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A census of zeta functions of quartic K3 surfaces over F2

Kiran S. Kedlaya and Andrew V. Sutherland

Abstract

We compute the complete set of candidates for the zeta function of a K3 surface over F2

consistent with the Weil and Tate conjectures, as well as the complete set of zeta functions
of smooth quartic surfaces over F2. These sets differ substantially, but we do identify natural
subsets which coincide. This gives some numerical evidence towards a Honda–Tate theorem for
transcendental zeta functions of K3 surfaces; such a result would refine a recent theorem of
Taelman, in which one must allow an uncontrolled base field extension.

1. Introduction and results

For X an algebraic variety over a finite field Fq of characteristic p, the zeta function of X is
the power series

ζ(X,T ) = exp

( ∞∑
n=1

#X(Fqn)
Tn

n

)
.

A number of basic properties of ζ(X,T ) are controlled by the now-proved Weil conjectures
(see, for example, [20]); for example, ζ(X,T ) always represents a rational function in Q(T ).

Given a class of varieties over a particular field, it is natural to pose the inverse problem
asking which zeta functions consistent with the Weil conjectures actually occur. For abelian
varieties of a given dimension g over Fq, this question is resolved by celebrated theorems of Tate
[24] and Honda [11]: all such zeta functions occur provided that if q 6= p, one adds an extra
condition on the factorizations over Q and Qp. (This condition always holds in the ordinary
case; see [9, § 4] for a concise statement of the condition and [19] for a thorough exposition.) By
contrast, for curves of a given genus g, there are many additional constraints (the inequalities
#X(Fq) > 0 and #X(Fqmn) > #X(Fqn), for example), and even the maximum value of
#X(Fq) is unknown in most cases (see [25] for some results).

In this paper, we make a numerical investigation of the inverse problem for zeta functions of
K3 surfaces over F2. Recall that a K3 surface over Fq is a smooth, simply connected† projective
surface with trivial canonical bundle. The geometry of K3 surfaces is in many ways analogous
to that of elliptic curves (they are Calabi–Yau varieties of dimensions 2 and 1, respectively).
However, one key difference is that K3 surfaces cannot be uniformly described using a single
geometric construction. Instead, an infinite number of distinct constructions are required; we
will focus mainly on the case of smooth quartic (degree 4) surfaces in P3.

In the case of a K3 surface, one reads off from the Weil conjectures (plus properties of
crystalline cohomology) the following constraints; see [23, Theorem 1] for references and a
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sharper statement in the case where q is not prime (in the same vein as the Honda–Tate
theorem).

Theorem 1. Let X be a K3 surface over Fq. Then ζ(X,T ) has the form

1

(1− T )(1− qT )(1− q2T )q−1L(qT )

for some polynomial L(T ) ∈ Z[T ] of degree 21 with L(0) = q having all roots on the unit
circle.

One also has the following consequence of the Artin–Tate formula [7]; see Theorem 8 for
more discussion.

Theorem 2. With notation as in Theorem 1, write L(T ) = (1− T )rL1(T ) with L1(1) 6= 0.
Then L1(−1) is a perfect square (possibly 0).

With these preliminaries in hand, we describe our computational results concerning zeta
functions of K3 surfaces over F2; the code used for these computations can be found in
the repository https://github.com/kedlaya/root-unitary. Our first computational result is an
enumeration of Weil polynomials based on a refinement of the search strategy described in [13];
see § 2 for details.

Computation 3. The following sets are computed.
(a) The set of polynomials L(T ) satisfying the conditions of Theorem 1 for q = 2; it contains

2 971 182 elements.
(b) The set of polynomials in (a) consistent with Theorem 2; it contains 2 195 801 elements.
(c) The set of polynomials in (b) consistent with the inequalities #X(Fq) > 0 and

#X(Fqmn) > #X(Fqn) (it suffices to impose the second condition for (mn, n) ∈
{(2, 1), (3, 1), (4, 2)}); it contains 1 672 565 elements.

