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Abstract 

The theory of Molodensky (1961) on dynamical effects of a stratified 
fluid outer core upon nutations and diurnal Earth tides is recon
structed on a new and probably much simpler ground. A theory equiva
lent to Molodensky's is well represented on the basis of two linear 
equations for angular-momentum balance of the whole Earth and the 
fluid outer core, which differ from the well-known equations of 
Poincare (1910) only in the existence of products of inertia due to 
deformations of the whole Earth and fluid outer core. The products 
of inertia are characterized by four parameters which are easily com
puted for every Earth model by the usual Earth tide equations. A 
reciprocity relation exists between two of the parameters. The Adams 
Wiliamson condition is not a necessary premise of the theory. Ampli
tudes of nutations and tidal gravity factors are computed for three 
Earth models. A dissipative core-mantle coupling is introduced into 
the theory qualitatively. The resulting equations are expressed in 
the same form as those of Sasao, Okamoto and Sakai (1977). Formulae 
for secular changes in the Earth-Moon system due to the core-mantle 
friction are derived as evidences of internal consistency of the 
theory. 

1. Introduction 

Study of the effects of the fluid outer core upon the nutational mo
tion of the Earth based on realistic Earth models was first undertake 
by Jeffreys and Vicente (1957a,b) with the aid of two simplified core 
models. Later, Molodensky (1961) developed a theory applicable to an 
stratified fluid core satisfying the Adams-Wiliamson condition. Re
cent investigation of free core oscillations and Earth tides by Shen 
and Mansinha (1976), who considered more general core flows than 
Molodensky (1961), yielded results identical with Molodensky's as 
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far as the nutations and Earth tides are concerned, thus showing the 
general correctness of Molodensky*s theory for those phenomena. 

The theories mentioned above, being exactly frictionless, take into 
account inertial core-mantle coupling only, which is inferred to play 
a major role in the Earth's rotation. Effects of another coupling 
mechanism, a dissipative core-mantle coupling due to viscous and elec
tromagnetic friction, may also be important because they may provide 
a possible means for the observational determination of the physical 
properties of the core. Hence attempts have been made to construct 
theories, with various degrees of simplifying assumptions, which take 
superposed effects of the inertial and dissipative couplings into 
account and which clarify their roles in the precession and nutations 
(Stacey, 1973; Toomre, 1974; Loper, 1975; Rochester, Jacobs, Smylie 
and Chong, 1975; Rochester, 1976; Sasao, Okamoto and Sakai, 1977). 
Sasao et al. (1977), in particular, succeeded in deriving a set of 
equations describing the nutational motion of the Earth, taking mantle 
elasticity, fluidity of the core, and core-mantle friction into ac
count. However, their core model still was only a simple one (homo
geneous and incompressible fluid with a point mass at the center) 
devised by Jeffreys and Vicente (1957a). Such incompleteness was 
imposed mainly because Molodensky's (1961) theory of the stratified 
fluid core, though rigorous and excellent, was too complicated in its 
original form to be extended to include the effects of the dissipative 
coupling. A purpose of this paper is to reconstruct Molodensky's 
(1961) theory on a new and probably much simpler basis in order to 
include the effects of the dissipative coupling. 

2. Basic Assumptions 

We use a reference system fixed to the mean principal axes of the 
mantle with the bases ? x , % z and t^ rotating with an angular velocity 
0) = fi(m, ,m 2,1+nu) • bet a state of hydrostatic equilibrium 

be a basic state, in which the axially symmetric Earth is rotating 
around the i 3-axis with a constant rotation rate ft. Here P Q , po and 
<|>0 denote the equilibrium pressure, density and gravitational plus 
centrifugal potential, respectively. Our basic assumptions, equiva
lent to those adopted by Molodensky (1961), are the following: 

1) Equidensity and equipotential surfaces coincide in the basic 
state, i.e., po(r,8) = po(ro) and <|>o(r,e) = <f>o(ro)> with 

where r and 6 are geocentric distance and co-latitude, respectively, 
e(r) is the geometrical ellipticity of equipotential surfaces, and 
P2(cos 0) is the Legendre function of degree 2. Upper and lower 

fo0 = p 0 \ E N 

r Q = r [1 + J e(r)P 2(cos 6)] (2) 
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boundary surfaces of the fluid outer core in the basic state are 
equipotential surfaces. 

