)Y0 = a"'xa /or all x £ £.
(4) For a £ B V , Y 0 : E ^ £ is a multiplicative homomorphism. For aE.BC,

Ca • Aut-» Aut is a group homomorphism.

Proof. BV C BC implies (1) is obvious from Definition 3.
(2): For a, b £ BV, x £ E, ai>(jc)Ya() = *a*> = a(*)Yab = afc((x)Ya)Yd. ab free gives

Yab = Ya° Yb. Similarly Cab = Ca ° C*.
(3): a £ Aut => For x G E, xa = aa'xxa = a(ac)Ya and so a~lxa = (oc)Ya.
(4): a £ B V implies that for x, y £ E, xya = a(xy)Ya. Also xya = jca(y)Yfl =

a(x)Ya(y)Ya. Similarly Co is a group homomorphism for all a £ BC.
We have laid the basis for our discussion of C.

2.1. Cancellation in C

In this section we show that one cancellation law in C is trivial and that the real
problem in the arithmetic of C, as in the arithmetic of V, is the proof of the other one.
We are able to prove a weak form of this other cancellation law.

Proposition 4. Left cancellation holds in C_, that is, K, H', H £ BC, KH = KH'
implies H = H'.

Proof. If k, h, h' basic for K, H, H' respectively, KH = gp(kh) = gp(/c/T) = KH'
implies that kh = kh'x for some x £ Aut. But k free implies h = h'x and so H = H'.

We aim to prove the following weak form of the right cancellation law in C: If
U¥• 0 is in C and K, K' are subgroups of F of infinite rank then

KU = K'U,K'CK^K = K'.

We prove this by combinatorial methods.

Notation 1. For w £ F let \w\ be the length of its T-reduced form.
2. For u, v £ F, u + v is a reduced sum if \u + v| = \u\ + |w|.
3. Recall from Section 3.2 of (4) that if A C F, A is Nielsen reduced if and only if

for a, b, c £ ± A , b ^ - a , - c , |a + fc| ss|a|, |b| and \a + b + c\ > |a | + |c|-|fc|. Note that
this last condition implies that if 0 £ A, A = {0}.

4. Suppose A is Nielsen reduced, AC.F. Then any a€A has the unique
representation, a = ao+ c(a) + au a reduced sum where c(a), the core of a, is the
section of a none of whose symbols is cancelled in any reduced A-sum, ea' + a +
8a",a',a"eA,e,8 = ±. Note c ( a ) ^ 0 since A is Nielsen reduced and c(a) is the
section of a not cancelled in any reduced word, w(a, au..., an), a, £ A. (See Chapter
I of (3).)

5. Suppose 0 T* x £ F. Let m(x), the middle of x, be the non-zero section of x of
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minimal length such that x = xo + m(x) + Xi, is a reduced sum where |xo| = |xi|. Note
|m(x)| is one if |x| is odd and two if |x| is even.

6. For A C F define \A\ = min{|a| | a G A}.

Lemma 1. If Ac F, a Nielsen reduced set, then aEA implies m(a) and c(a) must
overlap.

Proof. If c(a) and m(a) do not overlap we have:

c{a)m{a)

If (1) holds there exists ea'G ±A such that ea'^-a and in the sum, a + ea', a\ is
cancelled. But then \a + ea'\ < \a'\, a contradiction of A's being Nielsen reduced. Case
(2) is treated similarly.

The following lemma is the heart of our proof of the weak right cancellation law.

Lemma 2. If UV 0 in C and aE E is free then a • U D U implies a G Aut.

Proof. gg(a) is a free group of infinite rank and so has a Nielsen reduced basis B.
Let B = {b,}"=i and put b = 2f=i &,•«,-. Then there exists x G Aut such that ax = b. Thus
bU = axU = all D U. For any ef in ±T there exists a M G 1/ of minimal length in C7
such that M = €f + «', a reduced T-sum for some u' G F. Now there exists a u(fij)?=i S
[/ such that bt> = v(bij)"-i = M. B Nielsen reduced => |i>| = |u| and each element of B
involved in bv contributes exactly its core (which must have length one) to the
reduced T-form of u. v = Sty + v' is a reduced T-sum where v' G F. Hence u =
8bij + bv' is a Unreduced sum. Thus c(b,j) = et and by Lemma 1 5b,7 = ef + r)t',
Tjf G±T°, where we have underlined the core of b/, in Sby. If TJC^O then by
repeating the same argument with -TJC in place of et we get a -yb* G ± B such that
ybk = — nt' + ft". Since - r / f is the core of ybk it can only cancel in an unreduced
B-sum. Thus we have Sby = -yfo* = -£f" + a t ' = e£+ Tjf. But this puts the core of b^
in two mutually exclusive places. Thus TJI' = O and for any et in ±T there is a
5by G ± B such that 8b,j = et. Thus gp(a) = gp(b) = F and so a G Aut.