Our second computational result is a lower bound for the inverse problem obtained by
enumerating smooth quartic surfaces X/F2 and computing ζ(X,T ) directly by counting points
in X(F2n); see § 3 for details.

Computation 4. The following sets are computed.
(a) The set of PGL4(F2)-equivalence classes of smooth quartic surfaces over F2; it contains

528 257 elements.
(b) The set of zeta functions of the surfaces in (a); it contains 52 755 elements and is a subset

of the set found in Computation 3(c).

With regard to (a), note that distinct PGL4-equivalence classes with the same zeta function
may in fact give rise to isomorphic K3 surfaces: within the Néron–Severi lattice of a single
K3 surface, the ample cone may contain multiple inequivalent divisors of degree 4. However,
this cannot occur for r = 1 (that is, when L′(1) 6= 0). With regard to (b), note that in loose
analogy with Tate’s theorem that isogenous abelian varieties have the same zeta function [24],
a theorem of Lieblich and Olsson [15, Theorem 1.2] and Huybrechts [12, Proposition 4.6]
states that K3 surfaces which are derived equivalent (or Fourier–Mukai equivalent) have the
same zeta function.

Computation 3 provides a rich data set for investigating questions about zeta functions of
K3 surfaces; for example, all possible values 1, . . . , 10,∞ for the height of a K3 surface are
realized by smooth quartics over F2. This said, the meaning of Computation 4 for the inverse
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problem for K3 surfaces over F2 is unclear. However, it does yield some evidence towards a
weaker form of the inverse problem suggested by Taelman [23]. For L(T ) as in Theorem 1,
factor L(T ) =

∏
i(1− αiT ) over C and define the algebraic part and transcendental part

Lalg(T ) :=
∏

i:αi∈µ∞

(1− αiT ), Ltrc(T ) :=
∏

i:αi /∈µ∞

(1− αiT ),

where µ∞ denotes the group of roots of unity in C×. (By Computation 3, for q = 2 there are
73 617 possible values of Ltrc(T ), whether or not we add conditions (b) and (c).) Then one can
pose the inverse problem for Ltrc(T ) in place of L(T ), and in this case one has the following
(conditional) partial solution [23, Theorem 2].

Theorem 5. Assume that all K3 surfaces over finite extensions of Qp have potential
semistable reduction† in the sense of [23, Definition 1]. Let Ltrc(T ) =

∏
i(1 − αiT ) be a

polynomial arising from some L(T ) as in Theorem 1; if q is not prime, impose also the additional
restrictions given in [23, Theorem 1]. Then for some positive integer n, the polynomial∏
i(1− αni T ) occurs as the transcendental part for some K3 surface over Fqn .

The proof of [23] gives little insight as to whether the conclusion should necessarily hold with
n = 1. However, we can use our preceding computations to give a statement in this direction.

Computation 6. The following sets are computed.
(a) The subset of Computation 3(a) for which Lalg(T ) = 1 + T , Ltrc(1) = 2, Ltrc(−1) > 2;

it contains 1995 elements. (Adding the conditions of Computation 3(c) does not change this
answer.)

(b) The corresponding subset of Computation 4(b); it contains the same 1995 elements.

The conditions imposed in Computation 6 were chosen to partially (but not completely)
eliminate the possibility that L(T ) arises from a K3 surface other than a smooth quartic
by accounting for the Artin–Tate formula. It would be natural to continue the analysis by
considering other families of K3 surfaces; however, the Artin–Tate formula makes it difficult
to produce enough examples to establish that Theorem 5 always holds for q = 2 with n = 1.
See § 4 for elucidation of this point.

In another direction, one may hope to make similar calculations for q > 2, but this poses
significant technical challenges. Again, see § 4 for further details.

