THE WEAK-STAR CLOSURE OF THE UNIT BALL IN A HYPERPLANE

by G. J. O. JAMESON
(Received 25th March 1971)

1. Introduction

Let X be a normed linear space. We regard X as a subspace of its bidual $X^{* *}$. Polars will always be evaluated in the pair ($X^{* *}, X^{*}$). We denote the closed unit ball in X by U, so that U^{0}, U^{00} are the closed unit balls in X^{*}, $X^{* *}$ respectively. The weak topology induced by X on X^{*} (the "weak-star" topology) will be denoted by $\sigma(X)$, and cl() will denote $\sigma(X)$-closure.

Let ϕ be an element of $X^{* *}$ that is not in X, and let K be the kernel of ϕ. Then K is, of course, $\sigma(X)$-dense in X^{*}. When X is complete, the KreinSmul'yan theorem tells us that $K \cap U^{0}$ is not $\sigma(X)$-closed, but it gives no further information about the set $\operatorname{cl}\left(K \cap U^{0}\right)$. The purpose of this note is to determine $\mathrm{cl}\left(K \cap U^{0}\right)$ as accurately as possible (in doing so, we shall obtain incidentally a very simple proof of the Krein-Šmul'yan theorem for hyperplanes). The radius of the largest ball contained in $\operatorname{cl}\left(K \cap U^{0}\right)$ is known to be

$$
\inf \{\|x-\lambda \phi\|: x \in X,\|x\|=1, \lambda \text { scalar }\}
$$

((1), ch. IV, § 5, ex. 14). This last statement applies, in fact, when K is any $\sigma(X)$-dense linear subspace of X^{*} (with elements of K^{0} replacing the multiples $\lambda \phi$), and is generalised to arbitrary linear subspaces in (3). However, $\operatorname{cl}\left(K \cap U^{0}\right)$ is clearly not just a multiple of U^{0}. Denoting by $d(\phi, X)$ the norm-distance from ϕ to X, we shall prove that

$$
A(\phi) \subseteq \operatorname{cl}\left(K \cap U^{0}\right) \subseteq B(\phi)
$$

where

$$
\begin{aligned}
& A(\phi)=\left\{f \in X^{*}:\|f\|+\frac{|\langle\phi, f\rangle|}{d(\phi, X)} \leqq 1\right\} \\
& B(\phi)=\left\{f \in U^{0}:|\langle\phi, f\rangle| \leqq 2 d(\phi, X)\right\} .
\end{aligned}
$$

In the particular case $X=c_{0}$, we show that $\mathrm{cl}\left(K \cap U^{0}\right)$ is always $A(\phi)$. In general, however, $\operatorname{cl}\left(K \cap U^{0}\right)$ can be either $A(\phi), B(\phi)$ or something between the two.

The appearance of the ratio $|\langle\phi, f\rangle| / d(\phi, X)$ in the description is not as unreasonable as may at first seem, as the following considerations suggest:
(1) One would expect f to have a better chance of being in $\operatorname{cl}\left(K \cap U^{0}\right)$ if $|\langle\phi, f\rangle|$ is small.
(2) K is unchanged if ϕ is multiplied by a non-zero scalar. Hence the factor $|\langle\phi, f\rangle|$ will need to be balanced by something else that is multiplied by $|\lambda|$ when ϕ is replaced by $\lambda \phi$.
(3) If $d(\phi, X)$ is small, then ϕ is not far from being $\sigma(X)$-continuous. Consequently, one might expect $\operatorname{cl}\left(K \cap U^{0}\right)$ to be small.

The author is indebted to the referee for suggesting a better proof of Theorem 1, and for the comment in Note 3 to Theorem 1.

