
J. Fluid Mech. (2020), vol. 886, A22. c© The Author(s), 2020
This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.
doi:10.1017/jfm.2019.1051

886 A22-1

Transition between advection and inertial wave
propagation in rotating turbulence

Jonathan A. Brons1,2,†, P. J. Thomas1 and A. Pothérat2

1Fluid Dynamics Research Centre, School of Engineering, University of Warwick,
Coventry CV4 7AL, UK

2Fluid and Complex Systems Research Centre, Coventry University, Coventry CV1 5FB, UK

(Received 24 July 2019; revised 12 December 2019; accepted 12 December 2019)

In turbulent flows subject to strong background rotation, the advective mechanisms
of turbulence are superseded by the propagation of inertial waves, as the effects of
rotation become dominant. While this mechanism has been identified experimentally
(Dickinson & Long, J. Fluid Mech., vol. 126, 1983, pp. 315–333; Davidson,
Staplehurst & Dalziel, J. Fluid Mech., vol. 557, 2006, pp. 135–144; Staplehurst,
Davidson & Dalziel, J. Fluid Mech., vol. 598, 2008, pp. 81–105; Kolvin et al. Phys.
Rev. Lett., vol. 102, 2009, 014503), the conditions of the transition between the
two mechanisms are less clear. We tackle this question experimentally by tracking
the turbulent front away from a solid wall where jets enter an otherwise quiescent
fluid. Without background rotation, this apparatus generates a turbulent front whose
displacement recovers the z(t) ∼ t1/2 law classically obtained with an oscillating
grid (Dickinson & Long, Phys. Fluids, vol. 21 (10), 1978, pp. 1698–1701) and
we further establish the scale independence of the associated transport mechanism.
When the apparatus is rotating at a constant velocity perpendicular to the wall where
fluid is injected, not only does the turbulent front become mainly transported by
inertial waves, but advection itself is suppressed because of the local deficit of
momentum incurred by the propagation of these waves. Scale-by-scale analysis of the
displacement of the turbulent front reveals that the transition between advection and
propagation is local both in space and spectrally, and takes place when the Rossby
number based on the considered scale is of order unity, or equivalently, when the
scale-dependent group velocity of inertial waves matched the local advection velocity.

Key words: rotating flows, waves in rotating fluids, rotating turbulence

1. Introduction
The main transport mechanism in turbulent flow is advection. When turbulent

flows are subject to background rotation, however, inertial waves offer an additional
transport mechanism. The competition between them determines the anisotropy and
transport properties of rotating turbulence. Here, we determine the conditions in which
either of them dominates, and especially the scale dependence of this competition.

Turbulence in rotation arises in a variety of industrial and natural contexts, such
as centrifuges, precessing spacecraft or oceanographic and atmospheric flows (Vanyo
1993; Davidson 2013, 2015), where its specific transport and dissipative properties
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influence or even govern the dynamics of the processes involved. Its most distinctive
feature is to form large, more or less, columnar structures aligned with the rotation
axis that are perhaps most conspicuous in geophysical flows (Pedlosky 1987). The
emergence of columnar structures in rotating flow was first reported in a letter by
Kelvin (Thomson 1868) and subsequently illustrated in Taylor’s famous experiment
(Taylor 1922). Since then, a number of experiments and numerical simulations have
reported the emergence of such columns in turbulent flows (Hopfinger, Browand &
Gagne 1982; Bartello, Métais & Lesieur 1994; Gallet 2015) and several scenarii
have been proposed to explain their appearance. Underlying the question of how
large columnar structures emerge, is that of the processes by which rotating flows
and rotating turbulence transport momentum and energy. This question itself hinges
on the role played by two essential ingredients of rotating turbulence. The first one
is the propagation mechanism associated with linear inertial waves (see Greenspan
(1968) for the theory of these waves): for a wavevector k, with frequency ω and
background rotation Ω , inertial waves follow the dispersion relation, and associated
group velocity

ω=±2Ω · ek, vg =±
2
k

ek × (Ω × ek), (1.1a,b)

where ek =
1
k k. The preferential transport of momentum along the rotation axis by

inertial waves indeed elongates an initially isotropic blob of vorticity along the axis
of rotation at a speed of Ωt (Davidson, Staplehurst & Dalziel 2006), where Ω is
the rotation speed. The second ingredient involves nonlinear interactions (Cambon,
Mansour & Godeferd 1997; Smith & Waleffe 1999; Cambon & Scott 1999). In this
process, triadic interactions feed an inverse energy cascade towards large scales while
non-resonant triads or quartets of waves transfer energy to modes aligned with the
axis of rotation. This scenario is supported by numerical simulations and by strong
experimental and numerical evidence of an inverse energy cascade (Campagne et al.
2014). However, Taylor’s early experiments in a steady, laminar flow still exhibit
anisotropic transport of momentum along the rotation in the absence of waves and
nonlinearities. This waveless and linear anisotropic transport was indeed recovered
in the analytical work of Moore & Saffman (1968, 1969) and Pothérat (2012), and
suggests that more than a single transport mechanism may exist in rotating flows.
Along this line, our recent experiments showed that even in turbulent flows, the
anisotropy of the mean flow may not necessarily result from the action of inertial
waves or triadic interactions (Brons, Thomas & Pothérat 2019). Instead, average
anisotropy may emerge from an interplay between rotation and nonlinear advection,
somewhat similar to the interplay between viscous diffusion and rotation in Taylor’s
laminar flow experiment. Advection and propagation of inertial waves were even
found to simultaneously act on fluctuations in nearly two-dimensional flows: while
larger scale fluctuations satisfied the dispersion relation for inertial waves, smaller
scales behaved as inertial waves ‘swept’ by the surrounding velocity field of the large
quasi-two-dimensional structures (Campagne et al. 2015).