2. Tabulation of Weil polynomials

Our tabulation of Weil polynomials broadly follows the search strategy described in [13, § 5];
it is similar in spirit to the tabulation of number fields of prescribed signature, as in the work
of Malle [18] and Voight [26]. We briefly recall the strategy, indicate some new refinements
which make it feasible to conduct much larger searches than previously possible, and discuss
the computations performed.

2.1. The search strategy

This strategy attacks the problem of tabulating (not necessarily monic) integer polynomials

P (T ) = anT
n + . . .+ a0

†This condition, which would be guaranteed if we were in equal characteristic 0 and is likely to hold in
general, is only known for K3 surfaces with a polarization of small degree relative to p. See [16, § 2] for more
discussion.
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of a fixed degree whose roots lie on the unit circle, with a0 fixed and a1, . . . , an constrained
to lie in certain congruence classes (which could be a singleton set if the modulus is 0, or all
integers if the modulus is 1). All roots other than ±1 occur in conjugate pairs; hence if n is
odd, then one of ±1 occurs with odd multiplicity, and we may reduce to the case where n = 2m
is even and ai = an−i for all i. (For example, for K3 surfaces we have n = 21, so we first find
reciprocal polynomials of degree 20, then multiply each one by 1 + T and 1 − T to generate
the desired list.) We may then write

P (T ) = TmQ(T + 1/T ), Q(T ) = bmT
m + . . .+ b0

for some integer polynomial Q(T ) with roots in the interval [−2, 2], with bm fixed and
b0, . . . , bm−1 constrained to congruence classes U0, . . . , Um−1.

To enumerate the set S of polynomials Q(T ) we compute a tree with levels 0, . . . ,m in which
each node (bm, . . . , b0) at level m represents a polynomial Q(T ) = bmT

m + . . .+ b0 in S, and
nodes at level i < m are labeled by tuples (bm, . . . , bm−i) that are prefixes of their children
(bm, . . . , bm−i−1). By Rolle’s theorem, a necessary (but not sufficient) condition for the node
(bm, . . . , bk) to have a descendant (bm, . . . , b0) at level m is that the polynomial

m−k∑
j=0

(
k + j

j

)
bk+jT

j

has all its roots in [−2, 2]. A general description of the algorithm appears below; a particular
implementation is described in the next subsection.

Algorithm 7. Given bm and congruence classes U0, . . . , Um−1, enumerate the nodes of a
tree with root (bm) at level 0 in which each node at level i > 0 is an integer tuple (bm, . . . , bm−i)
with parent (bm, . . . , bm−i+1) as follows.

(a) Given a node (bm, . . . , bm−i), check whether the polynomial

R(T ) :=

i∑
j=0

(
m− i+ j

j

)
bm−i+jT

j

has all its roots in [−2, 2].
(b) If the test in (a) passes and i = m, add bmT

m + . . .+ b0 to a list of return values.
(c) If the test in (a) passes and i < m, compute an interval I with the following property:

for any values bm−i−1, . . . , b0 such that bmT
m + . . . + b0 has all roots in [−2, 2], one has

bm−i−1 ∈ I. Then take the children of this node to be the tuples (bm, . . . , bm−i−1) with
bm−i−1 ∈ Um−i−1 ∩ I (this intersection may be the empty set).

2.2. Implementation

An implementation† of the aforementioned search strategy (available for download) is described
in [13]. The implementation we use here differs from the prior one in several theoretical and
practical aspects, which we now discuss.

– In [13], the interval I in Algorithm 7(c) is constructed using linear and quadratic
inequalities on the power sums s1, . . . , si+1, as computed from bm, . . . , bm−i−1 via the
Newton identities; note that m appears explicitly in the identities, so these inequalities
typically carry more information than simply requiring that the one-step extension
conform to Rolle’s theorem. See [13, § 5] for the precise list of inequalities used.