2. The theorems

Theorem 1. If $d(\phi, X)>0$, then $\operatorname{cl}\left(K \cap U^{0}\right)$ contains $A(\phi)$.
Proof. For the moment, let K be any linear subspace of X^{*}. It follows at once from the Hahn-Banach theorem, by extending the restriction to K, that

$$
\left(K \cap U^{0}\right)^{0}=K^{0}+U^{00}
$$

Hence $\operatorname{cl}\left(K \cap U^{0}\right)$ is the polar (in $\left.X^{*}\right)$ of $X \cap\left(K^{0}+U^{00}\right)$. If K is now the kernel of ϕ, then K^{0} is the linear span of ϕ. The result follows if we show that, for any f in X^{*},

$$
\sup \left\{|\langle x, f\rangle|: x \in X \cap\left(K^{0}+U^{o 0}\right)\right\} \leqq\|f\|+\frac{|\langle\phi, f\rangle|}{d(\phi, X)}
$$

Let x be in $X \cap\left(K^{0}+U^{00}\right)$. Then there exist ψ in U^{00} and a scalar λ such that $x=\lambda \phi+\psi$. Then $\|\lambda \phi-x\| \leqq 1$, so $|\lambda| \leqq 1 / d(\phi, X)$, and

$$
|\langle x, f\rangle|=|\langle\lambda \phi+\psi, f\rangle| \leqq|\lambda| \cdot|\langle\phi, f\rangle|+\|f\|
$$

giving the required inequality.

Notes

(1) In particular, if $d(\phi, X)>0$, then $K \cap U^{0}$ is not $\sigma(X)$-closed. Hence we have proved the Krein-Šmul'yan theorem for hyperplanes: if X is complete and $K \cap U^{0}$ is $\sigma(X)$-closed, then K is $\sigma(X)$-closed.
(2) Similar reasoning can be applied to the common kernel of a finite number of functionals. Let $\phi_{1}, \ldots, \phi_{m}$ be elements of $X^{* *}$ such that

$$
\inf \left\{\left\|\sum_{i=1}^{m} \lambda_{i} \phi_{i}-x\right\|: x \in X, \sum_{i=1}^{m}\left|\lambda_{i}\right|=1\right\}=r>0
$$

and let $K=\bigcap_{i=1}^{m} \operatorname{ker} \phi_{i}$. Then $\operatorname{cl}\left(K \cap U^{0}\right)$ contains

$$
\left\{f \in X^{*}:\|f\|+\frac{1}{r} \max \left|\left\langle\phi_{i}, f\right\rangle\right| \leqq 1\right\}
$$

For if L is the linear span of $\phi_{1}, \ldots, \phi_{m}$, and x is in $X \cap\left(L+U^{00}\right)$, then it is easily seen that

$$
|\langle x, f\rangle| \leqq\|f\|+\frac{1}{r} \max \left|\left\langle\phi_{i}, f\right\rangle\right| .
$$

(3) Let K be a linear subspace of X^{*}. Using the weak compactness of U^{00}, it is easy to show that

$$
X \cap\left(K^{0}+U^{00}\right)=\left\{x \in X: d\left(x, K^{0}\right) \leqq 1\right\}
$$

Hence $\operatorname{cl}\left(K \cap U^{0}\right)$ is precisely the dual unit ball when X is given the seminorm p, where $p(x)=d\left(x, K^{0}\right)$. This, of course, is the seminorm induced on X by the quotient norm in X / K^{0}. It is a norm when K is $\sigma(X)$-dense in X^{*}.
(4) The author's original proof of Theorem 1 was similar to the proof of the related result Corollary II, 4, 3 in (2). The proof given above was suggested by the referee.