With different mechanisms at play, the question arises of their precise respective
domain of action, both in terms of the scales concerned and of the main control
parameter, the Rossby number Ro = U/2Ωl, that controls the ratio of inertial to
Coriolis forces (U and l are typical velocity and length scale). One way to tackle
the problem experimentally is to track the displacement of a turbulent front when the
turbulence is produced by a localised forcing mechanism and progressively invades
a domain of an otherwise quiescent fluid. Most experiments of this type involve
either jets along the rotation axis or oscillating grids, as respectively pioneered by
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McEwans (1976) and Dickinson & Long (1983). The latter showed that the position
of the turbulent front evolved as zf ∼ t1/2 as long as the local Rossby number based
on z remained greater than unity. Past this point, Ro decreases, turbulence starts to
exhibit wave patterns and the front travels as zf ∼ Ωt, as consistent with the group
velocity of inertial waves.

Grid experiments (Staplehurst, Davidson & Dalziel 2008) on the formation of
columnar structures in rotating turbulence revealed that around a local critical Rossby
number Rocrit

∼ 0.4 the flow transitions from a state where energy and momentum
are mostly propagated by inertial waves (below Rocrit) to one where they are mostly
transported through advection. A recent numerical study on rotating turbulence ignited
by a buoyancy anomaly showed that this transition could be spatially localised
with some regions dominated by inertial waves, and others where they are absent
(McDermott & Davidson 2019). These authors also confirmed a critical value of the
Rossby number for this transition around 0.5, provided it is built on the correct large
scale.

Recent scale-by-scale analysis of the turbulent front further showed that fluctuations
were propagated at the group velocity of inertial waves corresponding to their length
scales, in the limit of strong rotation Ro� 1 (Kolvin et al. (2009), turbulence initiated
by jets). In statistically steady turbulence, jet experiments (Yarom & Sharon (2014),
0.006 6 Ro 6 0.2), and experiments with a two-dimensional mechanical forcing
(Campagne et al. 2015) confirmed that some of the fluctuations of frequency lower
than 2Ω , the maximum frequency of inertial waves, satisfied the dispersion relation
for inertial waves (but for the sweeping effect at high wavenumbers identified by
Campagne et al. (2015)). The recent experiments of Burmann & Noir (2018) showed
that inertial waves of a wide range of length scales emitted by a topography near an
Ekman wall could speed up momentum transfer along the rotation axis and lead to
an accelerated spin-up time following a step change in the rotation of a cylindrical
vessel.

Although the role of inertial waves is clearly established in the limit Ro� 1 and in
regions of the spectrum where ω6 2Ω , the limits of their regime of influence remains
unclear, especially in terms of the length scales concerned. Both Dickinson & Long
(1983) and Staplehurst et al. (2008) found that the momentum transport mechanism
transitions from propagative regime to an advective one around Ro of the order of
unity; however, the scale dependence of this transition remains unexplored. We set
out to examine this question and, in particular, the scale dependence of the transport
mechanisms in a transient turbulent flow under the effect of background rotation. We
target regimes where rotation may not dominate over the entire turbulent spectrum.
The specific questions we seek to answer are:

(i) Is there a clear scale separation (in terms of the control parameter and the
scales concerned) between advective or nonlinear mechanisms on one side, and
propagation on the other?

(ii) If so, what is the quantitative threshold defining such a separation?

Our approach relies on the tracking of the turbulent front in a flow forced by
turbulent jets, with data processing techniques similar to those introduced by Kolvin
et al. (2009) to analyse the scale dependence. The choice of a transient flow presents
the advantage that momentum transport can be easily characterised by tracking
the progression of the turbulent front. The experimental set-up is described in § 2.
To characterise the phenomenology of pure advection in our experimental set-up,
we first analyse non-rotating turbulence in the spirit of Dickinson & Long (1983)
(§ 3), before running experiments at several rotational velocities (§ 4) and drawing
conclusions (§ 5).
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FIGURE 1. Sketch of the side and top view of the experimental set-up, highlighting all
important components. The green rectangle shows the approximate size of the flow field
recorded and the green line shows the position of the laser sheet across a source/sink pair.
Red dots show the position of the origin in our experiments. In top view (+) refers to a
source and (−) to a sink.

2. Experimental methods
2.1. Experimental apparatus

Figure 1 shows a sketch of the set-up. The experiment consists of a rectangular tank
(60 cm× 32 cm× 32 cm) centred on a rotating turntable, filled with water (viscosity
ν = 1.0034× 10−6 m2 s−1 and density ρ = 0.9982× 103 kg m−3). The temperature in
the laboratory was kept at 20 ◦C.