2) The velocity v"f of the core flow relative to the mantle, 
arising in the course of the nutational motion of the Earth, is 
composed of a dominant uniform-rotation term u)fxr and a small "cor
recting" term v which is caused by the non-sphericity and deformation 
of the equipotential surfaces and the compressibility of the fluid, 
i.e., 

+ + + , V 
v f = u)f x r + v , (3) 

with uif = ft(m^, m|, m ^ ) , where r is a radius vector. The "correcting" 
term v, consisting of terms of the order of er|3fI and the time de
rivative of the elastic displacement in the solid parts of the Earth, 
can be neglected when we are concerned with the approximate calcula
tions of the quasi-static deformation of the spherically symmetric 
model Earth. In the equations of angular-momentum balance, where 
terms of the order of elctSf I may, in general, play essential roles, 
v is neglected when it is multiplied by e. 

In the special case of the central particle model (Jeffreys and 
Vicente, 1975a), we have 

+ * + r^^r F F W 1 * r d q ( x ) ( b ) , d q ( y ) ( b ) I v f = ojf x r - e(b)^V[m 1yz - n^xz] + -j V [ n
 d

 N xz + ^ d t. v yzj , 

(4) 
where q( x^(b) and q ^ ^ ( b ) characterize the radial displacement of the 
core-mantle interface (Sasao et al., 1977), and, therefore, the second 
assumption is surely satisfied. Moreover, the assumption was justi
fied by Shen and Mansinha (1976) from a more general point of view. 

Since time variations of the third components of uS and uif are de
coupled from those of the other two components in the first order 
theory, we will ignore 1113 and m^ until the last section. We do not 
assume the Adams-Williamson condition PQV^Q = X(r)Vp 0/po> where A(r) 
is Lame's elastic modulus, unlike Molodensky (1961). 

3. Angular-Momentum Equation of the Fluid Outer Core 

Let us ignore at first the dissipative forces and consider inertial 
coupling only. Then linearized hydrodynamical equations of motion and 
continuity are written in the rotating system 

9 v f 

p o ( JT + 1 ? * r > + 2 a t 3 x * f ) - " * p i + p 1 ^ 0 + p 0 ^ 1 » ( 5 ) 

and 
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while the Poisson equation is 

V2<f>d = V 2 ^ = -4TTG P I , (7) 

where pi, Pi and $\ are small perturbations of density, pressure and 
gravitational plus centrifugal potential, respectively, induced by the 
luni-solar tide-generating force and/or the departure of the instanta
neous rotation axis of the mantle from the t 3-axis. The perturbed 
potential <f>i is composed of three terms: 

where 2 

• e = y - r 2 R e ( ^ ) = <f>(x)xz + <f>(y)yz (9) 

is a luni-solar tide-generating potential, 
2 

4 = - ^ - r 2 Re(mYh = -ft 2(m l Xz + m 0yz) (10) m J z 1 I 

is a pole tide potential, and ^ is a gravitational potential arising 
from the elastic deformation of the Earth. Here we introduced nota
tions: (~) - complex quantities; Re - real part; in = mi + ini2 - wob
ble, i.e., a geographical motion of the rotation axis of the mantle; 
• - (<|><x) + i ^ O / f t 2 - non-dimensional complex coefficient of the tes-
seral mode of the tide-generating potential; Y$ = PfJ (cos 9)exp(-imX) -
complex surface spherical harmonics of degree n and order m, where p™ 
is the associated Legendre function and X is east longitude. Intro
ducing a new quantity 

2 
<|>f = - y - r Re(m fY 2) = -ft (n^xz + m 2yz) (11) 

with mf = m^ + im^, and using equation (3), we write equation (5) in 
the form 

,->•->• N 

d(ojrf*U).c) 
+ .... x r + 2Jlf, x v + Jl(?,xu.) x r = -$P - R^r. , (12) dt at J J r u 

where 
p . I L . * - + and R - I I ^ 0 - ^ 1 ^ . (13) 