Theorem 2. $\mathrm{cl}\left(K \cap U^{0}\right)$ is contained in $B(\phi)$.
Proof. $\mathrm{cl}\left(K \cap U^{0}\right)$ is contained in U^{0}, since U^{0} is $\sigma(X)$-closed. Write $d(\phi, X)=r$. Suppose that $f \in U^{0}$ and $|\langle\phi, f\rangle|>2 r$: let $|\langle\phi, f\rangle|=2 r+3 \alpha$. Take $x_{0} \in X$ such that $\left\|\phi-x_{0}\right\|<r+\alpha$. Then $\left|\left\langle\phi-x_{0}, f\right\rangle\right|<r+\alpha$, since $\|f\| \leqq 1$, so $\left|\left\langle x_{0}, f\right\rangle\right|>r+2 \alpha$. For g in $U^{0},\left|\left\langle\phi-x_{0}, g\right\rangle\right|<r+\alpha$, so if

$$
\left|\left\langle x_{0}, g\right\rangle\right|>r+\alpha,
$$

then $g \notin K$. Hence $\left\{g \in X^{*}:\left|\left\langle x_{0}, g-f\right\rangle\right| \leqq \alpha\right\}$ is disjoint from $K \cap U^{0}$.
Corollary. If $d(\phi, X)=0$, then $K \cap U^{0}$ is $\sigma(X)$-closed.
Hence if X is an incomplete normed space, and ϕ is an element of $X^{* *} \backslash X$ with $d(\phi, X)=0$, then $K \cap U^{0}$ is $\sigma(X)$-closed, though K is $\sigma(X)$-dense in X^{*} (a fact noted by Kerr (4)).

The set $B(\phi)$ is not necessarily $\sigma(X)$-closed (cf. examples below).

3. Two particular cases

(i) $X=c_{0}$. We show that, in this case, $\operatorname{cl}\left(K \cap U^{0}\right)$ is always equal to $A(\phi)$.

Identify c_{0}^{*} with l_{1} and $c_{0}^{* *}$ with m. We use the notation $x(n)$ for the nth term of a sequence x; we continue to use the notation \langle,$\rangle for the evaluation$ of functionals. It is sufficient to consider $\phi \in m$ with $d\left(\phi, c_{0}\right)=1$. Take an element f of l_{1} that is not in $A(\phi)$: then

$$
\|f\|+|\langle\phi, f\rangle|=1+3 \alpha
$$

for some $\alpha>0$. Since $d\left(\phi, c_{0}\right)=1$, there exists N such that $|\phi(i)| \leqq 1+\alpha$ for all $i>N$. Choose N so that, also,

$$
\sum_{i=1}^{N}|f(i)|+\left|\sum_{i=1}^{N} \phi(i) f(i)\right|>1+2 \alpha
$$

There is a $\sigma\left(c_{0}\right)$-neighbourhood V of f such that, for $g \in V$,

$$
\begin{equation*}
\sum_{i=1}^{N}|g(i)|+\left|\sum_{i=1}^{N} \phi(i) g(i)\right|>1+\alpha \tag{1}
\end{equation*}
$$

If $g \in V$ and $\langle\phi, g\rangle=0$, then

$$
\left|\sum_{N+1}^{\infty} \phi(i) g(i)\right|=\left|\sum_{1}^{N} \phi(i) g(i)\right|
$$

But

$$
\begin{equation*}
\left|\sum_{N+1}^{\infty} \phi(i) g(i)\right| \leqq(1+\alpha) \sum_{N+1}^{\infty}|g(i)| . \tag{2}
\end{equation*}
$$

By (1) and (2),

$$
\|g\|=\sum_{1}^{N}|g(i)|+\sum_{N+1}^{\infty}|g(i)|>\frac{1+\alpha}{1+\alpha}=1
$$

Hence V does not meet $K \cap U^{0}$.
An example is given in (1) (loc. cit.) of a $\sigma\left(c_{0}\right)$-dense linear subspace E of l_{1} (necessarily not a hyperplane) such that $\operatorname{cl}\left(E \cap U^{0}\right)$ contains no multiple of U^{0}.
(ii) $X=l_{1}$. We use the following (more or less standard) notation: e denotes the sequence having 1 in each place, and e_{n} denotes the sequence having 1 in place n and 0 elsewhere.