A forcing mechanism, supported by four pillars at the corners of the mechanism,
is placed underneath the bottom wall of the tank. This mechanism forces a flow
by injecting and withdrawing fluid through four sources/sinks (diameter d = 1 mm)
located at the corners of a square centred at the bottom wall of the tank. These
sources and sinks are respectively identified by the (+) and (−) symbols in figure 1.
The distance between the corners of the square is L = 53 mm. The choice of this
square injection pattern provides a quadrupolar flow that remains near the centre of the
vessel despite the wide range of Reynolds numbers we investigated. This ensures that
measurements made in a fixed region of the flow but at different Reynolds numbers
remain comparable to each other. The sources/sinks are connected to an external
peristaltic pump via tubing housed underneath the forcing mechanism. The pump
(Watson & Marlow 505-DI) is mounted on the turntable and allows for simultaneous
fluid injection through one diagonal of the square (sources) and fluid withdrawal
through the other diagonal (sinks), resulting in a zero net mass flux. The forcing
mechanism is designed so that the difference in hydraulic resistance across each pair
of sources/sinks is kept to a minimum, resulting in a difference in flow rates across
these pairs of less than 0.1 %. The flow rate Q through each of the sources and
sinks is considered constant with values of (0.5, 0.9, 2.0, 3.1, 4.7, 9.4)× 10−6 m3 s−1.
A cylinder (height H = 40 cm, ∅ = 30 cm) is placed inside the tank to provide
support for a transparent lid placed atop, which prevents surface deformation and
gives clear viewing window for the measurement system.
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During experiments a Coriolis force is applied by spinning the rotating turntable at a
constant rotation speed Ω . The turntable is driven by a DC-powered motor connected
to the table via a belt drive; Ω spanned {0,0.52,1.04,2.09,4.19} rad s−1 with an error
on Ω below 1 %. The flow field is recorded using a two-dimensional particle image
velocimetry (PIV) system. A laser sheet along the (x, z)-plane is aligned with a source–
sink pair and illuminates an area of approximately 40 cm× 15 cm, covering the entire
height of the tank, as can be seen in figure 1. The laser sheet is generated using a 1
W/532 nm diode laser and a custom lens system consisting of a concave, a convex and
a cylindrical lens. The thickness of the laser sheet remains around 3 mm across the
entire height of the flow field. The water is seeded with 10 µm silver-coated hollow
glass spheres, used as tracer particles. Two 1.3MP CMOS cameras are used to record,
respectively, the top and bottom halves of the flow field and cover an area of 21 cm×
15 cm each. The recorded areas of these cameras have a small overlapping region of
approximately 1 cm at the centre height of the flow field. The cameras record at a
frame rate of 60 f.p.s., that is sufficient to resolve the high velocities measured close
to the point of fluid injection.

For each experimental run, the turntable is initially left to rotate until the fluid
inside the tank has reached a state of solid body rotation with rotational velocity Ω .
PIV data are then collected during approximately three seconds to measure the level
of residual noise when the liquid is nominally at rest within the rotating frame of
reference (i.e. in solid body rotation). Finally the forcing mechanism is activated, at
time t0 = 0, generating a set of jets which penetrate into the flow field. The flow
field is recorded for a period of 3 min from the time of activation of the forcing
mechanism. We identify a time tend for which turbulence occupies the entire vessel.
We found tend < 100 s for all experiments. The injection system is then stopped and
the flow is left to decay down to the level of noise recorded in solid body rotation,
before the next activation of the injection system. Velocity fields are derived from
recorded images by processing them using the PIVlab software (Thielicke & Stamhuis
2014) for Matlab. This is done on a 32× 32 pixel grid with a 50 % overlap region.
The combination of the camera resolution, its field of view and the resolution of
the PIV grid result in the smallest resolvable length scale ` = 2.1 mm. For each
set of experimental parameters, a set of five separate measurements is recorded
and the resultant velocity fields are averaged across these separate experiments in
order to minimise uncertainties associated with the transient nature of the flow. This
method is sufficient to capture the time-dependent event average of the velocity with
a standard deviation of approximately 5 % across runs. Furthermore, although only
the velocity components along the x and z directions are measured, the symmetry
of the configuration implies that the flow is statistically invariant by a rotation of
±π/2 followed by a reflection about a vertical plane equidistant from two electrodes.
As such the two-dimensional (2-D) measurements provide a good representation of
the three-dimensional dynamics, in particular for the purpose of estimating the group
velocity of inertial waves of individual horizontal wavenumbers k.

2.2. Control parameters
We chose a rotating frame of reference with origin centred between two adjacent
corners of the square, ex and ey in the horizontal plane and ez pointing upwards,
indicated by the red dot in figure 1.

Both Q and Ω provide control over two non-dimensional governing parameters,
namely the Ekman number Ek = ν/2ΩL2

∈ [17.0, 8.50, 4.25] × 10−5 and a Reynolds
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Forcing ReQ Ek RoQ z/L

Current 4 Jets (0.06–1.2)× 104 (4.25–17.0)× 10−5 0.026–2.04 0.1–7.4
Dickinson & Long (1983)∗ Grid n/a >4.5× 10−6 n/a 120–187
Staplehurst et al. (2008)∗ Grid 83–130 (1.44–2.96)× 10−6 0.5–1.4 120–187
Kolvin et al. (2009)† 248 Jets 61300 (6.4–10.8)× 10−6 60.021 1.4–11.4

TABLE 1. Comparison between the parameter range explored in the current experiment
and experiments conducted in other studies. ∗Ekman numbers are based on the containers
heights. †Based on Ω and upper bound for Q given by Kolvin et al.

number based on the flow rate, ReQ =U0d/ν ∈ [600, 1200, 2500, 4000, 6000, 12 000],
where U0 = 4Q/πd2. Here L is chosen as the characteristic length scale to make
comparison easier to previous experiments. Results are presented in non-dimensional
form, using L and U0 as reference length and velocity scales respectively. In
comparison to the current experiment, Kolvin et al. (2009) applied a significantly
stronger Coriolis force, while inertial forces were almost always weaker. This
difference in parameters reflects a difference in purpose between both set-ups: while
Kolvin et al.’s (2009) work targeted the limits of high rotation, and low inertia, we
are targeting a transitional regime where inertia and the Coriolis force compete. Their
ratio is measured by a Rossby number based on the injected velocity RoQ = EkReQ.
For comparison with previous experiments on rotating turbulent fronts, the attainable
values of the non-dimensional parameters are reported in table 1.

2.3. Data analysis
To differentiate advective from propagative processes, we shall analyse the scale
dependence of the evolution of the turbulent front. For this, we follow a method
similar to Kolvin et al. (2009): we first apply a discrete Fourier transform along x
to the velocity field u(x, z, t) to obtain a space and time-dependent power density
spectrum E(k, z) = |û(k, z, t)2|, expressed in terms of wavenumber k. This operation
is performed for each acquisition timestep t. From this, variations of energy at one
spatial location for a given wavelength are extracted by fixing z and k.

