
The Journal of Symbolic Logic, Page 1 of 15

COMPUTABLE VS DESCRIPTIVE COMBINATORICS OF LOCAL
PROBLEMS ON TREES

FELIX WEILACHER

Abstract. We study the position of the computable setting in the “common theory of locality” developed
in [4, 5] for local problems on Δ-regular trees, Δ ∈ �. We show that such a problem admits a computable
solution on every highly computable Δ-regular forest if and only if it admits a Baire measurable solution on
every Borel Δ-regular forest. We also show that if such a problem admits a computable solution on every
computable maximum degree Δ forest then it admits a continuous solution on every maximum degree Δ
Borel graph with appropriate topological hypotheses, though the converse does not hold.

§1. Introduction. In this paper, we consider locally checkable labeling problems
(LCLs) on regular trees. We will use the following formulation of such LCLs from [4].
Colorings in this formulation are on so-called “half edges,” and we will need a
nonstandard formalization of the notion of a graph to fully accommodate these. Fix
Δ ≥ 2.

Definition 1.1. A Δ-regular graph G with vertex set X and edge set E is a subset
G ⊂ X × E such that for each x ∈ X , there are exactly Δ e ∈ E with (x, e) ∈ G ,
for each e ∈ E, the number of x ∈ X with (x, e) ∈ G is either 1 or 2, and for each
x �= y in X, there is at most 1 e ∈ E with (x, e), (y, e) ∈ G .

An element (x, e) G is called a half edge incident to x, x an endpoint of e, and e
incident to x. If a given edge e has two endpoints, say x, y ∈ X , we call it a true edge,
and say x and y are adjacent and that y is a neighbor of x. In this case we may also
identify the half edge (x, e) with the ordered pair (x, y). We will also call the half
edges (x, e) and (y, e) the half edges comprising e. Otherwise we call e a virtual edge
and (x, e) a virtual half edge.

If x is a vertex of G, the degree of x, denoted deg(x), is the number of neighbors
of x. Call G truly Δ-regular if the degree of each vertex is Δ. This is equivalent to G
having no virtual edges.

We use the definition of adjacency for vertices above to port standard graph
theoretic terminology into this model, e.g., path, path distance, cycle, and connected
component. We call a graph G acyclic or a forest if it has no cycles. We call a set of
vertices G-invariant if it is a union of G-connected components. We use B(–, r) to
denote the radius r (w.r.t. path distance) neighborhood of a vertex or set of vertices.

Received September 15, 2022.
2020 Mathematics Subject Classification. Primary 05C15, Secondary 03D45, 03E15.
Key words and phrases. graph, coloring, computable, Baire measurable, continuous.

© The Author(s), 2023. Published by Cambridge University Press on behalf of The Association for Symbolic Logic. This is an Open
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

0022-4812/00/0000-0000
DOI:10.1017/jsl.2023.47

1

https://doi.org/10.1017/jsl.2023.47 Published online by Cambridge University Press

https://orcid.org/0000-0002-8408-2714
https://creativecommons.org/licenses/by/4.0/
www.doi.org/10.1017/jsl.2023.47
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jsl.2023.47&domain=pdf
https://doi.org/10.1017/jsl.2023.47

2 FELIX WEILACHER

Observe also that if our G is truly Δ-regular, the adjacency relation gives a
Δ-regular graph on X in the traditional sense, call itG . In this case the identification
in paragraph 2 of the above definition actually gives a bijection between G and G
where half edges in G go to ordered edges in G . We can thus identify G and G in
this case.

We can now describe our LCLs:

Definition 1.2. An LCL on Δ-regular graphs Π is a triple (Σ,V , E), where Σ is
a finite set, and V and E are sets of size Δ and 2, respectively, multisets of labels
from Σ.

Let G be a Δ-regular graph and c : G → Σ. (That is, c is a labeling of the half
edges of G.)

• If e is a true edge of G, write c(e) to denote the size 2 multiset {c(x, e), c(y, e)},
where x and y are the endpoints of e.

• If x is a vertex of G, write c(x) to denote the size Δ multiset of colors given to
the half edges meeting x.

We say c is a Π-coloring of G if for each true edge e of G, c(e) ∈ E , and for each
vertex x of G, c(x) ∈ V .