†While preparing this paper, we discovered a minor bug in the implementation accompanying [13]. However,
we corrected this bug in the current implementation and reconfirmed all of the computational results.

https://doi.org/10.1112/S1461157016000140 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000140


zeta functions of quartic k3 surfaces over F2 5

We add a new condition which is linear in the bj rather than the sj : if Q(T ) has all
roots in [−2, 2], then bmQ(2+T ) and (−1)mbmQ(2−T ) have all coefficients nonnegative
(consistent with Descartes’s rule of signs).

– In [13], the test in Algorithm 7(a) is conducted as follows. Let S(T ) be the polynomial
obtained from R(T ) by removing all multiple roots and all factors of T ± 2. Form a
Sturm sequence S0, S1, . . . as follows: S0 := S, S1 := S′, and for j > 1, let Si be a
negative scalar multiple of the remainder of Sj−2 modulo Sj−1, stopping just before
appending the zero polynomial to the sequence. We then invoke Sturm’s theorem [2,
Theorem 2.50]: the number of roots of S(T ) in [−2, 2] is the difference between the
numbers of sign changes in the sequences S0(−2), S1(−2), . . . and S0(2), S1(2), . . . .
In the current implementation, we note that when testing R, we have the prior
information that R′(T ) has all roots in [−2, 2] and that R(2), R(−2) have the correct
signs (thanks to the previous point). We thus need only test that R has all real roots; this
eliminates some polynomial evaluations at ±2. We may also take S = R, since Sturm’s
theorem remains valid as a count of roots without multiplicity; this avoids duplication
of the Euclidean algorithm. We next observe that R has all real roots if and only if for
j = 1, . . . , i, deg(Sj) = i− j and the leading coefficients of S0 and Sj have the same sign;
this allows for an early abort. Finally, we note that if the early abort happens due to
a sign discrepancy (rather than a degree discrepancy) at Sj , then this discrepancy does
not depend on bk for k 6 m− i− 1 + max{0, i− 2j + 2}; if i− 2j + 2 > 0, we may thus
back up the tree traversal and discard all nodes below (bm, . . . , bm−2j+2) without losing
any of the return values. (If bm > 0 and nodes are traversed in lexicographic order, then
one may replace i − 2j + 2 with i − 2j + 1 and bm−2j+2 with bm−2j+1 in the previous
analysis.)

– In [13], the implementation consisted of an interpreted component in Sage [22]
performing high-level user interaction and a compiled component in Cython [6] for mid-
level computations. Some low-level computations, such as Sturm sequences, were farmed
out to compiled components of the Sage library, notably PARI [21]†.
In the current implementation, we incorporate a third component, written in C using
the FLINT library [10]. This component absorbs most of the work of the Cython layer
(which remains to provide wrappers around the C code) and completely supplants the
use of PARI.

– In [13], parallelization via work-stealing is suggested but not implemented; we provide
this in the current implementation. Given a pool of threads, we initially assign the entire
search tree to one thread, then iterate the following steps until no active threads remain.

(i) In parallel, each thread which is active (that is, has been assigned a subtree of the
search tree) performs a depth-first search to find one polynomial in its remaining
search space, going inactive if none exist.

(ii) In serial, each inactive thread solicits work from a randomly chosen active thread
by removing a branch (as close to the root as possible) from the latter’s subtree.

2.3. Computations

We now describe in detail some computational results obtained using this search strategy. The
reported computations were carried out on a 24 core Intel Xeon X5690 3.47 GHz machine with
192 GB of memory. The parallel implementation was run using 512 threads; this provided an
8–10× speedup.

Computation 3 was completed in under 1 hour. In addition to the 1 485 591 polynomials of
degree 20 that were found, the search tree found an additional 2 149 281 061 leaves at smaller

†The PARI/GP project includes both the C library PARI and the interpreted GP language. Sage interfaces
directly with the C library.
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depths; that is, the dead ends outnumber the solutions by a factor of nearly 1500. This suggests
that there may still be substantial room to optimize the choice of the intervals in Algorithm 7(b)
(see below).