Figure 2(a,b) shows example representations of E(k, z, t) at z/L = 4.91 for one
non-rotating and one rotating experiment, respectively. In each case, The time
variations of E(k, z, t) exhibit a sharp transition from an initially low energy state
at noise level to a high energy, turbulent state. For any mode k, we consider that
the front has arrived at height z at arrival time τ for the lowest value τ of t such
that E(k, z, t) exceeds a threshold value between these two states. For each set of
parameters (ReQ, Ek) and each value of k, the threshold value ET(k) is defined as
ET(k)= ((1/2H)

∫ H
0 E(k, z, t0) dz)+ ((1/2H)

∫ H
0 E(k, z, tend) dz), i.e. the average between

the state of residual noise at t < t0, and the state when turbulence has invaded the
full domain at t= tend. The time of arrival at a prescribed height z of a given modes
k is obtained as the time τ such that E(k, z, τ )= ET(k). The position of the front at
time τ of the physical domain containing energy in mode k is then simply tracked
through the location z(τ ) for which E(k, z, τ )= ET(k). Additionally, the evolution of
the spectral shape of the turbulent cloud is visualised by plotting contours of E(k, z, t)
as exemplified in figure 2(c,d) for the same two experimental cases.

Figure 2(a) shows that mode k3 and k6 display the same variations in energy at all
times, with both modes arriving at roughly the same time τ3U0/L≈ τ6U0/L≈215. This
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FIGURE 2. (a,b) Temporal energy profiles E(k, t) for modes k3L/2π≈ 1.0 and k6L/2π≈
2.0 at ReQ = 2500 and a height z/L = 4.91. (c,d) Contour plots of E(k, t), where solid
black lines highlight E(k, t) for modes k3 and k6. Experiments conducted at (a,c) Ek=∞
and (b,d) Ek = 4.25× 10−5. Arrival times (τ(k3), τ (k6)) are represented by dashed lines.
Green lines in (b) represent the theoretical arrival time for inertial waves of wavenumber
k3, k6 respectively. Similarly, the green line in (d) represent the theoretical contour of linear
inertial wave propagation across the entire spectrum.

is reflected in the near vertical contour in figure 2(c). Figure 2(b), however, shows that
mode k3 progresses substantially faster than mode k6 arriving at time τ3U0/L≈ 80 and
τ6U0/L ≈ 115, respectively. This difference in displacement velocity observed in the
rotating case translates into the slanted contour of figure 2(d).

3. Advection of the turbulent cloud with and without background rotation
3.1. Non-rotating jet experiments

We first analyse the motion of the turbulent front in the absence of a Coriolis
force (i.e. Ek = ∞), where no propagative behaviour is expected, to enable us to
quantify changes in behaviour when rotation is present. Under these circumstances
the only available mechanism is advection. Figure 3 shows the motion of the front
at ReQ = 6000 for the first six modes of the Discrete Fourier Transform with
wavenumber ki, where {ki}i=1..6 = 2πi/(N`). Here N is the number of PIV grid
points along the horizontal plane (N = 64) and N` is this width of the resolved
horizontal plane which is about 155 mm. For Ek = ∞ the motion of the turbulent
front is independent of k. The position of the turbulent front follows a scaling of
(z − z0)/L ≈ (0.351 ± 0.016)(τU0/L)0.482±0.011 across all scales of the flow. This
behaviour is observed for all ReQ explored. Here, the offset z0 is calculated so that
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FIGURE 3. Arrival time τ at height z for the first six modes ki at ReQ = 6000 in the
absence of rotation (Ek=∞). The dashed line is a fit of the experimental data for z> 0.8.

101 103100 102

101

100

0.377(†U0/L)0.483

600
1200
2500
4000
6000
12 000

ReQ

†U0/L

(z
(†

) -
 z

0)
/L

FIGURE 4. Arrival time τ at height z at Ek=∞ across all ReQ, where τ is taken as the
average across first six modes ki. The solid black line is a fit of data where z/L > 0.8.

the power law fit extends to τ = 0. Since the jet is turbulent, and that all scales
are displaced at the same velocity, the position of the turbulent front z̄(τ ) may be
calculated as the average over the first six modes of the discrete Fourier transform
used to calculate E(k, z, t). Figure 4 shows the variations of z̄(τ ) with ReQ in the
absence of Coriolis force. By non-dimensionalising τ by the characteristic injection
time L/U0 the data for z̄ collapse almost onto a single line for z̄/L> 0.8. This shows
that in the absence of rotation the non-dimensional arrival time is determined solely
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by the injection velocity U0 as

z̄(τ )− z̄0

L
= (0.377± 0.014)×

(
τU0

L

)0.483±0.010

, (3.1)

with corresponding velocity of the turbulent front as it progresses in the quiescent
fluid

U(z)
U0
= (6.41± 0.11)× 10−2

( z
L

)−1.070±0.027
. (3.2)

The z−1-profile closely resembles the axial velocity profile of a single steady turbulent
jet (Pope 2000, p. 100), most likely because of the nature of our forcing. Nevertheless,
the fact that the transient jet exhibits the same profile as the statistically steady jet,
indicates that the jet develops in such a way that the flow behind the front is in a
statistically steady state even though the front continues to progress. In other words,
the front ‘sweeps’ through the quiescent fluid, leaving a statistically steady turbulent
flow behind. This is confirmed by observing the shape of the turbulent region as seen
figure 5(a). This region only evolves by extending upwards, as the front progresses,
but not radially. This scenario is further supported as for the profile of a steady jet,
momentum conservation implies that the turbulent region should grow linearly with
the distance to the origin as a result. Figure 5(a) seems to confirm that the jet behind
the turbulent front satisfies this property.