Much exciting recent work has found connections between the study of LCLs in
various settings. For example, in the LOCAL model [7], one imagines vertices as
processors and edges as communication channels, where each processor must decide
on labels for its incident half edges based on a small amount of communication with
its neighbors so that the result of all these decisions amounts to a Π-coloring for a
given Π. In the descriptive setting, the vertex and edge sets are Polish spaces, G is
a descriptive-set-theoretically “nice” relation on them (e.g., Borel), and one looks
for Π-colorings which are similarly “nice.” The systematic study of connections
between these two settings was introduced in [3]. A starting point for this paper is
the work in [4, 5], which carried out a much more complete study of connections
between these settings and others in the special case where G is acyclic.

Less explored are connections between these fields and the computable setting,
where one is given a graph which is in some sense computable, and looks for similarly
computable Π-colorings. Work of Qian and Weilacher [9] established some parallels
between certain parts of this setting and of the descriptive setting, but failed to
find any direct relationship. The main results of this paper show that such direct
relationships do exist if one again restricts to the special case of acyclic graphs.

We now formally describe some of the settings which were described informally
above. In (3) below and throughout the paper, HF denotes the set of hereditarily
finite sets, which we use as our domain for discussing computability. Note that the
definitions below make sense for general classes of graphs, but in this paper we are
chiefly concerned with complexity classes for acyclic graphs.

Definition 1.3. Let Π = (Σ,V , E) be an LCL on Δ-regular graphs.

(1) We call a truly Δ-regular graph G Borel if its vertex set X is a Polish space and
the associated G (see the comment after Definition 1.1) is Borel in X × X .
We call a coloring c : G → Σ Borel if it is Borel as function on G ⊂ X × X .

https://doi.org/10.1017/jsl.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.47

COMP. VS DESCR. COMB. OF LOCAL PROBLEMS ON TREES 3

We say Π is in the class BAIRE if every acyclic such G admits a Borel
Π-coloring off a G-invariant meager Borel subset of vertices. I.e., there is a
G-invariant comeager Borel set C ⊂ X such that the graph identified with
G ∩ (C × C) admits a Borel Π-coloring.

(2) [2, 5] We call a Borel Δ-regular graph G as in (1) continuous if X is zero-
dimensional and for any clopen U ⊂ X , the set of neighbors of elements of
U is clopen. We call a coloring c : G → Σ continuous if it continuous as a
function on G ⊂ X × X with the subspace topology. We say Π is in the class
CONTINUOUS if every acyclic such G admits a continuous Π-coloring.

(3) We call a Δ-regular graph G computable if its vertex and edge sets X and E are
computable subsets of HF and G is a computable subset of X × E. We call
a coloring c : G → Σ computable if it is computable as a function (we may of
course assume Σ ⊂ HF). We say Π is in the class COMPUTABLE if every
computable acyclic Δ-regular graph admits a computable Π-coloring.

(4) We call a computable Δ-regular graph G as in (3) highly computable if the
degree function deg : X → � is computable. Since there are Δ edges incident
to each x ∈ X and deg(x) is the number of true such edges, this is equivalent
to the set of true edges being computable. In particular, truly Δ-regular
computable graphs are highly computable. We say Π is in the class HCOMP
if every highly computable acyclic Δ-regular graph admits a computable
Π-coloring.

We can now state our results. In [9], Qian and Weilacher ask whether, for a
general nice class of graphs, LCLs solvable in the highly computable setting are
always solvable Baire-measurably. Our first result confirms this for regular forests.

Theorem 1.4. BAIRE = HCOMP.

Our second result concerns the class COMPUTABLE. This class does not strongly
parallel any in the descriptive or LOCAL settings; the inability in computable but
not highly computable graphs to effectively quantify over the neighbors of a vertex,
a process which is trivial in these other settings, severely restricts the problems one
can make headway on. Still, the class does contain nontrivial problems such as
(Δ + 1)-proper vertex coloring [10], making it meaningful to establish the following
one-sided implication:

Theorem 1.5. COMPUTABLE ⊂ CONTINUOUS, but the reverse inclusion
does not hold. Moreover, if an LCL on Δ-regular graphs is in COMPUTABLE, it
can be solved continuously on any Δ-regular continuous graph, and computably on any
Δ-regular computable graph.