Let L be a linear functional on m such that $L\left(c_{0}\right)=\{0\}, L(e)=1$ and $\|L\|=1$ (i.e. an "extended limit"; the existence of such functionals is guaranteed by the Hahn-Banach theorem). We show that $d\left(L, l_{1}\right)=1$. Choose $x \in l_{1}$. For any $\varepsilon>0$, there exists N such that

$$
\sum_{N+1}^{\infty}|x(n)| \leqq \varepsilon .
$$

Let $f_{N}=e-\left(e_{1}+\ldots+e_{N}\right) \in m$. Then $\left\|f_{N}\right\|=1, L\left(f_{N}\right)=1$, and $\left|\left\langle x, f_{N}\right\rangle\right| \leqq \varepsilon$. Hence $\|L-x\| \geqq 1-\varepsilon$.

First let $\phi=L$. Then K contains c_{0}, from which it follows that

$$
\operatorname{cl}\left(K \cap U^{0}\right)=U^{0}
$$

(in general, U is $\sigma\left(X^{*}\right)$-dense in U^{00}). In this case, $\mathrm{cl}\left(K \cap U^{0}\right)$ is $B(\phi)$.
Now take $k>1$, and let $\phi=L+k e_{1}$. Then $d\left(\phi, l_{1}\right)=1$. We show that:
(a) There exists f_{0} in $\operatorname{cl}\left(K \cap U^{0}\right)$ with $\left\langle\phi, f_{0}\right\rangle=2$.
(b) Given $\varepsilon>0$, there exists $f_{\varepsilon} \notin \mathrm{cl}\left(K \cap U^{0}\right)$ with $\left|\left\langle\phi, f_{\varepsilon}\right\rangle\right| \leqq \varepsilon$ and $\left\|f_{\varepsilon}\right\|=1$.

Roughly speaking, this means that $\mathrm{cl}\left(K \cap U^{0}\right)$ goes out as far as $B(\phi)$ in some directions, and only as far as $A(\phi)$ in others.
(a) Let

$$
f_{0}=e-\left(1-\frac{1}{k}\right) e_{1}=\left(\frac{1}{k}, 1,1, \ldots\right)
$$

Then $\left\langle\phi, f_{0}\right\rangle=2$, and f_{0} is the $\sigma\left(l_{1}\right)$-limit of the sequence $\left(f_{n}\right)$, where

$$
f_{n}=\left(\frac{1}{k}, 1, \ldots, 1,-1,-1, \ldots\right)=-e+\left(1+\frac{1}{k}\right) e_{1}+\sum_{j=2}^{n} 2 e_{j}
$$

WEAK-STAR CLOSURE OF UNIT BALL IN A HYPERPLANE 11 Each f_{n} is in $K \cap U^{0}$.
(b) We may assume that $\varepsilon \leqq k-1$. Let

$$
f_{\varepsilon}=\left(\frac{1+\varepsilon}{k},-1,-1, \ldots\right)=\left[1+\frac{1}{k}(1+\varepsilon)\right] e_{1}-e
$$

Then $\left\langle\phi, f_{\varepsilon}\right\rangle=\varepsilon$. If $\|g\| \leqq 1$ and $\left.g(1)\right\rangle \frac{1}{k}\left(1+\frac{\varepsilon}{2}\right)$, then $\left\langle k e_{1}, g\right\rangle>1+\frac{\varepsilon}{2}$, while $|\langle L, g\rangle| \leqq 1$, so $\langle\phi, g\rangle \neq 0$. Hence $f_{e} \notin \operatorname{cl}\left(K \cap U^{0}\right)$.

REFERENCES

(1) N. Bourbaki, Espaces Vectoriels Topologiques, chap. III, IV, V (Paris, 1955).
(2) M. M. Day, Normed Linear Spaces (Berlin, 1962).
(3) G. J. O. Jameson, The duality of pairs of wedges, Proc. London Math. Soc. (3) 24 (1972), 531-547.
(4) D. R. KERR, Seminorm-dual subspaces of the algebraic dual of a linear space, Math. Z. 104 (1968), 222-225.

University of Warwick
Coventry