As an additional test of the implementation (which helped expose some bugs during
development), we computed the set of monic polynomials L(T ) ∈ Z[T ] with degree in
{1, 3, . . . , 21} with all roots on the unit circle; it contains 78 670 elements. By Kronecker’s
theorem, these polynomials factor as products of cyclotomic polynomials; it is thus easy to
confirm this answer using an independent script that forms these products directly.

2.4. Possible refinements

The discussion above suggests that there remains substantial room for improvement in the
choice of intervals in Algorithm 7(b). As noted in [13], similar searches in other contexts often
make use of linear programming methods; we have not investigated this direction.

There is also a question of whether Sturm sequences are the optimal method for the test
in Algorithm 7(a). For one, Sturm sequences involve multiprecision integers, in part due to
the systemic appearance of certain large powers. In principle, these powers can be removed
explicitly, thus reducing the computational complexity [4, Algorithm 3.3.1]; in practice, we
find (in this particular setting) that the Gaussian content is substantially larger than predicted
by general arguments, so we prefer to compute it explicitly. (One could try mixing the two
approaches, but in [4, § 3.3] it is suggested that this gives inferior results.)

More seriously, there is a question as to whether Sturm sequences are superior to root
isolation methods based on the Budan–Fourier theorem [2, Theorem 2.35] (see also [2, § 10.4]).
We have chosen Sturm sequences in part for ease of implementation, but also because they are
better suited to the task at hand. To wit, root isolation methods can easily generate certificates
that guarantee the existence of certain real roots (using sign changes), but have more difficulty
generating certificates that guarantee the failure of a polynomial to have all of its roots in an
interval. By contrast, Sturm’s theorem provides certificates of the latter type easily using the
early-abort mechanism described above. That said, it may be that a well-crafted strategy using
root isolation (for example, one which uses the positions of the roots of R′ to help isolate the
roots of R) would work better in the long run.

In order to get a fuller parallel speedup, some refinement of the parallelization mechanism is
needed. For example, we currently only interrupt a process when it finds a solution or exhausts
its search space; this is suboptimal in certain use cases where the search tree is very large but
the number of solutions to be found is small.

3. Point counting

We computed the zeta function of every K3 surface over F2 that arises as a smooth quartic
surface X in P3 by counting points on these surfaces over extension fields F2n , with n ranging
over a set of values sufficient to uniquely determine the zeta function ζ(X,T ) given by
Theorems 1 and 2 (up to n = 19 in the worst case). This computational problem naturally
breaks down into tasks: (1) enumerate a complete set S of smooth surfaces defined by
homogeneous quartic polynomials f ∈ F2[w, x, y, z], up to PGL4-equivalence; (2) compute
#X(F2n) for X ∈ S and suitable values of n.

3.1. Determining PGL4-orbits of homogeneous quartics

There are
(
7
3

)
= 35 homogeneous quartic monomials waxbyczd, one for each quadruple of

nonnegative integers (a, b, c, d) with a + b + c + d = 4. If we order the quadruples (a, b, c, d)
lexicographically, each homogeneous quartic f ∈ F2[w, x, y, z] can be uniquely identified with a
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bit-vector v := v(f) ∈ F35
2 indexed by quadruples (a, b, c, d) for which f =

∑
v(a,b,c,d)w

axbyczd;
the bit-vector v can be conveniently encoded as an integer in [0, 235) and we order them
accordingly (this is just the lexicographic order on {0, 1}35).