It should be noted that, by the equivalences shown in [4, 5] between our descriptive
set theoretic classes of interest and various classes from other settings (such as the
LOCAL model), Theorems 1.4 and 1.5 also provide connections between these
other settings and computable combinatorics. For example, an LCL is in HCOMP
if and only if it can be solved by a deterministic LOCAL algorithm on trees in time
O(log(n)), and if an LCL is in COMPUTABLE, it can be solved by a deterministic
LOCAL algorithm on trees in time O(log∗(n)).

https://doi.org/10.1017/jsl.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.47

4 FELIX WEILACHER

§2. Highly computable forests. In this section we prove Theorem 1.4. Key to the
equality is the following combinatorial condition:

Definition 2.1. • Let l ∈ �. A Δ-regular path of length l is a Δ-regular tree
with l + 1 vertices, say x0, ... , xl , with xi and xi+1 adjacent for each i < l , and
all other edges being virtual. x0 and xl are called the endpoints of the path.

• Let Π = (Σ,V , E) be an LCL on Δ-regular graphs. Let l ≥ 1. Let V ′ ⊂ V .
We say V ′ is l-full if whenever P is a Δ-regular path of length at least l and
the half edges incident to its endpoints, say x and y, are precolored so that
c(x), c(y) ∈ V ′, this can be extended to a Π-coloring of P so that c(z) ∈ V ′ for
every vertex z of P. We say Π is l-full if it admits some nonempty such V ′. We
say Π is full if it is l-full for some l.

Recall the second bullet point in Definition 1.2 for the meaning of c(x) when x is
a vertex. The fullness condition is due to Anton Bernshteyn, who also has shown [4]
that an LCL on Δ-regular graphs is in BAIRE if and only if it is full. It thus suffices
for us to prove:

Theorem 2.2. An LCL on Δ-regular graphs is in HCOMP if and only if it is full.

The proof in [4] of the reverse direction of Bernshteyn’s result uses a construction
called a toast:

Definition 2.3. Let G be a Δ-regular graph and l ∈ �. An l-toast for G is a
collection C of nonempty finite G-connected sets of vertices (called pieces) such
that:

(1) For distinct C,D ∈ C, either B(C, l) ⊂ D, B(D, l) ⊂ C , or the path distance
from C to D is greater than l.

(2) If vertices x, y are in the same G-component, there is some C ∈ C containing
both of them.

If G is a computable graph, it makes sense to ask that a toast for G be computable.
In [4, Proposition 6.4], a straightforward algorithm is presented which uses a
(2l + 2)-toast for a Δ-regular forest, say T, to produce a Π-coloring of T given
that Π is l-full. One can easily see that this will produce a computable Π-coloring
if the input toast is computable, so it suffices for our reverse direction to prove the
following, whose origins seem to be in [1, Theorem 3].

Theorem 2.4. Let G be a highly computable Δ-regular graph. G admits a
computable l-toast for every l ∈ �.

Proof. Fix l. WLOG the vertex set of G, say X, is a subset of�. We will construct
our toast recursively in�-stages. At each stage, we will have only finitely many pieces
in our toast.

At stage n, if n �∈ X , we do nothing. If n ∈ X , we check our finitely many pieces
to see if any contains B(n, 1). If so, we do nothing.

If not, we find the least r > 0 such that B(n, r) can be added to our toast without
violating (1). This exists since our toast so far is finite (so, in fact, there is a tail of r’s
which will work) and it can be determined effectively since G is highly computable,
which means we can computably output the finite graph G � B(n, r) given n and r.
We then add B(n, r) to our toast.

https://doi.org/10.1017/jsl.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.47

COMP. VS DESCR. COMB. OF LOCAL PROBLEMS ON TREES 5

Call the resulting set of finite connected sets of vertices C. C is computable since
at stage n, if we add a new set to C, that set contains the vertex n. Thus, to test
whether a given finite set C is in C, we only need to run our algorithm until stage
max(C). (1) is satisfied since we made sure it was satisfied when adding each new
piece. For each n ∈ X , at stage n we made sure there was a piece of toast containing
B(n, 1). This implies (2) by induction on the path distance between x and y: If z is a
neighbor of y and we have a piece of toast C containing x and z and a piece of toast
D containing B(y, 1), then C ∩D �= ∅, so one must contain the other, and then the
larger one contains x and y. 	

We now prove by contrapositive the forward direction of Theorem 2.2. The
following proof is inspired by [8], which used a similar argument to construct,
for a given k ≥ 2, a computable truly k-regular computably bipartite graph with no
computable perfect matching:

Proposition 2.5. If an LCL on Δ-regular graphs Π = (Σ,V , E) is not full, there
is a computable truly Δ-regular forest (thus highly computable) with no computable
Π-coloring.