Theorem 3. If U^O is characteristic and K,K' C.F are subgroups of infinite rank
then K' C K, K'U D KU implies K = K'.

Proof. Let u, k, k' be basic for U, K, K' respectively, ku and k'u are basic for KU
and K'U respectively. Thus since K'UDKU, there exists an xGE such that
ku = k'ux. Since K'CK there exists y G E such that ky = k'. k' free implies y is free.
Hence ku = k'ux = kyux => u = yux => U C yl/ so by Lemma 2 y G Aut. S o X = K',
completing the proof.
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2.2. On Ya and Ca

In this section we will use the techniques of Section 2.1 to show that for a £ BC,
Ca: Aut -» Aut is a group monomorphism which is epi if and only if a £ Aut.

Lemma 3. Suppose K is a subgroup of F. Ko = {k £ K |0 ^ \k\ minimal}. Then Ko

consists of primitive elements of K and if B is a Nielsen reduced basis for K, k £ Ko is
either in ±B or of the form k = ebj + Sb2, where b\ ^ bi are in B C Ko.

Proof. This is simply Corollary 3.4 of (4).

Lemma 4. If O^H QKcF, where H is characteristic in K, then \H\ >\K\.

Proof. |H| = \K\ implies there exists k £ Ko (1H. By Lemma 3 k is primitive in K
and so since H is characteristic in K, H = K. Thus \H\ > \K\.

Lemma 5. A monomorphism F -> F which fixes the elements of minimal length of
a non-zero characteristic subgroup must be the identity.

Proof. Take / £ E free such that fa = a for all a £ Ko, where 0 * K is in C. Note
PKo = Ko where P = &e;tmSi\f a bijection of N}. Fix k £ Ko and let A = T(k) =
{fi,-}?=i. There exists x £ Aut such that xr = tr for r such that trg T(k), T(xn)cA for
1 as/ ss n, and fx = y where ( y n , . . . , yjn) is the Nielsen reduction of (/,i,... ,/,„). For
all p £ P such that pk E Z(A) we have yx'lpk = pk. Note also that T{x'lpk)Q A.
Since x~lpk £ K and (yy)"=i is Nielsen reduced |jt~'pfc| = \pk\ = \k\. Moreover yx~xpk =
pk, and so each y,, contributes exactly its core (which must have length one) to the
reduced T-form of pk. For any er,, £ ± A we may pick pk = ef;, + h £ Z(A) a reduced
r-sum. Thus there is a permutation a of {1,2, . . . , n} such that c(y,ff0)) = ±f;j. Since
±yi(70) must begin with its core, it consists only of its core, that is, y«To) = ±^«- Hence
gp({fij}"=i) = gP({y,o.0)}?=i) = Z(A). Now since PK0 = K0, we have that for any f £ T
there exist p,p'GP such that {r} = T(pk) n T{p'k).

f, £ gp(/T(pk)) n gp(/T(p'fc)) = Z(T(pk)) D Z(T(p'k)) = Zt.

Hence f, = mt for some m £ Z . m^O since / is free. But then it is easy to see that
/k = k for all k £ Ko implies m = l,f, = t. Therefore / = e.

Lemma 6. Let K be a proper, non-zero characteristic subgroup of F with basis B.
Then {\b\\b £ B} is unbounded.