Scaling (3.1) is near identical to the front displacement law found experimentally
by Dickinson & Long (1978) with an oscillating grid instead of jets. This law is itself
in agreement with the theoretical prediction of Long (1978), expressed dimensionally
as zdim(t)∼Kt1/2

dim, where constant K is expected to scale with the action generating the
turbulence. While an exact determination of the parameters governing the variation
of this quantity is not available in Dickinson & Long’s (1978) grid experiments,
K ' (0.43 ± 0.02)(U0L)1/2 in the present case of jet-driven turbulence. The
displacement offset z̄0dim lies in the range 0.5–2.0 cm, similar to the experiments of
Dickinson & Long (1978) and Hopfinger & Toly (1976), most likely on the grounds
that the small scale forcing from the grid and the jets lie in the same range of scales.
Additionally, z0 exhibits no variations of significance with either the wavelength
considered or ReQ (see figure 6, beyond fluctuations within the measurement error,
which we estimate to approximately 0.5 cm). These results confirm that the 4-jet
system generates a turbulent front with the same dynamics as the classic oscillating
grid. Moreover they establish the scale independence of the advective front motion.

Physically, z0 corresponds the virtual point from where turbulent advection starts.
A possible reason for z0 not to be zero is that the jet is not turbulent at τ = 0:
the first state of the development of the jet is laminar, followed by the development
of instabilities, which in turn lead to turbulence in a finite time. Hence the initial
advection may not follow the turbulent advection law. It follows that if the advected
position of the turbulent front is extrapolated back to τ = 0 according to that law, the
result may not coincide with the bottom of the tank but with an offset position z0.

3.2. Advection in the presence of background rotation
As mentioned in introduction, one of the main reasons for the choice the transient
jet configuration is that momentum transport can easily be tracked through the
displacement of the turbulent front. In order to differentiate advection from other
momentum transport mechanisms in the rotating jet, we first need to understand how
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FIGURE 5. Snapshots of the jet velocity field for ReQ = 2500 and (a) Ek = ∞ and
(b) Ek= 8.50× 10−5. The red dot shows the position za(t) of a numerical particle initially
positioned at z0/L= 2, where t= 0 coincides z/L= 2. The red line shows the position of
the front. The small difference in position between particle and front in (a) is artificial
and caused by differences in sensitivity in the methods used to measure their position. Red
arrows indicate the point of fluid injection/withdrawal. The supplementary movie (available
at https://doi.org/10.1017/jfm.2019.1051) movie1.avi shows the simultaneous evolution of
both jets represented here.

rotation affects advection itself. This is done by calculating the Lagrangian flow Φ

associated with the two-dimensional flow field obtained from the PIV measurements
for u(x, z, t). For a particle initially located at r0 = (x(t= 0), z(t= 0))= r(t= 0),

r(t)=Φ(r0, t)=
∫ t

0
u(r(t′), t′) dt′. (3.3)
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FIGURE 6. Offset z0 measured across ReQ and scales ki at Ek=∞.

For the purpose of determining the motion of the turbulent front, we shall consider
advection of a particle in the z direction only and calculate its virtual motion if it
were purely advected by the jet. Additionally, since we are interested in the movement
of the front and not of an actual particle, we shall consider the maximum advection
velocity across the x direction rather than the local one and define the purely advective
displacement as

za(t)=
∫ t

0
max

x
{u(x, za(t′), t′) · ez} dt′. (3.4)

It is noteworthy that the coordinate za(t) does not track an actual fluid particle.
Indeed, while fluid transport indeed occurs through advection, it does not occur
through propagation of inertial waves. Momentum transport, on the other hand, does
occur in both processes. More precisely, the turbulent front materialises the transport
of the fluctuating part of the momentum. The evolution of za(t) is represented in
two ways: figure 7(a) shows za(t) for ReQ = 1200 and varying Ek, while 7(b) shows
za(t) for Ek = 4.25 × 10−5 and varying ReQ. Here t = 0 is set to the time when
the particle is first displaced from its initial location at za(0)/L ≈ 2. Figure 5 show
snapshots of the jet velocity field with and without rotation, with the position za

represented by a single particle. In the absence of rotation the position of the particle
closely follows that of the turbulent front i.e. za(t) ≈ z(t). When rotation is present,
the advected particles initially follows the turbulent front but falls well behind after
this initial phase. The beginning of this second phase, which can be identified in
figure 7 as the point where the curves deviate from the Ek=∞ case, coincides with
the appearance of chevron patterns in the velocity field. These patterns are visible in
figure 5 for tU0/L > 127.4, and in the supplementary material (movie1.avi). They are
a signature of inertial waves being emitted by the jets. A combination of frequency
filtering and phase averaging (Cortet, Lamriben & Moisy 2010) revealed that the
jets emit inertial wave packets of all possible frequencies ω < 2Ω and propagation
angles θ = arccos(ek · ez) corresponding to the dispersion relation of inertial waves
(1.1a,b). The chevron patterns are a superposition of numerous waves, which allows
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FIGURE 7. Position za of a particle initially placed at z0/L = 2 as function of time.
(a) ReQ = 1200 with varying Ek. (b) Ek = 4.25× 10−5 with varying ReQ. Supplementary
material movie2.avi contains a video showing the evolution of the jet next to the evolution
of za(t) and z(t). Time t= 0 corresponds to the time when the particle is first displaced.

us to visualise the inertial waves. The details of this frequency analysis are reported
in Brons et al. (2019).

The slowdown of advection can be understood in terms of momentum conservation:
since part of the momentum is conveyed by inertial waves ahead of the ‘purely
advected’ position, less momentum is locally available for purely advective momentum
transport. The effect is all the more visible as rotation is important.

