THE WEAK-STAR CLOSURE OF THE UNIT BALL IN A HYPERPLANE

by G. J. O. JAMESON (Received 25th March 1971)

1. Introduction

Let X be a normed linear space. We regard X as a subspace of its bidual X^{**} . Polars will always be evaluated in the pair (X^{**}, X^*) . We denote the closed unit ball in X by U, so that U^0 , U^{00} are the closed unit balls in X^* , X^{**} respectively. The weak topology induced by X on X^* (the "weak-star" topology) will be denoted by $\sigma(X)$, and cl() will denote $\sigma(X)$ -closure.

Let ϕ be an element of X^{**} that is not in X, and let K be the kernel of ϕ . Then K is, of course, $\sigma(X)$ -dense in X^* . When X is complete, the Krein-Šmul'yan theorem tells us that $K \cap U^0$ is not $\sigma(X)$ -closed, but it gives no further information about the set $cl(K \cap U^0)$. The purpose of this note is to determine $cl(K \cap U^0)$ as accurately as possible (in doing so, we shall obtain incidentally a very simple proof of the Krein-Šmul'yan theorem for hyperplanes). The radius of the largest ball contained in $cl(K \cap U^0)$ is known to be

$$\inf \{ \| x - \lambda \phi \| \colon x \in X, \| x \| = 1, \lambda \text{ scalar} \}$$

((1), ch. IV, § 5, ex. 14). This last statement applies, in fact, when K is any $\sigma(X)$ -dense linear subspace of X^* (with elements of K^0 replacing the multiples $\lambda\phi$), and is generalised to arbitrary linear subspaces in (3). However, $cl(K \cap U^0)$ is clearly not just a multiple of U^0 . Denoting by $d(\phi, X)$ the norm-distance from ϕ to X, we shall prove that

$$A(\phi) \subseteq \operatorname{cl}(K \cap U^0) \subseteq B(\phi),$$

where

$$A(\phi) = \left\{ f \in X^* \colon \left\| f \right\| + \frac{\left| \langle \phi, f \rangle \right|}{d(\phi, X)} \le 1 \right\},\$$

$$B(\phi) = \left\{ f \in U^0 \colon \left| \langle \phi, f \rangle \right| \le 2d(\phi, X) \right\}.$$

In the particular case $X = c_0$, we show that $cl(K \cap U^0)$ is always $A(\phi)$. In general, however, $cl(K \cap U^0)$ can be either $A(\phi)$, $B(\phi)$ or something between the two.

The appearance of the ratio $|\langle \phi, f \rangle|/d(\phi, X)$ in the description is not as unreasonable as may at first seem, as the following considerations suggest:

(1) One would expect f to have a better chance of being in $cl(K \cap U^0)$ if $|\langle \phi, f \rangle|$ is small.

(2) K is unchanged if ϕ is multiplied by a non-zero scalar. Hence the factor $|\langle \phi, f \rangle|$ will need to be balanced by something else that is multiplied by $|\lambda|$ when ϕ is replaced by $\lambda\phi$.

(3) If $d(\phi, X)$ is small, then ϕ is not far from being $\sigma(X)$ -continuous. Consequently, one might expect $cl(K \cap U^0)$ to be small.

The author is indebted to the referee for suggesting a better proof of Theorem 1, and for the comment in Note 3 to Theorem 1.

2. The theorems

Theorem 1. If $d(\phi, X) > 0$, then $cl(K \cap U^0)$ contains $A(\phi)$.

Proof. For the moment, let K be any linear subspace of X^* . It follows at once from the Hahn-Banach theorem, by extending the restriction to K, that

$$(K \cap U^0)^0 = K^0 + U^{00}.$$

Hence $cl(K \cap U^0)$ is the polar (in X^*) of $X \cap (K^0 + U^{00})$. If K is now the kernel of ϕ , then K^0 is the linear span of ϕ . The result follows if we show that, for any f in X^* ,

$$\sup \{ |\langle x, f \rangle| \colon x \in X \cap (K^0 + U^{0,0}) \} \leq ||f|| + \frac{|\langle \phi, f \rangle|}{d(\phi, X)}$$

Let x be in $X \cap (K^0 + U^{00})$. Then there exist ψ in U^{00} and a scalar λ such that $x = \lambda \phi + \psi$. Then $\|\lambda \phi - x\| \leq 1$, so $|\lambda| \leq 1/d(\phi, X)$, and

$$|\langle x, f \rangle| = |\langle \lambda \phi + \psi, f \rangle| \le |\lambda| \cdot |\langle \phi, f \rangle| + ||f||,$$

giving the required inequality.