Proof. We may assume B is Nielsen reduced. Let Q be the minimal Schreier
system of coset representatives corresponding to B. Suppose | b | < N for all b E.B.
Suppose q £ Q is such that |q| > N. K characteristic implies there exists 0 ¥• k £ K
such that T(q)n T(fc) = 0 and so q + k is a reduced sum not in Q. Since q + k =
q modK we can write k = a + et + c, a reduced sum where q + aGQ and q + a +

Q. But then for some q ' £ Q , b = q + a + et - q' is a T-reduced sum, b £ ±B with
N, a contradiction. Therefore | q | « N for all q £ Q. It is easy to see that
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{2"=i f,}"=i is a basis for F. For n>N. z = 2"=, f , - q £ K for some q G Q . Z5* 0 since
\q\ *£ N. z must contain exactly one occurrence of some f,- and hence is primitive in F.
But then K = F. This contradiction completes the proof.

Theorem 4. For a G BC, Ca: Aut -»Aut is a group monomorphism. Ca is epi if and
only if a G Aut.

Proof. If x G Ker(Ca), Ca(x) = e^>xa = ae = a^>x is the identity on K = gg(a)
and hence on KQ. Thus x = eby Lemma 5. Hence Ca is a monomorphism.

Now suppose a G BC and Ca is onto. K = gp(a) is characteristic and non-
zero. Assume K^F and let B be a Nielsen reduced basis for K. By Lemma
3, Ko is contained in gp(K0 C\B). Lemma 6 implies B — (Ko f~l B) is infinite so there
exists x G Aut(K) such that x non trivially permutes the elements of B — (KonB).
But if x were in the image of Ca, x would be the restriction to K of an element of
Aut(F), say y. y would then fix the elements of Ko and so be the identity by Lemma 5.
Thus x is not in the image of Ca so Ca is not onto. Hence Ca o n t o ^ K = F ^ a e
Aut.

For the converse, take a G Aut and note that JC G Aut => ax = (axa~l)a so
) = x.

Corollary 2. For aE.BV, Ya is onto if and only if a €E Aut.

Proof, if a G Aut then x G E >̂ ax = (axa~l)a => x = Ya(axa~'). Hence a G Aut
implies Ya is onto.

Suppose Ya is onto. By Proposition 3 (1) of Section 2, Ya \ Aut = Ca so by Theorem
4 it suffices to show that for x GE, Ya(x)G Aut4>iE Aut. Suppose Ya(x)G Aut. Let
V = gp(a). Ya(x) free=>x|v is one to one =>Ker(x) = O, since if not Ker(jc)n VD
V(Ker0t))5*0 since Ker(x) ¥• 0=> rank(Ker(x)) = <o. x\v:V->V onto implies by
Lemma 2, of Section 2 that x G Aut.

2.3. Prime Factorization in C

In this section we define primes in C and BC and prove those results we have on
unique prime factorization in C.

Note that Aut is the group of units of the near ring E.

Definition 4. Suppose Aut CM QE where M is a multiplicative submonoid of E.
We say that p G M is M-prime if pf£ Aut and p = ab, a, b G M => a or b is in Aut. X
is prime in C if K = HH' 4> H or H' is F.

Since BC, B V D Aut, the above definition defines the primes of BC and BV. Since
gp :BC-»C and gp:BV-»Y are monoid epimorphisms, the primes of BC(BV) are
exactly those elements of E basic for some prime in C(V). Thus x G BC(BV) is prime
if and only if gp(x) is prime in C(_V)-

Theorem 5. (a) Every k G BC can be written as a finite product of BC primes.
(b) Every K G C can be written as a finite product of primes and any such

https://doi.org/10.1017/S0013091500003655 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003655


116 R- WARWICK ZEAMER

factorization takes the form: K = II"=i P, where n < \K\, Pi prime in C.

Proof. First we show that if a, b are non-units of BC, gp(ab) is a proper
characteristic subgroup of gp(a). Clearly gp(ab) is a subgroup of gp(a). If gp(ab) =
gp(a) then there exists x £~Aut such that abx = a => bx = e and i o b £ Aut. Thus
gp(ab)Cgp(a).

If x £ Aut(gp(a)) there exists a y £ Aut such that for all iis* 1 x(a,) = (ay),.
Therefore x(gp(ab)) = gp((2 x(a,)Si)&) = gpiayb) = gp(afcC(,(y)) = gp(afc). Thus gp(afc)
is a proper characteristic subgroup of gp(a) and so by Lemma 4,~[gp(ab)| >|gp(a)|.