P 0
 9 1 9f p 2 dr Q p Q dr Q 

Taking the vector product of equation (12) by por, integrating through 
the volume of the fluid outer core, and neglecting second and higher 
order terms, we have an equation for an angular momentum ftf of the 
fluid outer core 

dfif dp Q 

j ^ - + co x / P ( )rxvdV - Sf xS f = -/ p QPrxd^ + / (P ̂  P 0R)rx^r QdV , (14) 
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We now expand the velocity V F in a series of orthogonal vectors 
+ + -* 
R = - Y , S = rVY , and T = -rxVY , (18) n r n ' n n ' n n ' 

satisfying the normalization relations 

r ~m ~m* , A 4TT(n+m)! _k 6 R *R. sin 9 d9 dA = * 
' n IR and n ~k " - w (2n+l)(n-m)! °n 

r ^m ^m* Q i Q J a _ / sr̂ i ~m* 47rn(n+l) (n-fm) ! _k 0 s „ s u s i n 8 de dA = * T VT sin 9 de dA = /o \ i w TT~ 6 , 
' n k 7 n k (2n+l)(n-m)! n ' 

(19) 
where (~)* denotes complex conjugate. Since we are considering the 
nutations and diurnal Earth tides only, we put m=l. Then we have 

-* - > • - > • - > -

v. = Relfirm.f! + ) [U (r)R 1 + V (r)S 1 + W (r)f 1]} , (20) i 1 r 1 ^ n n n n n n J 

n 
where the coefficients tfn, V n and W n are functions of r only. We can 
now easily see from equation (20) that the integral £ p 0?x$dV in equa
tions (14) and (15) may be put equal to zero by a suitable choice of 
u>f. Indeed, since 

/ p 0 ? w d V = R e £ [ / p 0 ( r ) r 2 W n ( r ) ^ d V ] = f- Re[ (f -if 2 ) / b p Q ( r ^ (r)dr] , 
f n f C (21) 
where r=b and r=c are the upper and lower boundaries of the fluid 
outer core, we obtain 

/ p nrxvdV = 0 , (22) 
f u 

choosing Sf in equation (20) in such a way that 

with 

H f = A f (w+w f) + (C f - A f )Q±3 + c^ntj + c^2

Q^2 + ^ p Q ^ X ^ d V 9 ^ 1 5 ^ 

where Af, Cf, and cL> a n < * d£ a r e principal moments of inertia, 
products of inertia arising from the deformation, and a surface ele
ment at the boundaries, respectively, of the fluid outer core. A term 
c 3 3 ^ 3 * s o m i t t e d because it makes no contribution to the first-order 
equations of nutation. Equation (2) gives 

rxd§ = (rx$r Q)r 2 sin 6 d6 dA , (16) 

and + 2 1 + 
rx?r Q = - re(r)P 2(cos 0)(-t 1 sin A + ± 2 cos A) , (17) 

in the first order approximation with respect to e. Hence only tes-
seral components of degree 2 in P and R may provide non-vanishing 
contributions to the right-hand-side integral of equation (14). 
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/ p Q(r)r W (r)dr = 0 . (23) 
c 

P, 
Putting 

p = r e i i ? ( r ) fi] , _u r e , [ 5 ( r ) 7i] a n d . r e i [ ? ( r ) fij 
n M 0 n n 

(24) 
we proceed to expand equation (12) in a series of orthogonal vectors. 
Straightforward calculations, where higher order terms with respect to 
e are neglected, give the following components of interest: 

Z] W\ d(m+m ) 2 

T^component: — + rft + io/rm f + fifiW^ - U 2 - | V ) = 0 , 

(25) 

*1 8 ^ 2 1 16 

^-component: — + 2n(iV 2
 + j ^ - W 3 ) = - - R2 , (26) 

and 
~1 o P? 
S 2-component: + -J (iff2

 + ^ 2 + ffl + F ^ B r » ( 2 7 ) 

where 
I d P n d ( t ) n 

R 2 = ^ t Q 2 ^ " P 2 ^ ) • ( 2 8 ) 