Proof. If Π is not full, then for every nonempty V ′ ⊂ V and l ′ ≥ 1, there are
l ≥ l ′, multisets, say a, b ∈ V ′, and labels, say α, � ∈ Σ appearing in a and b
respectively such that the following holds: Let P be a Δ-regular path of length l,
say with vertices x0, ... , xl in order. Label the half edges incident to x0 such that
c(x0) = a and c(x0, x1) = α, and likewise for xl , b, xl–1 and � respectively. Then if
this labeling is extended to a Π-coloring c of P, some vertex xi has c(xi) �∈ V ′. Note
that if V ′ = V , this means there is no such extension.

Since Σ is finite, we can say instead that for all nonempty V ′ ⊂ V , there exists
a, b ∈ V ′ and α, � ∈ Σ which have this property for infinitely many l. Fix choices of
such a, b, α, and � for each V ′, and call them bad for V ′. Also call the infinite set
of l witnessing this badness the set of bad l for V ′. Note that determining whether a
given l is bad for a given V ′ is computable: It can be done by checking all possible
colorings of a Δ-regular path of length l with labels from Σ, of which there are only
finitely many.

Fix X,E ⊂ HF disjoint infinite computable sets, and a computable well order of
HF of type �. X and E will be our vertex and edge sets respectively. Fix an effective
enumeration {φt | t ∈ �} of the set of partial recursive functions X × E → Σ.
(These are candidates for computable colorings of the half edges of our graph.)
Fix also an effective enumeration {tn | n ∈ �} of � which lists each natural number
infinitely many times. We are about to describe a recursive construction of Δ-regular
forests ∅ = T0 ⊂ T1 ⊂ ··· with vertex sets contained in X. The vertex set for each
Tn will be finite. It will happen that in our construction every x ∈ X will eventually
become a vertex and be made to have degree Δ. The limit T =

⋃
n Tn will then be a

computable truly Δ-regular forest. Our construction will be designed so that T does
not admit a computable Π-coloring.

Alongside T, we will recursively build a T-invariant total computable function
C : X → �. The idea is that the vertices in C –1(t) will be responsible for ensuring
that φt is not a Π-coloring of T. At stage n, the vertices on which C has been defined
will be exactly those in the vertex set of Tn.

https://doi.org/10.1017/jsl.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.47

6 FELIX WEILACHER

Figure 1. Stage 0 of the construction for a fixed t for Δ = 3.

At a typical stage in the construction, we will take currently unused (not in the
vertex set of our current finite tree) vertices, define C on them, and give them Δ
incident half edges. We will refer to these as “new vertices,” and always choose the
least (according to our previously fixed order of HF) available. For example, if x has
degree 0 in Tn, and in the definition of Tn+1 we say “add Δ new vertices as neighbors
to x,” it means: let y0, ... , yΔ–1 be the least elements of X not in the vertex set of
Tn, let e0, ... , eΔ–1 be the virtual edges incident to x in Tn, and add the half edges
(yi , ei) to Tn+1 for i < Δ – 1. The exact same treatment will be given to edges. For
example, in the previous example, we would probably want to finish by saying “add
Δ – 1 new virtual edges incident to each yi” to maintain Δ-regularity. This would
mean: let fi,j for i < Δ, j < Δ – 1 be the least elements of E not in the edge set of
Tn, and add the half edges (yi , fi,j) to Tn+1 for each i, j.

In both steps of the previous example, our language leaves some ambiguity about
exactly which new vertices/edges are connected to which old edges/vertices. The
exact decision here will never matter (except of course in that it should be made in
a computable way).

If the stage of our construction is n, C will always be defined to be tn on new
vertices. Thus, our construction will essentially build � forests in parallel, one for
each t. Let us fix t, and describe the � steps in the construction of the t-th forest,
i.e., T � C –1(t).

Fix a very large N0
 |Σ| to be determined later, independent of t. In the 0-th
stage of the construction, place N0 new vertices, say x0, ... , xN0–1, in C –1(t). Also
give each xi Δ new virtual incident edges. This is shown in Figure 1.

We also initialize several variables: Set V ′ = ∅ andN = N0. Also, for each i < N ,
let Pi be the Δ-regular path of length 0 whose unique vertex is xi .