From this we have that if {Ku..., Kn} are proper characteristic subgroups then
|n"=i Ki\ > n. Thus if X £ C cannot be written as a finite product of primes it can be
represented as an arbitrarily long product of proper characteristic subgroups, and so it
has arbitrarily large length. This contradiction implies any 0 T6 X ̂  F can be written as
a finite product of primes of the form: K = U"=\ Pi where n < \K\, and P; prime in C.
This proves (b).

Now if a £ BC cannot be written as a finite product of primes, gp(a) can be
written as an arbitrarily long product of proper characteristic subgroups. This con-
tradiction proves (a).

Proposition 5. Unique prime factorization holds in C_ if and only if it holds up to
multiplication by units in BC.

Proof. pi...pn = qi... qm, p,, q, prime in BC ^> U?=1 gp(p.) = 111"= i gp(<J,) => n = m,
gp(Pi) = gp(<?i) for 1 «£ i « n => n = m, and for all i, p, = q,oc, for some x, £ Aut.

If Tl"~Pi = nr=i Qi for P,, Qi prime in C, take p, basic for Ph qt basic for Q for all
i, j . Then there exists x £ Aut such that

P\.--Pn = qi...qmx.

By hypothesis n = m and p, = q,oc, 1 =£ i < n, pn = qnxxn where JC,- £: Aut. Hence n = m
and P, = Q, for all 1 =£ i =s n.

We now show that a proof of unique prime factorization in C would also give a
proof of unique prime factorization in V_. To do this we need a lemma.

Lemma 7. / / K is non-zero in C then for any m^\ there is a basis B of K such
that B ~3{bu ..., bm} and the T(b,) are pairwise disjoint.

Proof. Let B be a Nielsen reduced basis for K. Take k j , . . . , kn £ Ko such that the
T(kj) are pairwise disjoint. By Lemma 3, if fc, £ ±B then /c, = e,bM + 5,fcl2 for €,, 5, = ±,
and bij £ B. If fc;/ = br, for r ^ i then c(b,,) occurs in the reduced T-form of both k, and
kr, a contradiction. Therefore (B -{blX\kM ±B}) U{k{i|/c,^ ±B} = £ ' is a basis of K
such that B ' U -B' D {±fcf}r=i. This proves the lemma.

For A, a subset of F, define PA £ E by P*(0 = {J j£ \% ^•

We say a subgroup K c F i s projection closed if PA(X) C X for all A C T.
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Proposition 6. K E C is projection closed if and only if K E V_.

Proof. Given K £ C is projection closed, w(t,7)"=,eK and {vv,}"=1CF. Take
J? ={r,}"=iCT such that {/)}*=, n (U ?=] T(H>,-)) = 0. {r,-+ w,}^, is primitive so since
K G C , w(rj + w,)"=iE K. Since K is projection closed PR(w(r,-+ w,)"=i) = W(H>,)"=1E
K. Therefore K E V.

Note that K £ C is projection closed if and only if PR(K)CK for some finite
R C T. If t E T, let P{,} = P,.

Theorem 6. K, H E C , KHEV_ implies K,HELV_. Thus if unique prime fac-
torization holds in C it also holds in V_.

Proof. To show H E V take w(fo-)"=i E H and show P,n(w) E H. By Lemma 7, we
may take b basic for K such that T(bl7) n T(b(J) = J0f for r^ s. bH = KH implies
bw = w(bf,) E KH. Since KH E V, Pr^/wtoi)) = bP,n(w), which is in KH. Therefore
bP(il(w>) = bh for some hGH. b free implies P,n(w) = h E H. Thus H E V.

Now EK is the verbal subgroup generated by K. To show this we need only show
EK is a group. Clearly -(EK) C EK. If /, g E E and x, y E K, then K E C implies
there exists an / ' E E, x' E K such that /x = / V and T(x') n T(y) = J0L Then clearly
there exists a qE. E such that q(x' + y) = qx' + qy = / '*' + gy = /x + gy. Thus EK E V_.

Let EK = K G V and let k, k, h be basic for K, K, H respectively.