A third phase can be identified in figure 7 where the advection speeds up again,
i.e. less momentum than in the previous phase is being transported by inertial waves.
To understand why inertial waves suddenly lose their efficiency, we calculated the
velocity UR of a signal that would have been emitted at the onset of the jet, that
would have travelled all the way up to the upper boundary of the vessel and back
to the height zR where the transition takes place, at the time it takes place tR, i.e.
UR = (2H − zR − za(0))/tR. Figure 8(a) shows that UR, normalised by the linear
inertial wave velocity at scale L, 2ΩL, is nearly constant around 0.4 for all values
of Ek, be it for a very small dependence on ReQ, which may be attributed to weak
nonlinearities (see figure 8b). Hence, the onset of the third phase coincides with the
time at which inertial waves have reflected on the top wall and propagated back to
the point of transition. This suggests that the loss of momentum transport may result
from interferences between inertial waves propagating in opposite directions. Indeed,
if an upward and a downward inertial wave interfere, the upward transport of angular
momentum incurred as the upward wave progresses into the still fluid is partially
cancelled by the downward momentum transport associated with the reflected wave.
Interestingly, the wave velocity associated with the reflected wave is comparatively
slower than the fastest upward propagating wave. The reason may be that momentum
is not transported by a single wave but by a range of waves of different length
scales and velocities. For the momentum transport to drop significantly, a sufficiently
broad bandwidth of these waves must have reflected on the top wall, including slower
waves, associated with smaller length scales.

On the subject of wave interactions, it is noteworthy that while interactions between
incident waves and waves reflected on the walls of the vessels can sometimes be seen
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FIGURE 8. Reference velocity UR based on the point of onset of the third advection phase
normalised by the inertial wave velocity 2ΩL versus (a) Ek and (b) ReQ. Only experiments
where the onset of third phase was observed were considered.

in the patterns, these are indicative of linear waves interference, and not of nonlinear
wave interaction. As such, the intensity of the waves generated in our experimental
set-up may be too low for inertial waves to enter the sort of nonlinear regime observed
when intentionally focusing inertial waves in a region of interaction (Duran-Matute
et al. 2013).

Following the suppression of momentum transport by inertial waves, the purely
advected position resumes its progression at the non-rotating advective pace.
Remarkably, not only is the velocity but also the position za independent of the
rotation in this phase, as all positions follow a law:

za

L
= (0.48± 0.03)

(
tU0

L

)0.381±0.012

. (3.5)

The value of the exponent, lower than the 0.5 value expected for pure advection
may reflect that propagation by inertial waves is not entirely cancelled, as the
reflected waves are less intense than the incident ones. Importantly, the dynamics
observed in the second phase establishes that not only does rotation introduce an
additional transport mechanism with inertial waves, but advection itself is suppressed
as a result. Furthermore, the dynamics of the third phase suggests that momentum
transport by inertial waves may not be efficient in confined flows, in particular
quasi-two-dimensional ones, because waves reflecting on the boundaries.

4. Transition to inertial wave propagation
4.1. Spectral profile of the turbulent front

We now seek to characterise the motion of the actual turbulent front in cases where
the experiment is rotating, having confirmed that it cannot be explained by advection
alone. Figure 9 shows the spectral energy density contours of E(k, z, t) at various
heights z for ReQ= 1200 across all values of Ek explored. This figure is representative
of cases studied for all values of ReQ. At z/L= 0.94 there is no discernible difference
on the shape of contours between the cases with different values of Ek we investigated.
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FIGURE 9. Contour plots of E(k, t) across a number of heights z/L for ReQ = 1200 at
(a) Ek = 17.0 × 10−5, (b) Ek = 8.50 × 10−5 and (c) Ek = 4.25 × 10−5. The solid black
line represents the shape of the energy contours assuming propagation is fully driven by
inertial waves, i.e. τ = z/vg(k). Dashed black lines represent the position of a numerical
particle, based on (4.3).

Their near-vertical shape shows that all modes k arrive at the same time and thus all
modes progress at approximately the same velocity.

For a given value of Ek, the spectral contour of the turbulent front progressively
changes shape at greater distance z from the bottom wall, exhibiting three regions:
the lower wavenumbers arrive at a time indicating that they progress at the group
velocity of an inertial wave of the same wavenumber (marked by solid lines). At the
higher wavenumbers, by contrast, the front continues to exhibit the flat profile that
characterises advection by the jet. These two regions of the front are linked up by a
rather narrow transition region. As z increases, the low-wavelength region occupies
an increasingly large part of the spectrum, while the high-k advective region shrinks
and eventually disappears in all cases we investigated. This is consistent with the
morphology of the jet which spreads and therefore slows down away from the source,
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FIGURE 10. (a) Arrival time τ at height z for mode k1 at Ek = 4.25× 10−5 (triangles),
Ek = 8.50 × 10−5 (squares) and Ek = 1.70 × 10−4 (circles). The dashed line represents
(3.1). Coloured lines mark zT where the motion of the turbulent front has transitioned to
the propagative mechanism at Ek= 4.25× 10−5. (b) z and τ normalised by propagation of
inertial wave with wavenumber k1, represented by the dashed lines. Position z is shifted
by 1z = zIW(t) − z(t). Datasets have been further shifted down by a constant of 1 with
respect to one another for clarity.

implying that advection progressively weakens as z increases. For higher rotation
(lower values of Ek) pictured on the different columns of figure 9, the transition
between the propagative and the advective parts of the front becomes increasingly
sharp and displaces towards increasingly higher wavenumbers.