Notes

(1) In particular, if $d(\phi, X) > 0$, then $K \cap U^0$ is not $\sigma(X)$ -closed. Hence we have proved the Krein-Šmul'yan theorem for hyperplanes: if X is complete and $K \cap U^0$ is $\sigma(X)$ -closed, then K is $\sigma(X)$ -closed.

(2) Similar reasoning can be applied to the common kernel of a finite number of functionals. Let $\phi_1, ..., \phi_m$ be elements of X^{**} such that

$$\inf \left\{ \left\| \sum_{i=1}^{m} \lambda_i \phi_i - x \right\| : x \in X, \sum_{i=1}^{m} |\lambda_i| = 1 \right\} = r > 0,$$

and let $K = \bigcap_{i=1}^{m} \ker \phi_i$. Then $\operatorname{cl}(K \cap U^0)$ contains
 $\left\{ f \in X^* : \|f\| + \frac{1}{r} \max |\langle \phi_i, f \rangle| \le 1 \right\}.$

For if L is the linear span of $\phi_1, ..., \phi_m$, and x is in $X \cap (L+U^{00})$, then it is easily seen that

$$|\langle x, f \rangle| \leq ||f|| + \frac{1}{r} \max |\langle \phi_i, f \rangle|.$$

(3) Let K be a linear subspace of X^* . Using the weak compactness of U^{00} , it is easy to show that

$$X \cap (K^{0} + U^{00}) = \{ x \in X : d(x, K^{0}) \leq 1 \}.$$

Hence $cl(K \cap U^0)$ is precisely the dual unit ball when X is given the seminorm p, where $p(x) = d(x, K^0)$. This, of course, is the seminorm induced on X by the quotient norm in X/K^0 . It is a norm when K is $\sigma(X)$ -dense in X^* .

(4) The author's original proof of Theorem 1 was similar to the proof of the related result Corollary II, 4, 3 in (2). The proof given above was suggested by the referee.

Theorem 2. $cl(K \cap U^0)$ is contained in $B(\phi)$.

Proof. $cl(K \cap U^0)$ is contained in U^0 , since U^0 is $\sigma(X)$ -closed. Write $d(\phi, X) = r$. Suppose that $f \in U^0$ and $|\langle \phi, f \rangle| > 2r$: let $|\langle \phi, f \rangle| = 2r + 3\alpha$. Take $x_0 \in X$ such that $|| \phi - x_0 || < r + \alpha$. Then $|\langle \phi - x_0, f \rangle| < r + \alpha$, since $|| f || \le 1$, so $|\langle x_0, f \rangle| > r + 2\alpha$. For g in U^0 , $|\langle \phi - x_0, g \rangle| < r + \alpha$, so if

$$|\langle x_0, g \rangle| > r + \alpha,$$

then $g \notin K$. Hence $\{g \in X^* : |\langle x_0, g - f \rangle| \leq \alpha\}$ is disjoint from $K \cap U^0$.

Corollary. If $d(\phi, X) = 0$, then $K \cap U^0$ is $\sigma(X)$ -closed.

Hence if X is an incomplete normed space, and ϕ is an element of $X^{**} X$ with $d(\phi, X) = 0$, then $K \cap U^0$ is $\sigma(X)$ -closed, though K is $\sigma(X)$ -dense in X^* (a fact noted by Kerr (4)).

The set $B(\phi)$ is not necessarily $\sigma(X)$ -closed (cf. examples below).

3. Two particular cases

(i) $X = c_0$. We show that, in this case, $cl(K \cap U^0)$ is always equal to $A(\phi)$. Identify c_0^* with l_1 and c_0^{**} with m. We use the notation x(n) for the *n*th term of a sequence x; we continue to use the notation \langle , \rangle for the evaluation of functionals. It is sufficient to consider $\phi \in m$ with $d(\phi, c_0) = 1$. Take an element f of l_1 that is not in $A(\phi)$: then

$$||f|| + |\langle \phi, f \rangle| = 1 + 3\alpha$$

for some $\alpha > 0$. Since $d(\phi, c_0) = 1$, there exists N such that $|\phi(i)| \leq 1 + \alpha$ for all i > N. Choose N so that, also,

$$\sum_{i=1}^{N} \left| f(i) \right| + \left| \sum_{i=1}^{N} \phi(i) f(i) \right| > 1 + 2\alpha.$$

There is a $\sigma(c_0)$ -neighbourhood V of f such that, for $g \in V$,

$$\sum_{i=1}^{N} |g(i)| + \left| \sum_{i=1}^{N} \phi(i)g(i) \right| > 1 + \alpha.$$
 (1)

If $g \in V$ and $\langle \phi, g \rangle = 0$, then

$$\left|\sum_{N+1}^{\infty} \phi(i)g(i)\right| = \left|\sum_{1}^{N} \phi(i)g(i)\right|$$

But

$$\left|\sum_{N+1}^{\infty} \phi(i)g(i)\right| \leq (1+\alpha) \sum_{N+1}^{\infty} |g(i)|.$$
⁽²⁾

By (1) and (2),

$$||g|| = \sum_{1}^{N} |g(i)| + \sum_{N+1}^{\infty} |g(i)| > \frac{1+\alpha}{1+\alpha} = 1.$$

Hence V does not meet $K \cap U^0$.