The group PGL4(F2) acts on the set of homogeneous quartics f(w, x, y, z) via linear change of
variables. In terms of the corresponding set V := F35

2 of vectors v(f), each element of PGL4(F2)
corresponds to an invertible linear transformation of V that can be explicitly represented as
an invertible 35× 35 matrix. We may thus identify PGL4(F2) with a subgroup G of GL35(F2)
of order 26(22 − 1)(23 − 1)(24 − 1) = 20 160. As we are only interested in the quartic surfaces
f(w, x, y, z) = 0 up to isomorphism, it suffices to consider the G-orbits of V , each of which
may be uniquely represented by a lexicographically minimal v. The number of G-orbits can
be computed via Burnside’s lemma as

#(V/G) =
1

#G

∑
g

#V g =
#C

#G

∑
C

(#F2)dim1(C) = 1 732 564, (3.1)

where the first sum is over group elements, the second sum is over conjugacy classes, and
dim1(C) denotes the dimension of the 1-eigenspace of the conjugacy class C. There are only
14 conjugacy classes in PGL4(F2), so the second sum is trivial to compute.

To find lexicographically minimal representatives for each orbit we simply enumerated every
orbit using a bitmap with 235 entries; this took less than 2 days. We note that this brute-force
approach is not feasible for finite fields larger than F2. Indeed, determining a set of unique
orbit representatives is already a nontrivial problem over F3 (the vector space F35

3 contains
335 ≈ 255.5 elements). However, determining the cardinality of this set via (3.1) is quite feasible
for values of q > 2; for example, over F3 there are 4 127 971 480 orbits, and over F5 there are
100 304 466 278 983.

Having compiled a complete list of PGL4(F2)-orbits of homogeneous quartics, we then want
to restrict to those that define a K3 surface; this amounts to discarding orbits represented by
a vector v(f) for which the polynomial f ∈ F2[w, x, y, z] is not irreducible, or for which the
singular locus defined by the Jacobian matrix of f is nonempty (the latter implies the former
but the former is often easier to check). These conditions are straightforward to apply, and
we quickly find that 528 257 of the 1 732 564 orbits satisfy them; these constitute our set S of
smooth plane quartic surfaces X/F2 in P3.

3.2. Counting points on quartic surfaces over F2

Given a smooth quartic surface X ∈ S defined by f(w, x, y, z) = 0, our basic strategy for
computing #X(F2n) is elementary: iterate over pairs (x0, y0) ∈ F2

2n and for each pair determine
the number of roots of the polynomial g(w) := f(w, x0, y0, 1) = g(y) ∈ F2n [w] that lie in F2n

(of course we also need to account for points with z = 0, but this reduces to the much easier
problem of counting points on a curve in P2 and takes negligible time). To count the roots of
g(w) we use Zinoviev’s formulas [27], which for low-degree polynomials g over F2n give explicit
n× n systems of linear equations over F2 whose solutions correspond to the roots of g, based
on Berlekamp’s algorithm for factoring polynomials over finite fields of small characteristic
using linear algebra [3].

One might generically expect g to have degree 4, but in fact this is not the case. For all but
34 of the surfaces in S, the degree of the defining polynomial f(w, x, y, z) in w is at most 3
(note that our lexicographic ordering minimizes the degree in w). In the typical case where
g(w) is a cubic, after making it monic and applying a linear change of variable we may assume
g(w) = w3 + g1w + g0. It is then feasible to precompute a lookup table T indexed by pairs
(g0, g1) ∈ F2

2n whose entries record the number of roots of w3 + g1w + g0 in F2n . Each entry
in T is an integer in [0, 3] that can be encoded in 2 bits, thus the total size of T is 22r+1 bits;
even for r = 19, this is reasonably small (64 GB). The time to compute T is actually less
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than the time to instantiate f(w, x0, y0, 1) at every pair (x0, y0) ∈ F2
2n ; we can accelerate this

computation by enumerating the pairs (g0, g1) in an order that makes it convenient to compute
the matrices appearing in Zinoviev’s formulas. This makes the computation of T worthwhile
even for a single surface X, and we can reuse the same table T for every X ∈ S. The cost of
point counting is then dominated by the time to evaluate f(w, x0, y0, 1).