Equations (26) and (27) show that the tesseral components of degree 2 
in P / r and R have values of the order of ft|v|, and, moreover, they are 
multiplied by e in equation (14) in view of equations (16) and (17). 
Then, neglecting the right-hand-side terms in equation (14) on the 
basis of our second assumption, we obtain a very simple equation for 
the angular-momentum balance of the fluid outer core 

dft 

~- - sf x ltf = 0 , (29) 
where equation (22) is taken into account. If we denote the inertial 
core-mantle coupling torque and luni-solar torque upon the fluid core 
by N and L^, respectively, then a general angular-momentum equation 

dfi-
+ u x tff = ft + t f , (30) 

and equation (29) yield an expression for the inertial coupling torque 
N = (»fS f) x H f - tf , ( 3 D 

which is an extended version of Rochester's (1976) equation (27). 
Equations (15), (22) and (29) give 
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A f{Dm + [D + i(l+e f)fl]m f} + Dc^ = 0 , (32) 

where D = d/dt is an operator of time derivative, 
e f = ( C f - A f ) / A f (33) 

is the dynamical ellipticity of the fluid outer core, and 
^3 = c 3 1 + i c 3 2 -

The well-known angular-momentum equation of the whole Earth is 

with 

where 

g + S x it - I. , (34) 

H = Ato + (C-A)fli3 + A f w f + c3lotl + ^2^2 , (35) 

L = / p Qr x dV (36) 

is the luni-solar torque upon the whole Earth, A < C, and C 3 1 and C 3 2 
are principal moments of inertia and products of inertia arising from 
the deformation of the whole Earth. Here we neglected effects of the 
rotation of the solid inner core relative to the mantle because of its 
small moment of inertia. Equations (9), (34), (35) and (36) give 

A(D-iefl)in + (D+ifi)(Afmf + c^) = -iAepj^ , (37) 

where 
e = (C-A)/A (38) 

is a dynamical ellipticity of the whole Earth, and c 3 = c 3 1 + i c 3 2 . 

4. Elastic Deformation of the Earth 

For the calculation of the products of inertia, it is sufficient to 
use the familiar Earth-tide equations for the solid mantle and inner 
core (e.g. Saito, 1974), applicable to the quasi-static deformation of 
a spherically symmetric and self-gravitating elastic body, because of 
the smallness of the ellipticity and the ratio [tidal frequency]/[fre
quency of the free spheroidal oscillations of the Earth]. For the 
fluid core, neglecting the small "correcting" term in equations (26) 
and (27) on the basis of our second assumption, we have approximate 
equations 

d T + R 2 - ° » ( 3 9 ) 

and 
P 2 - 0 , (40) 

which can be interpreted as equations of the quasi-static deformation 
of the fluid outer core. Equations (28), (39) and (40) then give 
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P 2(r) + [(dp 0/dr)/g(r)]Q 2(r) = 0 , (41) 

where g(r) = -d<f>o/dr is the gravitational acceleration. Now we intro
duce the familiar notations.for the displacement, stress and perturbed 
potential devised by Alterman et al. (1959): 

u r = R e [ y i ( r ) Y 2 ] , u e = Re[y 3(r) — ] , u^ = Re[y 3(r) ^ j ^ J , 

(42) 

1 9 ? 2 8 ? 2 « r r = Re[y 2(r)Y 2] , ^ = Re[y 4(r) — ] , o r X = Re[y 4(r) j ^ - ^ ] , 

(43) 
$ = Re[y s(r)7j] , (44) 

and dy (r) 
y 6 ( r ) = ~dr" 47 rG P ( )y 1(r) , (45) 

where u and a^j are the elastic displacement and stress tensor, re
spectively. Equations (11), (13), (24), (40) and (44) then give 

2 

Q 2(r) = y 5(r) - y- r mf . (46) 
Substituting equations (41) and (46) into the Poisson equation (7), we 
have 

d 2 Q (r) dQ (r) 
^ [4^G(dp 0/dr)/g(r) + ( r) = 0 , (47) 

dr r 
coincident with equation (30) of Molodensky (1961). If we put mf = 0, 
the equation becomes identical with Takeuchi's (1950) well-known equa
tion (214). It is interesting to note that equations (41) and (47) 
are derived directly from equations of the quasi-static momentum bal
ance and the Poisson equation without any supplementary assumptions 
such as the Adams-Williamson condition. If the density of the outer 
core has jump discontinuities, we can calculate Q 2Cr) by a method of 
Saito (1974), instead of integrating equation (47). Thus the equa
tions required turn out to be of the same form as those used in the 
familiar Earth tide calculations. The only difference arising from 
the relative rotation of the fluid outer core appears in the boundary 
conditions: 

at the surface of the Earth, r=a, 

Y 2(a) = Y 4(a) = 0 , 

3 ~ 5 2 ~ ~ ( 4 8 ) 
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at the core-mantle boundary, r=b, 
o 2 ? 