At the start of an arbitrary successor stage, say m + 1, suppose we have some
V ′ ⊂ Σ and N ∈ � very large. Suppose also that we have Δ-regular paths Pi for
i < N and vertices yci for i < N and c ∈ V ′ such that:

(1) The Pi ’s and yci ’s all lie in distinct C –1(t)-components.
(2) For each i, if φt restricted to the half edges meeting Pi is a Π-coloring of Pi ,

there must be some vertex x of Pi with φt(x) �∈ V ′.
(3) φt(yci) = c for each i and c.

Note that this is all satisfied after stage 0.
We start our successor stage by running the Turing machine computing φt for m

steps on all of the half edges meeting all of the Pi ’s.

https://doi.org/10.1017/jsl.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.47

COMP. VS DESCR. COMB. OF LOCAL PROBLEMS ON TREES 7

Figure 2. The “uninteresting case” for a step of the construction for a fixed t, for
Δ = 3.

If φt fails to converge in ≤ m steps on one of these inputs, or if it converges on all
of them but the result fails to be a Π-coloring of some Pi , we do what is shown in
Figure 2: For each virtual edge e with unique endpoint in C –1(t), we make e true by
adding a new vertex, say x, as its other endpoint, then to maintain Δ-regularity we
add Δ – 1 new edges as virtual edges incident to this x. We call this the “uninteresting
case.”

The “interesting case” is of course if φt does converge on all these inputs in ≤ m
steps, and the result is a Π-coloring for each Pi . In this case, by condition (2)
above, there is a vertex in each Pi , say zi , with φt(zi) �∈ V ′. Let d ∈ V \ V ′ such that
φt(zi) = d for at least N/|V| i ’s. Update V ′ to V ′ ∪ {d}.

Now V ′ is nonempty, so let a, b ∈ V ′ with α ∈ a and � ∈ b be bad for V ′. Between
the zi ’s and the yci ’s, and using condition (1) above, we can choose degree Δ vertices
vi andwi for i < M := N/(2|V|) such that φt(vi) = a for each i, φt(wi) = b for each
i, and all 2M of these vertices lie in distinct C –1(t)-components. (The factor of 1/2
is needed for the case a = b.)

Now for each i < M/2, pick ei and fi virtual edges meeting the components
of vi and wi respectively such that if e is the first edge in the path from vi to ei ,
then φt(vi , e) = α, and likewise for wi , fi , and � . Note that these exist since our
components are finite Δ-regular trees. As shown in in the first step in Figure 3, join
ei andfi with a path of new vertices so that the resulting path between vi andwi has
a total length which is bad for V ′. (Recall that this is possible as there are arbitrarily
long bad lengths, and that determining if a length is bad is computable.) Call this
new path Pi . Also, as shown in the second step in Figure 3, add Δ – 2 new virtual
incident edges to the newly added vertices in Pi to maintain Δ-regularity. Condition
(2) is satisfied for each Pi by definition of bad.

We can now finish this stage of the construction with the updated value of N
being M/2. We still need to define the new yci ’s. Use the unused vi ’s and wi ’s for
c ∈ {a, b}. For c �∈ {a, b}, use the first M/2 zi ’s with φt(zi) = d if c = d , and the
firstM/2 yci ’s from the previous stage of the construction if c �= d (i.e., if c was in
the previous V ′.) (1) is clear by construction.

Thus the description of the construction is complete. We can also see now that
the correct value of N0 to take was N0 > (4|V|)|V|, since the value of N was divided
by 4|V| each time the interesting case occurred, and it cannot occur more than |V|
times for a fixed t (Since |V ′| increases by one each time it does).

https://doi.org/10.1017/jsl.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.47

8 FELIX WEILACHER

Figure 3. The “interesting case” for a step of the construction for a fixed t. The
top and bottom of the image represent the before and after states respectively. The
dashed line encloses one of the new paths, Pi .

Claim 2.6. T is a computable truly Δ-regular forest.

Proof. At each stage in the construction, we either added new trees as
components, added new degree 1 neighbors to vertices, or joined pairs of
components along a single path. Thus the components at each stage were trees,
and so the limit T must be acyclic.