Given that we wish to count points on a fairly large set of surfaces (all of S for n 6 12 and
subsets Sn ⊆ S for n > 12), rather than iterating over surfaces f(w, x, y, z) = 0 and counting
points on each, which involves iterating pairs (x0, y0) ∈ F2

2n and evaluating f(w, x0, y0, 1), we
reverse the order of iteration and loop over pairs (x0, y0) and for each pair count the solutions
to f(w, x0, y0, 1) = 0 over F2n for every surface f(w, x, y, z) = 0 in our set, keeping a running
total of points for each surface as we go. This allows us to instantiate the 35 homogeneous
quartic monomials at x = x0, y = y0, z = 1 just once for each pair (x0, y0), and then for
each polynomial f(w, x, y, z) compute f(w, x0, y0, 1) as an F2-linear combination of these,
equivalently, as a sum of a subset of them, which is very fast.

This algorithm is trivially parallelizable (with linear speedup), and running on 32 cores it
takes only 2 days to compute #X(F2n) for 1 6 n 6 12 and all 528 257 surfaces X ∈ S. From
these point counts, for each X ∈ S we can write L(T ) = 1+a1T + . . .+a21T

21 with a1, . . . , a12
known. In most cases, the existence of a sign ε ∈ {+,−} such that a21−i = εai then determines
L(T ) uniquely; the exceptions are the cases where a9 = a10 = 0. For n = 13, . . . , 21, let S′n be
the subset of S consisting of exceptions for which a21−n 6= 0 and a20−n = . . . = a10 = 0; let Sn
be the subset of Sn for which both choices for ε give polynomials compliant with Theorems 1, 2,
and 8 (which for degree 4 means that if r = 1, then L1(1) is a square). The sizes of these sets
are listed in Table 1.

For n = 13, . . . , 19, we reran the previous algorithm to compute #X(F2n) for each X ∈ S′n;
the most time-consuming computation was for S′19, which took about 6 days running on a
machine with 32 Intel Xeon E5-2687Wv2 3.4 GHz cores and 256 GB of memory. (It would
have been sufficient to consider x ∈ Sn, but the extra computations serve as a consistency
check.) Note that the 1876 tuples (#X(F2), . . . ,#X(F212)) represented by S13 ∪ . . .∪S19 only
give rise to 2071 different zeta functions; that is, in the vast majority of these cases only one of
the two sign choices is realized. This suggests that there may be further theoretical restrictions
on zeta functions that we have not yet taken into account (for example, interaction between
the Newton polygon and the order of the Brauer group).

We should also mention an important low-level optimization to speed up arithmetic in F2n

that we used: the ‘carry-less multiplication’ instruction PCLMULQDQ now available on Intel
processors (since 2010) speeds up multiplication in F2n quite dramatically (by a factor of up
to 10 for the values of n that we used).

4. Further discussion

In light of the preceding computations, we resume the discussion from the introduction
concerning the inverse problem for zeta functions of K3 surfaces.

As noted earlier, smooth quartics give rise to only one out of infinitely many algebraic families
of K3 surfaces. This is due to the fact that, just as for abelian varieties, in order to represent

Table 1. Cardinalities of sets S′
n, Sn.

n 13 14 15 16 17 18 19 20 21

#S′
n 38 225 16 555 8 281 3 608 2 011 857 283 0 96

#Sn 17 795 7 315 3 611 1 435 1 016 470 125 0 0
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the moduli problem one must consider polarized K3 surfaces. The degree of the polarization
equals its self-pairing in the Néron–Severi lattice; each value of the degree corresponds to a
single irreducible component of the moduli space of K3 surfaces. For the first few degrees, the
generic polarized K3 surface of that degree can be described as follows. (There are also some
nongeneric possibilities; see below for some discussion of the case of degree 4.)

– Degree 0: an elliptic K3 surface.
– Degree 2: a double cover of P2 (or a twist) branched over a smooth sextic (degree 6)

curve.
– Degree 4: a smooth quartic in P3.
– Degree 6: a smooth transversal intersection of a quadric and a cubic in P4.
– Degree 8: a smooth transversal intersection of three quadrics in P5.