An example is given in (1) (loc. cit.) of a $\sigma(c_0)$ -dense linear subspace E of l_1 (necessarily not a hyperplane) such that $cl(E \cap U^0)$ contains no multiple of U^0 .

(ii) $X = l_1$. We use the following (more or less standard) notation: *e* denotes the sequence having 1 in each place, and e_n denotes the sequence having 1 in place *n* and 0 elsewhere.

Let L be a linear functional on m such that $L(c_0) = \{0\}$, L(e) = 1 and ||L|| = 1 (i.e. an "extended limit"; the existence of such functionals is guaranteed by the Hahn-Banach theorem). We show that $d(L, l_1) = 1$. Choose $x \in l_1$. For any $\varepsilon > 0$, there exists N such that

$$\sum_{N+1}^{\infty} |x(n)| \leq \varepsilon.$$

Let $f_N = e - (e_1 + \ldots + e_N) \in m$. Then $||f_N|| = 1$, $L(f_N) = 1$, and $|\langle x, f_N \rangle| \leq \varepsilon$. Hence $||L - x|| \geq 1 - \varepsilon$.

First let $\phi = L$. Then K contains c_0 , from which it follows that

$$\operatorname{cl}(K \cap U^0) = U^0$$

(in general, U is $\sigma(X^*)$ -dense in U^{00}). In this case, $cl(K \cap U^0)$ is $B(\phi)$.

Now take k > 1, and let $\phi = L + ke_1$. Then $d(\phi, l_1) = 1$. We show that:

- (a) There exists f_0 in $cl(K \cap U^0)$ with $\langle \phi, f_0 \rangle = 2$.
- (b) Given $\varepsilon > 0$, there exists $f_{\varepsilon} \notin cl(K \cap U^0)$ with $|\langle \phi, f_{\varepsilon} \rangle| \leq \varepsilon$ and $||f_{\varepsilon}|| = 1$.

Roughly speaking, this means that $cl(K \cap U^0)$ goes out as far as $B(\phi)$ in some directions, and only as far as $A(\phi)$ in others.

(a) Let

$$f_0 = e - \left(1 - \frac{1}{k}\right)e_1 = \left(\frac{1}{k}, 1, 1, ...\right)$$

Then $\langle \phi, f_0 \rangle = 2$, and f_0 is the $\sigma(l_1)$ -limit of the sequence (f_n) , where

$$f_n = \left(\frac{1}{k}, 1, ..., 1, -1, -1, ...\right) = -e + \left(1 + \frac{1}{k}\right)e_1 + \sum_{j=2}^n 2e_j.$$

https://doi.org/10.1017/S0013091500026092 Published online by Cambridge University Press

10

Each f_n is in $K \cap U^0$.

(b) We may assume that $\varepsilon \leq k-1$. Let

$$f_{\varepsilon} = \left(\frac{1+\varepsilon}{k}, -1, -1, \ldots\right) = \left[1 + \frac{1}{k}(1+\varepsilon)\right]e_1 - e.$$

Then $\langle \phi, f_{\varepsilon} \rangle = \varepsilon$. If $||g|| \leq 1$ and $g(1) > \frac{1}{k} \left(1 + \frac{\varepsilon}{2} \right)$, then $\langle ke_1, g \rangle > 1 + \frac{\varepsilon}{2}$, while $|\langle L, g \rangle| \leq 1$, so $\langle \phi, g \rangle \neq 0$. Hence $f_{\varepsilon} \notin cl(K \cap U^0)$.

REFERENCES

(1) N. BOURBAKI, Espaces Vectoriels Topologiques, chap. III, IV, V (Paris, 1955).

(2) M. M. DAY, Normed Linear Spaces (Berlin, 1962).

(3) G. J. O. JAMESON, The duality of pairs of wedges, *Proc. London Math. Soc.* (3) 24 (1972), 531-547.

(4) D. R. KERR, Seminorm-dual subspaces of the algebraic dual of a linear space, *Math. Z.* 104 (1968), 222-225.

UNIVERSITY OF WARWICK COVENTRY