For each fixed t, the interesting case could only have occurred finitely many
times as noted before the claim. Thus each vertex, once added to C –1(t), must

https://doi.org/10.1017/jsl.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.47

COMP. VS DESCR. COMB. OF LOCAL PROBLEMS ON TREES 9

have eventually experienced the uninteresting case, at which point it would be made
degree Δ by construction. Since we added new vertices at the first stage for each t,
and we always take these to be the least available, each x ∈ X is eventually added
to some C –1(t), and subsequently made to have degree Δ. Thus T is truly Δ-regular
and its vertex set is X, which was chosen to be computable. Similarly the edge set of
T is E, also chosen to be computable.

Finally, T is clearly computable: The construction of theTn’s was clearly recursive,
so to check whether a given (x, e) ∈ X × E is in T, we can run the construction until
x is added to the vertex set, at which point it gets Δ incident edges, and we can check
if any of these is e. 	

Claim 2.7. T has no computable Π-coloring.

Proof. Suppose φt is a Π-coloring of T, and consider our construction for this
fixed value of t. In between each interesting case stage of our construction, we have
finitely many Δ-regular paths Pi , and are waiting for φt to converge to a Π-coloring
of them. Since φt is in fact a Π-coloring of T, we are always guaranteed that this will
eventually happen. That is, the interesting case will occur unboundedly many times
for this t, but as noted before Claim 2.6, it can only occur |V| < � times. 	

Thus T is as desired. 	

§3. Computable forests. In this section we prove Theorem 1.5. As in the previous
section, the key is to find a combinatorial condition characterizing our class.

Definition 3.1. Let Π = (Σ,V , E) be an LCL on Δ-regular graphs. Let Σ′ ⊂ Σ.
We say Σ′ is greedy if the following holds: Let k ∈ {0, ... ,Δ}, and consider the
Δ-regular tree H with vertices x and yi for i < k with x and yi adjacent for each i
and all other edges being virtual. Precolor each half edge (yi , x) with a label from Σ′.
Then this can be extended to a Π-coloring of H such that c(x, e) ∈ Σ′ for each virtual
edge e incident to x. (See Figure 4.) We say Π is greedy if it admits some greedy Σ′.

Figure 4. An illustration of Definition 3.1 with Δ = 5 and k = 3. True edges are
divided with slashes to show the two half edges comprising them. The left-hand
figure is given, and the right-hand figure is the needed extension. The α’s are colors
from Σ′, whereas the � ’s can be any elements of Σ. Definition 3.1 also technically
asks for colors for the other half edges incident to the yi ’s, but these do not turn out
to be relevant and so are not drawn.

https://doi.org/10.1017/jsl.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.47

10 FELIX WEILACHER

In analogy with Theorem 2.2, we prove:

Theorem 3.2. An LCL on Δ-regular graphs is in COMPUTABLE if and only if it
is greedy.

We start with the reverse direction. Actually, to prove the final claim of
Theorem 1.5, we deal with the stronger statement where our graph need not be
acyclic:

Proposition 3.3. Let Π = (Σ,V , E) be an LCL on Δ-regular graphs, and assume
Π is greedy. Then any computable Δ-regular graph admits a computable Π-coloring.

Proof. Let G be such a graph, say with vertex and edge sets X and E respectively.
WLOG X ⊂ �. Let Σ′ ⊂ Σ be greedy. We will recursively define our coloring c in �
stages. At stage n ∈ �, we will color exactly the half edges incident to n if n ∈ X ,
and do nothing otherwise. We will maintain that if e ∈ E is such that exactly one of
the half edges comprising e has been colored so far, then it gets a color from Σ′.

We now describe stage n if n ∈ X : Let yi for i < k be the neighbors of n less than
n. Then by inductive hypothesis, c(yi , n) ∈ Σ′ for each i, and the Δ – k other incident
edges to x, say ej for j < Δ – k, not having a yi as their other endpoint have not
been touched. Thus, by the definition of greedy, we may color the half edges incident
to x so that c(x, ej) ∈ Σ′ for each j, thus maintaining our inductive hypothesis. 	

As is apparent from this proof, if an LCL on Δ-regular graphs is greedy, it can
be solved using a “greedy” algorithm. Such algorithms our typically easy to carry
out in other combinatorial settings, making the analogue of Proposition 3.3 easy to
prove in these settings. For example (giving another of the parts of Theorem 1.5):

Proposition 3.4. Let Π = (Σ,V , E) be an LCL on Δ-regular graphs, and assume
Π is greedy. Then any continuous Δ-regular graph admits a computable Π-coloring.