For X a K3 surface over Fq, define L(T ) as in Theorem 1 and r, L1(T ) as in Theorem 2. The
interaction between these invariants and the degree is governed by the Artin–Tate formula,
which was used already to deduce Theorem 2 (by comparing (4.1) over Fq and Fq2); here is
the full statement, as in [7, Proposition 6].

Theorem 8 (Artin–Tate formula). If X satisfies the Tate conjecture†, then

L1(1) = |∆|#Br(X), (4.1)

where ∆ denotes the discriminant of the Néron–Severi lattice and Br(X) denotes the Brauer
group; the latter is finite and its order is a perfect square. Also, the rank of the Néron–Severi
lattice equals r; in particular, if r = 1 then X admits a unique polarization, and its degree is
equal to ∆.

We can now justify the choice of the conditions in Computation 6: besides smooth quartics,
some other sources of degree-4 K3 surfaces include desingularization of singular quartics with
only isolated rational singularities, which all have r > 1; and double covers of quadrics branched
along (4, 4) curves, which all have either r > 1, Lalg(T ) 6= 1 + T , or ∆ = −4.

We now justify our previous assertion that Theorem 8 makes it difficult to produce enough
examples to establish that Theorem 5 always holds for q = 2 with n = 1. Among the
possibilities for Ltrc(T ) allowed by Computation 3(c), there exist cases where

degLtrc(T ) = 20, Ltrc(1) ∈ {307, 367, 463}, Ltrc(−1) = 3.

By Theorem 2, these can occur only with Lalg(T ) = 1 + T . Since 307, 367, and 463 are prime,
these would have to occur for K3 surfaces of degrees 2×307, 2×367, and 2×463, respectively;
however, the moduli spaces of polarized K3 surfaces of these degrees are of general type
[8, Theorem 1], so constructing explicit points on them may be difficult. A more promising
approach would be to make explicit the constructions used in [23], which involve lifting to
characteristic 0, as in the proof of Honda’s theorem.

Finally, we discuss the prospects for making similar calculations for q > 2. On the side of
enumerating candidate zeta functions, there seems to be a bit of room to enlarge q; for example,
the following computation for q = 3 took 2.5 days (wall time, parallelized as in § 2.3).

Computation 9. The following sets are computed.
(a) The set of polynomials L(T ) satisfying the conditions of Theorem 1 for q = 3; it contains

75 936 610 elements, representing 6 867 811 distinct values of Ltrc(T ).

†This is known to hold except in certain cases in characteristic 2; see [17]. The case of characteristic 2 is
apparently resolved by a very recent preprint [14]. In any case, the formulation in [7, Proposition 6] is made
carefully so as not to require the Tate conjecture.
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(b) The set of polynomials in (a) consistent with Theorem 2; it contains 52 980 075 elements.
(c) The set of polynomials in (b) consistent with the inequalities #X(Fq) > 0 and

#X(Fqmn) > #X(Fqn) (it suffices to impose the second condition for (mn, n) = (2, 1)); it
contains 49 645 728 elements.

On the side of computing zeta functions of quartics, we must emphasize that the (optimized)
brute-force approach we used to compute the zeta functions of all quartic surface over Fq by
point counting is not feasible for q > 2, particularly in the exceptional cases where one must
go beyond Fq11 to resolve the sign ambiguity. For q = 3 there are already more than 2000
times as many PGL4-orbits of quartics to consider, and the time to compute #X(Fq11) will
be larger by a factor of at least 100 (more than 2000 for Fq19). One should instead look to
methods based on p-adic cohomology, as in [1]; these have recently been made practical† for
K3 surfaces [5].

Acknowledgements. This work was carried out at ICERM during the fall 2015 semester
program ‘Computational aspects of the Langlands program’. We thank Edgar Costa, David
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