y 2(b) - p 0(b-)g(b)y 1(b) + p Q(b-)5 :
5(b) =f- p Q(b-)b m f , 

y 4(b) = o , 

ft2 2 ( 4 9 ) 

y 5(b) - Q 2(b) = f - b m f , 

d ^ 2 2 2 -

y 6(b) + 47rG P ( )(b-)y 1(b) - = -j ft bm f 

and at the outer core-inner core boundary, r=c, 

ft2 2~ 

Y 2(c) - p Q(c+)g(c)y 1(c) + p Q(c+)y 5(c) = — p Q(c+)c m f , 

Y 4(c) = 0 , 
ft2 2- ( 5 0 ) 

y 5(c) - Q 2(c) = — c m f , 
d Q 2 2 2 ^ 

y 6(c) + 47rGp 0(c+)y 1(c) - -j— = j ft cm f , 

whilst at the center of the Earth r=0, solutions must be finite. It 
is then convenient to represent the solutions as combinations of 
"static" and "dynamical" terms, say, which are obtained by putting 
formally (j>-m = 1, mf = 0 and $-m = 0, m f = 1, respectively, in the 
above boundary conditions. Thus, we have 

^ ( r ) = y^ s )(r)(^-m) + y j d ) ( r ) m f 

Q ?(r) = Q^ s )(r)U-£) + Q^ d )(r)m f , (51) 

and 

with i = 1,...,6. The "static" terms are nothing but the usual solu
tions of the quasi-static Earth tide equations (e.g. Saito, 1974). 
Love's numbers are 

h = h Q + h 1[m f/(^-m)] , £ = £ Q + ^ [mf/(J-m) ] 
and 

k = k Q + k x[m f/(*-m)] , (52) 

where 

h = M l i y ( s ) ( a ) _ 3g(a) (s) = _J_ (s) ( } 

n 2 2 y l ; ' *0 2 2 y 3 ^ ' ' 0 2 2 y 5 K } 1 ' 
U a Q a n a 

and 
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a Q a ft a 
(53) 

hg, &o a n c * ^0 a r e so-called static Love's numbers. MacCullagh's 
theorem gives 

c 3 = -A[ic(*-m) - £m f ] , (54) 
where 

K = (k Qa 5ft 2)/(3GA) and £ = - ( k ^ f t 2 )/(3GA) , (55) 

whereas a general formula 

C3 = -/ P l(xz+iyz)dV - f p0u".(xz+iyz)d£ = / V 2 ^ (xz+iyz)dV 

- j> p u*(xz+iyz)d§ 
f 

yields 

c^ = -A f [y(^-m) - pm f] , (56) 

Y - " 5 S ; { ^ 8 ) ( r ) - 2 y < 8 > ( r ) / r ] } | J 

6 = - 3 ^ {r 4[y^ d )(r) -2y< d )(r)/r]}l c
b . (57) 

Equations (32), (37), (54) and (56) now form a closed set of equations, 
which reduce to the classical equations of Poincare (1910) and to the 
equations for the central particle model (Sasao et al., 1977) if we 
put c 3 = c^ = 0 and c^ = -A^q/2 with q = 3y 1(b)/b, respectively. 

5. A Reciprocity Relation 

The "static" and "dynamical" terms of y^(r) (i = 1,...,6), being solu
tions of the same equations, satisfy an identity 

which is another expression of Betti's reciprocity theorem (Saito, 
1974). For Q^ s^(r) and Q ^ d ^ ( r ) , on the other hand, another identity 

holds. Applying these identities successively to the mantle, fluid 
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outer core and solid inner core and taking account of the respective 
boundary conditions, we have 

5 a 3 y < d ) ( a ) = {r 4[y< s )(r) - 2 y < s ) (r) /r ]} | b . (60) 

It is evident from equations ( 5 3 ) , (55) and ( 57 ) that equation ( 60 ) 
implies 

Ag = A f y • (61) 

This reciprocity relation may serve as a useful mean for the computa
tion check. 