The overall picture is that structures of higher wavenumbers are advected by
the jet whereas at low wavenumbers, larger structures propagate with inertial
waves. As the Coriolis force that underpins inertial waves progressively overruns
inertial forces associated with advection (either as z increases or as Ek decreases),
low-wavenumber propagation invades an increasingly wider waveband at the expense
of high-wavenumber advection.

4.2. Transport of individual modes
A finer perspective on the mechanism at play can be gained by tracking individual
modes as they are transported along the jet. Considering individual modes offers
the opportunity to compare their propagation to the group velocity of inertial waves
of the same wavevector along their trajectory. Figure 10(a) shows such trajectories
z(t) for mode k1, for several values of ReQ at Ek = 4.25 × 10−5. The dashed line
shows the trajectory of the turbulent front when Ek = ∞, i.e. driven by advection
only. Trajectories at all ReQ initially follow the advection trajectory and separate at a
height which increases with ReQ. Past this point, mode k1 progresses faster than if it
was advected.

To highlight regions of the trajectory that are governed by inertial waves
propagation, the trajectories of mode k1 are plotted in figure 10(b) for several values
of Ek, using variables (z − 1z)/zIW and τ/τIW , where zIW(t) = 2Ωt/k, zIW(τIW) = H
and 1z is the offset between z and zIW , measured near the top of the tank. In these
new variables, displacements at the group velocity of mode k1 follow horizontal lines.
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FIGURE 11. Height zT beyond which the displacement of scales of wavenumber k1 are
driven by the propagative mechanism.

As expected, trajectories start away from the horizontal propagation lines in the initial
advective phase identified in figure 10(a), but gradually bend toward them to end up
following them closely. This shows that inertial wave propagation eventually takes
over advection. For ReQ = 12 000 and Ek = 17.0 × 10−5 trajectories barely meet the
theoretical propagation line, indicating that propagation never fully takes over within
our experimentally accessible parameters. Overall convergence is all the faster as ReQ
and Ek are low, as inertial forces delay the transition from advection to propagation,
while rotation accelerates it.

To quantify the transition from the advective to the propagative mechanism, we
define the point of transition as zT = |z/(zIW + 1z) − 1| 6 β, where β is a chosen
threshold value. The value of β has to be chosen as low as possible; however, as β
is lowered, the results become increasingly susceptible to experimental noise. To keep
noise to a low level, we chose β = 0.2 and verified that the results were independent
of the exact value we chose. Figure 11 shows zT for k1 across all ReQ and Ek explored,
with the exception of those where the transition was not fully achieved (such as for
ReQ = 12 000 and Ek = 17.0 × 10−5). Values of zT mostly obey a scaling dependent
on the Rossby number only:

zT/L' (8.96± 0.74)Ro1/2
Q . (4.1)

A few points depart from this law for RoQ > 3 × 10−1. We could verify that this
behaviour is an artefact of the method used to determine zT , as lowering the value of
β shifts this point to higher values of RoQ and zT/L. Scaling (4.1) can be understood
by considering that at the transition between the two phases, the length of the jet zT
has reached a point where Coriolis forces are sufficient to balance inertia. Considering
zT as the largest length scale, in dimensional terms, it must satisfy U(zT)/zT ∼ 2Ω .
In the absence of rotation effects, the jet develops as U(z)/U0 ∼ d/z (Pope 2000,
p. 100), so zT must scale as zT ∼ (U0d/2Ω)1/2, or equivalently, zT/L ∼ Ro1/2

Q , as in
(4.1). A similar criterion was put forward by Burmann & Noir (2018) to explain
the breakdown of inertial wave propagation in a spun up cylinder where the waves
were emitted by a topography of the bottom wall. When turbulence is forced by
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an oscillating grid, Dickinson & Long (1983) similarly observe that the progression
of the front is not affected by rotation in the early stages up to a critical distance,
which these authors express (in our notations) as zT ' 0.36( f S2/Ω)1/2, in terms
of the frequency f and stroke S of the grid. As such, f S is equivalent to forcing
velocity U0 and the scaling for zT associated with the oscillating grid can be rewritten
zT/S ' 0.36Ro1/2

Q . It is similar to (4.1), even though reference length scales S and
L are not necessarily directly comparable and the upward motion imprinted by the
jet may contribute to stretch the patch upwards. It is noteworthy that the transition
point for mode k1 coincides with the transition point for the whole front. Indeed,
wavenumber k1 corresponds to the largest length scale, with the fastest inertial wave
within the set of wavelengths captured within the visualisation area. The fact that
no inertial wave travels faster than that of scale k1 confirms that W ' 3L captures
the largest scales of the turbulent patch. As such the visualisation area we chose
is suitable to capture the propagative processes responsible for momentum transport.
For the same reason, the point zT also corresponds to the point of transition where
advection itself starts being suppressed by the effects of rotation (see § 3).

4.3. Scaling for the transition between advection and propagation
The example of k1 illustrates that fluctuations are first advected in the low part of the
jet, as advection dominates near the injection point. As they progress through the fluid
domain, advection subsides as the jet spreads. At the same time, the mean centreline
velocity decreases and propagation by inertial waves takes over as the main transport
mechanism. The last step is to understand how this mechanism expresses at other
wavelengths k> k1. To this end, we first note from figures 10 and 11 that all curves for
the displacement of fluctuations of wavenumber k1 gradually transition away from the
pure advection trajectory and converge to the propagative trajectory at z= zT . At this
point their displacement velocity matches to the propagation velocity of linear inertial
waves. Expressing this property for fluctuations of wavelength k yields the condition
(here dimensionally written)

U(z)' Vg(k)=
2Ω
k
. (4.2)

In other words, the transition from advection to propagation for fluctuations
of wavelength k takes place when the local, scale-dependent Rossby number
Ro(k, z) = kU(z)/2Ω reaches unity. Another way to express this is that fluctuations
are advected at the fastest of the local advection velocity and the group velocity of
inertial waves.