E k E = E - ( K " ) = K * = k - E

The middle equality comes from the fact that EK = K and for any x E K", x =
iSj) where k, E K and the T(fc,) are pairwise disjoint. Hence

KH = gp(fc^E) = gp(kE/iE) = gp(E/cEhE) = gp(EkhE) = gp(fchE) = KH.

Therefore KH = KH and K D K. By Theorem 3, K = K so K E V. This proves our
first statement.

Now from the above it is easy to see that P prime in V_ implies P prime in C. Thus
if unique prime factorization holds in C it also holds in V_.

In the remainder of this section we introduce a notion due to Frohlich (see (1)).
This, it happens, is important in proving unique prime factorization in _V and might
well prove important in constructing a proof of unique prime factorization in C.

Definition 5. For K, K' E C, define K\K' = sup{H GC\KHC K'}.
Clearly K\K' E C. Let k be basic for K. For H E C, KH = kH. If x E K\K',

x = 2?=i h, where h, E Hh and KH, C K'. Thus kx = S?=, kh, E K', and so

K(K\K')CK'.

K\K' is therefore the unique maximal characteristic subgroup H such that KH C K'.
If we replace C by V̂  in the above definition we get a slicing operation on V_. (This

is actually the restriction to V_ of the slicing operation on V_ though there is not space
here to prove this. For a proof, see (9), Chapter V, Section 3.) The essential step in
proving unique prime factorization in V_ is Lemma 23.21 of Varieties of Groups, which
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in our notation becomes:

V, V G V and U<L V => U\(VV) = (U\V)V.

It happens that the same lemma extended to C will yield unique prime factorization in
C.

Theorem 6. Suppose that if H, K, K'G C and HZ K then H\(KK') = (H\K)K'.
Then unique prime factorization holds in C_.

Proof. First we show that under our hypotheses, K, K',H E C implies that
KH = K'H=>K = K'. Assume KH = K'H and K<ZK'. Since HCK\(K'H),
K(K\(K'H)) = KH = K'H. By hypothesis, since K<Z K', K(K\(K'H)) = K(K\K')H =
KH. By the easy cancellation law, (K\K')H = H = FH. Hence by Theorem 3, K\K' =
F. But K(K\K') C K' implies KCK',a contradiction. Thus if KH = K'H, we must
assume K QK' or K'CK. By Theorem 3 again, K = K', and we have our right
cancellation law.

Now suppose PH = QK, where P, Q,H,KG C, P, Q primes. Suppose P<ZQ.
Then P\(QK) = (P\Q)K. H c P\(QK) 4> P(P\(QK)) = P(P\Q)K = QK so by the right
cancellation law, P(P\Q) = Q. P,Q are prime implies P\Q = F so P C Q, a contradic-
tion. Hence P c Q , and by symmetry, P D Q. Hence P = Q, proving the theorem.

2.4. Cancellation in BC

Although we do not have a proof that both cancellation laws hold in C, as an
indication that this is true we can prove that both cancellation laws hold in BC. This
result reduces the problem of proving the right cancellation law in C to the problem of
showing that if a, a', b £ BC and ab = a'bx for some x G Aut, then x = C|,(y) for
some y G Aut.

Definition 6. x G F is indecomposable if and only if x = ny, n 2* 1 >̂ n = 1.
The following results are well known:
1. For any z G F, there exists a unique indecomposable x G F such that z = nx for

some n s= 1. We denote this x by J(z).
2. Any indecomposable x = g + y — g, where this is a reduced sum for some g G F

and some cyclically reduced indecomposable, y.
3. If y is a cyclically reduced indecomposable then all y's cyclic permutations are

distinct.
4. If x, y are indecomposable and x¥±y, then {x, y} is free. Proof: For clearly

gp({*> y}) is non-cyclic. Since free groups of finite rank are Hopfian, {x, y} is a basis
for gp({x, y}).