6 . Equivalence of our Equation (32) to Equation ( 39 ) of 
Molodensky ( 1961) 

From equation ( 4 5 ) and the continuity of the normal component of the 
velocity, we have at r=b- and r=c+ 

r n ? ( r ) 

y 6(r) = y . ( r ) _ 4 i r G p 0 — — , (62) 

where the dot and prime denote differentiation with respect to time 
and radial distance, respectively, and ?T2 is defined by 

a f x ? + $).fy Q = Re I [ r n n n ( r ) Y ^ ] . (63) 

Since Af = (8ir/3) / b p 0(r)r l*dr, we obtain from equations (32), (56) 
and (62) 

(10 / b p 0r 4dr)[m + m f + i ( l + e f ) t o f ] + ^ 
c 

2~ 

r 
From the well-known equation 

x { r V ( % - 4 , G p 0 ^ ] } | b = 0 (64) 

e f / b p / d r = i {[P 0e(r)r 5]| b - J b

 P o £ ( r ) r 5 d r } , (65) 
c c 

and equations ( 4 6 ) and ( 4 7 ) , we find that equation ( 64 ) can be written 
as 

iflnL , , 3Q 9 + iftm K , 
r 3 6 - f 4 1 r 2 f 1 y t * 1 I 
[ * J P 0 r n 2 P 0

r Kl " 4^G t r 2 J r J l c 

10(m + m f + iftmf) / p Qr dr , 
c 

b - 4 - ~ (66) 
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where the function 

K x(r) = 2rc(r)<|^ (67) 

is a particular solution of equation (47) (Molodensky, 1961). If we 
consider, following Molodensky (1961), a circular motion « exp(iat) 
with |(o+ft)/ftl « 1, we see that our equation (66) coincides with 
Molodensky fs (1961) equation (39). It is worthwhile to note that 
equation (66) can be derived rather directly from the Poisson equa
tion and equations (6) and (25) , which have not been used explicitly 
in our treatment. 

7. Dissipative Coupling Torque 

We now introduce the dissipative coupling torque in a qualitative man
ner, assuming: 1) our second assumption holds in most of the fluid 
outer core, because the effects of core viscosity and magnetic field 
are important only in the boundary layer, which is much thinner than 
be(b) (Rochester, 1976); 2) for a similar reason, the hydrodynamical 
equation (5) and subsequent equations (25)-(27) still hold in the 
fluid outer core except in the thin boundary layer; and 3) modifica
tions of the elastic deformations imposed by the effects of the fric-
tional forces are small and can be neglected. Then, introduction of 
the dissipative terms into equation (5) results in adding the dissipa-

where K, K f and K* are coupling constants. Here we introduced the 
third component of <5f for generality. For the case of a rigid mantle 
and incompressible core, Toomre (1974), Loper (1975) and Rochester 
(1976) gave explicit expressions for K and K f in terms of the core 
viscosity and magnetic field on the basis of the theory of the Eckman-
Hartmann layer. A ratio n = K f/K, in particular, was shown to be 
nearly zero in viscous coupling and unity in electromagnetic coupling. 
Then, we have, instead of equation (32) 

(68) 

(69) 

(70) 
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Since e, ef, 3, y> £ and K are small compared with unity, equations 
(37), (70), (54) and (56) can be further simplified, and become iden
tical with equations (34) and (35) of Sasao et al. (1977). Differences 
are only in the numerical parameters. Hence, all the discussions in 
Sasao et al. (1977) on the search for the observable consequences of 

Table 1. Numerical Parameters 

Wang Bullen & Haddon Gutenberg & Bullen-A 

A (g cm 2) 8.012752*10^ 8.017676*10^ 8.090656*10 l + l + 

Af (8 cm 2) 9.151935*10 t + 3 8.988057*10 i + 3 8.608042M0** 3 

e 3.244940*10~ 3 3.249863*10" 3 3.275467*10 3 

e f 2.525403M0"" 3 2.522115*10" 3 2.563954*10" 3 

Y 1.971477M0"" 3 2.019606*10" 3 1.957810*10" 3 

B 6.270286*10~ t + 6.436952*10 _ t + 5.865066*10"^ 
K 1.045419*10"~3 1.047138*10" 3 1.032208*10" 3 