To test this criterion on the entire spectrum, we calculate the arrival time of
fluctuations for k ∈ [0, 40], for the values of z displayed on figure 9, using the
modified expression of the Lagrangian flow:

z(k, t)=
∫ t

0
max{max

x
{u(x, z(t′), t′) · ez}, vg(k)} dt′. (4.3)

From this expression, we extract the arrival time τ(z, k) of fluctuations with
wavenumber k at height z, which forms the spectral shape of the turbulent front.
The results are reported on figure 9, which is representative of all other values of
ReQ we considered. In all cases, the motion of a numerical particle subject to (4.3)
matches the actual contours of E(k, z, t) closely for z/L > 1.5. It indeed captures all
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three regions identified in § 4.1. This indicates in particular, that in the intermediate
region, the arrival time results from an initial advective phase of comparable duration
to a second propagative phase, so that the arrival time falls somewhere between a
pure advective and a pure propagative time.

5. Conclusion and discussion

We have analysed the scale-by-scale transport mechanisms in rotating turbulence.
The results were obtained by examining the motion of the turbulent front generated
during the transient flow of four jets penetrating into or extracted from a rotating
vessel of quiescent fluid, and directed along the axis of rotation. In the absence
of rotation, the distance from the jet source covered by disturbances evolves (in
dimensional variables) as (z(t)− z0)/L' 0.377(U0t/L)0.483 (U0 and L are the jet inlet
velocity and the distance between the jets, respectively). This law is in good agreement
with Long’s (1978) law for the global displacement of a turbulent front, with an
offset z0 ' 0.5–2.0 cm, incidentally consistent with the values experimentally found
by Dickinson & Long (1978) in experiments with an oscillating grid. Additionally,
we established that this law is valid at all scales, regardless of their transversal
wavenumber k, and of the Reynolds number based on the inlet jet velocity ReQ. In
the presence of rotation, the turbulent front is advected exactly as in the non-rotating
case up to a distance zT/L ' 8.96Ro1/2

Q , where the Coriolis force becomes larger
than inertia. Past this point, the development of the jet is dominated by the faster
propagation of inertial waves. However, since momentum is redistributed over a larger
volume by inertial waves, it is locally weaker. As a consequence, advection itself is
suppressed by rotation.

In the last phase of the jet’s evolution, inertial waves reflected on the vessel’s
wall of the fluid vessel interfered with inertial waves travelling up, resulting in a
suppression of the total transport by inertial waves. This suggests that in confined
flows, inertial waves may not be able to transport momentum efficiently. This is
particularly relevant in the quasi-two-dimensional limit, where our recent experiments
showed that they were indeed not driving the dynamics (Brons et al. 2019).

The scale-by-scale analysis of the propagation enabled us to answer the questions
set out in the introduction:

(i) A clear separation exists between scales advected by inertial waves and by the
local mean flow.

(ii) The border between the two regimes is set by the Rossby number based on the
transversal wavelength of the scale considered and the local large scale velocity
as Rok(k, x)= kU(x)/2Ω = 1. In that sense, this criterion is local both in space,
time and scale.

The implication of this phenomenology is that the transport of turbulent fluctuations
as turbulence progresses into the quiescent fluid follows two phases: one purely
controlled by local advection for Rok(k, z) > 1 and one purely controlled by the
propagation of inertial waves for Rok(k, z) < 1. The spectral locality of the transition
complements the recent evidence for its spatial locality found by McDermott &
Davidson (2019).

In other turbulent flows with more complex flow topology, the same phenomenology
would imply that structures may be alternately convected by larger structures and
propagated by inertial waves. However, it is worth pointing out that the fact that
advection dominates at a given scale does not mean that inertial waves do not
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exist at that scale. Just like the transversal sweeping of inertial waves in nearly
two-dimensional flows (Campagne et al. 2015). Axial advection of inertial waves
could take place in our set-up, but would be shadowed if advection was the fastest
mechanism. More generally, our result does not exclude the possibility that inertial
waves at small scales may be axially or laterally convected by faster advection
too. These remarks apply in particular to non-transient turbulent flows. Indeed, an
important feature of the transient problem studied in this paper is the fact that
inertial waves are emitted by random fluctuations in a turbulent region where rotation
does not dominate. A similar phenomenology may exist in turbulent flows, even
when the macroscopic Rossby number remains well below unity, provided random
fluctuations also exist at a sufficiently small scale to escape the influence of rotation.
Such fluctuations may act as random sources of inertial waves competing with
local advection to transport momentum. Unlike in transient problems where the
displacement of the turbulent front offers a convenient way to track momentum
transport, however, the two mechanisms are more difficult to disentangle in statistically
steady turbulence, especially if unlike for the jet, momentum is not advected in a
preferred direction.

Finally, while the mechanisms found here do not exclude the possibility that
nonlinear interactions may participate in the build-up of large quasi-two-dimensional
structures, they illustrate that linear inertial waves govern transport mechanisms at the
large scales, as shown by Davidson et al. (2006), but they also dominate down to the
level of smaller scales as long as the local balance of Coriolis force and advection
favours the former. More generally, it is not unusual that turbulence dynamics be
controlled at the scale level by linear processes, as illustrated in magnetohydrodynamic
turbulence at low magnetic Reynolds number, where the anisotropy of individual
scales is controlled by the balance between inertia and momentum diffusion by the
Lorentz force (Sommeria & Moreau 1982; Pothérat & Klein 2014; Baker et al. 2018).
Having said this, linear waves themselves can also interact nonlinearly and lead to
turbulence when they are sufficiently energised, as demonstrated with inertial waves
by Duran-Matute et al. (2013).
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