Lemma 8. Suppose x,yGF are cyclically reduced indecomposables and \x\ 3= |y|.
Then if for k s= 1 arbitrarily large we have a diagram of the form:

kx
i j i H , where x is a cyclic permutation of y, n ss 1.

ny
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4x 4x
Proof. Take a k =2=8. We have a diagram of form: 1—i= ~̂7~̂ ~'i—t where n ? l .

ny
Therefore Ax = a + kxy + b = c + k2y + d where both sums are reduced; kuk2^2; b,d
are proper initial segments of y; a, c are proper terminal segments of y, and y = b + c,
a reduced sum. y

k hIf a 7* c then it is easy to see we have a diagram: 1 1 1 -1 \ , where k, h 5* 0.

y y

Therefore y = fc + h = h + fc, soy is a proper cyclic permutation of itself and hence
not indecomposable, a contradiction. Thus a = c so b = d, k\ = k2 and 4x =
(fci + l)(a + b). a + b is a cyclic permutation of y and hence indecomposable. Thus
4 = k,+ l, a + b = x.

Lemma 9. Suppose u, w are non-zero in F and I(u) # ±I(w). Let w = g + w'— g, a
reduced sum where w' is cyclically reduced. Then for any e,S = ± there is an N ss 1
such that fork, k' 3= N the reduced T-form ofk(ew) + u + k'(Sw) hasg + ew'foran initial
segment and Sw' — g for a terminal segment.

Proof. For N ^ 1 let xN = New + u + NSw. By Remark 4, {w, u} is free so (1)
{|XN||N 5* 1} is unbounded. Suppose xN never has both g + ew' for an initial segment
and 8w' — g for a terminal segment. Then we always have |xiv|=s
4|g| + |u| + 2N|u'' |-2(N-l)|M'' | = 4|g| + |u| + 2|H''|, contradicting (1). This proves the
lemma.

Along the same lines as Lemma 9 we have:

Remark 5. Let u, w, e, 8 be as in Lemma 9. Then there exists a n N ^ l such that
for M^N, Mew + u has initial segment g + ew' and u + M8w has terminal segment
8w'-g.

Theorem 7. Suppose a,a'EE are free and b £ BC. Then if ab = a'b, we have

Proof, ab = a'b implies aw = aw' for all w G gp(b) = B G C. Pick w G B such
that tig T(w) and H> = t, + w', a T-reduced sum for some tj G T. For k > 1, define

*GAut such that

Let w» = XiH>. Then for k 5* 1 wk = 2jl, (k(€rf,) + ur) is a T-reduced sum where
e\ = +, 0 ̂  v, G gp(T(w)) for 1 *s r < H, and H is the number of occurrences of ±f; in
w. vH G gp(T(w)) may be 0.

We claim that: uGgp(aT(vv)) implies I(u)ii±I(ai) and u Ggp(a'T(w)) implies
\

To prove the first implication assume I(u) = ±I(ai). Then na, G gp(aT(H0) for
some n > 1, contradicting the freeness of {a,}UaT(w). The second statement of our
claim is proved similarly.
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Now a,= g + Mx - g and a\ = h + M'y -h, where these are both reduced sums,
M, M ' s s l , and JC, y are cyclically reduced indecomposables. By our claim, for all
1 « r =s H, I(avr) * ±I(a.) and I(a'vr) * ±I(ai).

By repeatedly using Lemma 9 and Remark 5 on both sides of the equation
kex

awk = a'Wk we have if |JC| S= |y|, a diagram of form ' ' ' ' exists for arbi-
nSy

trarily large k. If |*| =£ |y| we get the same situation with x and y interchanged. Therefore
Lemma 8 applies showing that x is a cyclic permutation of ±y. Hence \x\ = |y|.

For k sufficiently large, kM\x\ + c = \awk\ = \a'wk\ = kM'|y| + d, where c and d are
constants not depending on k. Using the fact that |x| = |y|, and letting k go to infinity,
we get M = M'.

Now suppose \g\ * \h\. Then \g\ <\h\ or |g| >\h\. Suppose |g| >\h\. Since wk begins
with fcf,, for k sufficiently large, we get from the equation, awk = a'wk, a diagram of the
form

h my y y y

g X X X •••

where m & 0 and z may be zero.
If z¥" 0, y = z + b, x - b + z, reduced sums and g + x -g is a reduced sum. Thus

(h + my + z) + (b + z) + (-z -my -h) is a reduced sum, which it isn't. Hence z = 0
and x = y. But this means that since g + x - g is a reduced sum we must have m = 0
and h = g. Therefore

a, =-g + Mx — g —hJrM'y-h = a',.

Since (, was arbitrary, a = a'.

Corollary 3. Both cancellation laws hold in BC.
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