2.251765*10"'+ 2.264039M0" 1* 2.083010*10"t+ 

A? (g cm 2) 1.8042835*10i+l 1.8152330*10 l + 1 1.6852912*10 t + 1 

A f Y (g cm 2) 1.8042833*10 t + 1 1.8152329*10^ 1. 6852913*10^ 1 

h 0 
0.608470 0.613919 0.607119 

AO 0.085859 0.084623 0.082941 
k 0 

0.300284 0.300963 0.299372 
hi -0.128311 -0.130915 -0.121139 
*1 0.003807 0.004113 0.004182 
ki -0.064679 -0.065072 -0.060414 

1/402.7 1/403.1 1/398.4 
no/ft -1/466.6 -1/472.7 -1/451.9 

Models: Wang (1972); Bullen & Haddon (1967) - base Earth model Bi; 
Gutenberg & Bullen-A (e.g. Alterman et al., 1961). 

8. Numerical Computations 

Results of numerical computations for three Earth models are listed in 
Table 1. The moments of inertia are calculated by formulae 

8TT r 4 8TT r 4 8TT R 5 de , . 
A = T I p o r d r " 9~~ * p o r e ( r ) d r " 45 J p o r I F D R ' ( 7 1 ) 

and 
„ 8TT F 4 16TT f 4 , 16TT R 5 de , / 7 0 x 

C = T * p 0 r d r + ~ ^ p 0 r e ( r ) d r + 45" / p 0 r dr" d r ' ( 7 2 ) 

where e(r) is obtained by solving the well-known Clairaut equation. 
The reciprocity relation (61) holds satisfactorily. 
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a 2 = -ft + = -ft + + la 2 
where 

the dissipative coupling and damping of the free core nutation can be 
readily reproduced in the case of the stratified fluid core. We have 
the Chandler frequency, ignoring oceanic effects, 

a][ = — (e-K)ft , (73) 
m 

with A m = A - Af, and the frequency of the nearly diurnal wobble asso
ciated with the free core nutation 

ft + n„ = -ft + n„ + ia 0 , (74) 

n Q = - ( e f " S)ft ( 75) 
m 

is the frequency of the free core nutation in the dissipationless 
limit, and 

a2 = K(l+In) = a 2(l+in) ( 7 6> 
f m 

is the damping coefficient of the free core nutation. Values of ai 
and no are also shown in Table 1. 

Nutation amplitudes normalized by the rigid-body value and the tidal 
gravity factor (l+h-3k)/2 are calculated in the dissipationless limit 
(ot2 3 8 0) by means of equations (37) and (38) of Sasao et al. (1977): 

A. 
~ r i K n ^ ~ , r n ~ / 7 7 \ 

and 

with 

ft-n r _ y + JC£ S , (78) 
e e ft; R f A e e ft m n-n^ 

m^ _ R ft-n 
eft r (79) 

and by equations (52), where n denotes the frequency of the circular 
nutation « exp[i(-ft+n)t]. The results are shown in Table 2 and 
Figures 1 and 2. 

9. Secular Changes in the Earth-Moon System Due to 
the Core-Mantle Friction 

We now consider briefly the problem of secular changes in the Earth-
Moon system due to core-mantle friction, which was studied in Sasao 
et al. (1977) only in the rigid-mantle case. The rotational energy 
of the Earth is written 
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of i =0 

BULLEN AND HADDON 
GUTENBERG AND BULLEN -

- l / l 8 3 - ^ 3 6 6 I/68OO V & 8 0 0 ^ 3 6 6 1 / 1 8 3 
Tl/Xl 

Fig. 1. Ratio of the nutation amplitude to that of the rigid Earth in 
the dissipationless limit (a^=0). Curves show the frequency-dependence 
of the ratio for the Earth models of Wang, Bullen and Haddon, and 
Gutenberg and Bullen-A. Results of current astronomical observations 
are contained within the boxed areas (Sasao et al., 1977). It is evi
dent that the model-dependence of the curves is rather insignificant 
compared with the accuracy of the observations. 

tv2 = o 

BULLEN AND HADDON 
GUTENBERG AND BULLEN-

Fig. 2. Frequency-dependence of the tidal gravity factor (l+h-3k)/2. 

https://doi.org/10.1017/S0074180900032009 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900032009


STRATIFIED FLUID CORE THEORY 181 

E r = \ J plwx?| 2dV + | / p | ( J + W f ) x ? + v | 2dV 

= j [cJ.OJ.O). + ^.(a). + J±)(u± + U K ) ] , (80) 
s f 

where C-j_j and C^j are moment-of-inertia tensors of the solid part and 
fluid outer core, respectively, of the Earth, and a term proportional 
to v 2 and rotation of the solid inner core relative to the mantle are 
neglected. Then, taking into account equations (34), (36), (68) and 
(69), we have 
dE dH d H f _ dC . dcf.. 

r i , f 1 1 ii ii f 

dT" = Mi d T + wi IT " 2 " 5 T w i w j " ~-dT w i w j 

= ft2[-K|mf | 2 - K*m^ 2 + Aeftlm(m*£) + L3/ft - Re(m*Dc 3) - R e ^ D c ^ ) ] , 

(81) 
in the second order of |m|, |mf I , m^ and | <J> I , where Cjj = cf j + cfj isr 
a moment-of-inertia tensor of the whole Earth and L3 is the third com
ponent of the luni-solar torque caused by the deformation of the Earth: 

L 3 = -ft2 Im(c* • (82) 

Im denotes imaginary part. Equating the secular loss of the mechani
cal energy of the Earth-Moon system to the energy dissipated at the 
core-mantle boundary (Loper, 1975), we have 

dt -ft IjK|Sf I + K*m 3 ) , (83) 
ere E e + ^ is the orbital kinetic plus potential energy of the Earth-
on system but the rotational energy of the Moon is neglected. A 
nmbol implies summation over all the lunar nutation terms. We neg
ated in equation (83) losses of the elastic and gravitational ener-
Les associated with the deformation, because they are proportional to 
he square of the amplitude of the small elastic displacement, which 
aries very slowly. Considering circular nutations « exp[i(-ft+n)t], 

we obtain from equations (81)-(83) 

dE ^ _ _ 

— = la Im{-Aeftm*£ + (ft-n) [ c*( J-m) - c 3 m f ] + nc*J} . (84) 

Substituting equations (54) and (56), together with the reciprocity 
relation (61), into equation (84), and using equations (77)-(79), we 
have 
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i.e., the same form as that in the rigid-mantle case (Sasao et al., 
1977). Equation (85) and Kepler's third law lead to equation (53) of 
Sasao et al. (1977) for the secular change of the orbital speed of the 
Moon. 

On the other hand, the third components of equations (34) and (68), 
together with equations (54), (56) and (61), give 

•^7 (Cm 3 + C fm^) = Afftlm[m*m - ym*(J-m)] , (86) 
and 

— (C fm 3 + C f m 3 ) = Afftlm[m*m - ym*(^-m)] - K*m 3 . (87) 

Elimination of 1113 f r o m these equations yields 

d m 3 f A f ~ ~ ~ 
jf- + cc*m3 = -jr- ftIm[m*(m-Y*)] > ( 8 8) 

where a* = CK*/(CfC m) and we neglected y compared with unity. Equa
tions (77)-(79) and (88) give the rate of a secular westward drift of 
the core due only to the precession and nutations: 

— C A C 2 
f m f 2 v eft r . y . y - K n> Trv%/~±'Y\ _ m v ft K 1 ~ 12 

^ C P ^ I JFK t 1 - £ + V ft) lm(mf^ ~ " C " I ft=n" | m f ' > 
(89) 

where summation is taken over all the nutation terms. Substituting 
equation (89) into equations (86) and (87), we obtain the secular 
change of length of day 

dm. dU.o.d.) _ 3 _ U.o.d.) r ft ,~ , 2 

U.o.d.) j - t - I — K|m f I , (90) 
which is identical with equation (58) of Sasao et al. (1977) for the 
rigid-mantle case. 
It is thus concluded, following Sasao et al. (1977), that the secular 
changes due to the core-mantle friction are less efficient than those 
due to the ocean-tide braking. Equations (85) and (90) are quite simp." 
and appear to be reasonable. This situation seems to suggest self-
consistency of our treatment in spite of the simplifying assumptions. 
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