Proof. Let G be such a graph, say with vertex set X. By [2], there is a continuous
proper coloring d : X → �. We can then repeat the construction of the previous
proposition, except that at stage n ∈ � we color the half edges incident to all
vertices in d –1(n). This works because each d –1(n) is independent, and the result is
continuous since d and G are. (See, for example, Theorem 3.2 in [5].) 	

We now turn to the forward direction of Theorem 3.2. Again we prove the
contrapositive:

Proposition 3.5. If an LCL on Δ-regular graphs Π = (Σ,V , E) is not greedy, there
is a computable Δ-regular tree with no computable Π-coloring.

Proof. Our construction will closely follow that in the proof of Proposition 2.5.
Fix X,E, and the φt ’s as before. Once again, we will be recursively constructing a
sequence of Δ-regular forests with finite vertex sets, but really building a sequence of
� forests in parallel as kept track of by a recursively defined function C : X → �.
We will use the term “new” for added vertices and edges in the same way. Call the
forest we are building T.

Since Π is not greedy, for every Σ′ ⊂ Σ, there are a k ∈ {0, ... ,Δ} and a sequence
α0, ... , αk–1 from Σ′ witnessing that Σ′ is not greedy. That is, such that in the situation
of Definition 3.1, if this k is used and each half edge (yi , x) is given the color αi ,

https://doi.org/10.1017/jsl.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.47

COMP. VS DESCR. COMB. OF LOCAL PROBLEMS ON TREES 11

then if this is extended to a Π-coloring of H, there is some virtual half edge (x, e)
such that c(x, e) �∈ Σ′. Fix choices of such k and (αi)i<k for each Σ′ and call them
bad for Σ′.

Again, let us fix t ∈ � and describe the � steps in the construction of T � C –1(t).
The 0-th stage will be similar: Fix a very large N0
 |Σ| to be determined later,

independent of t. In the 0-th stage, placeN0 new vertices, sayw0, ... , wN0–1, inC –1(t),
and give each Δ new virtual incident edges.

We also initialize several variables: Set Σ′ = ∅ and N = N0. Also set xi = wi for
each i < N .

At the start of an arbitrary successor stage, say m + 1, suppose we have some
Σ′ ⊂ Σ, N ∈ � very large, and vertices xi for i < N and virtual half edges (yαi , e

α
i)

for i < N and α ∈ Σ′ such that:

(1) The xi ’s and yαi ’s all lie in distinct C –1(t)-components.
(2) For each i, if φt restricted to half edges meeting B(xi , 1) gives a Π-coloring,

there must be some virtual edge e incident to x with φt(x, e) �∈ Σ′.
(3) For each i and α, φt(yαi , e

α
i) = α.

Note that this is all satisfied after stage 0.
We start our successor stage by running the Turing machine computing φt for

m steps on all the half edges meeting each B(xi , 1). (Note that we can compute
B(xi , 1) since our vertex set so far is finite.)

If φt fails to converge in ≤ m steps on one of these inputs, or if it converges on all
of them but the result fails to be a Π-coloring of some B(xi , 1), we do nothing. We
call this the “uninteresting case.”

The “interesting case” is of course if φt does converge on all these inputs in ≤ m
steps, and the result is a Π-coloring for each B(xi , 1). In this case by condition (2)
above, there is a virtual edge fi for each i < N meeting xi with φt(xi , fi) �∈ Σ′. Let
� ∈ Σ \ Σ′ such that φt(xi , fi) = � for at least N/|Σ| i ’s. Update Σ′ to Σ′ ∪ {�}.

Let k and α0, ... , αk–1 ∈ Σ′ be bad for Σ′. Between the (xi , fi)’s and the (yαi , e
α
i)’s,

and using condition (1) above, we can chose virtual half edges (zji , g
j
i) for i < M :=

N/(Δ|Σ|) such that the zji ’s all lie in distinctC –1(t)-components and φt(z
j
i , g

j
i) = αj

for each j < k.
Now for each i < M/2, let vi be a new vertex and add it as an endpoint to gji for

each j, making all these edges true. Then, to maintain Δ-regularity, add Δ – k new
virtual incident edges to vi . This is shown in Figure 5.

We can now finish this stage of the construction with the updated value of N being
M/2. First set xi = vi for each i. Condition(2) is then satisfied by definition of bad.
We now define the (yαi , e

α
i)’s. If α = αj for some j, we can use the unused (zji , g

j
i)’s.

Else, if α = � we can use the firstM/2 (xi , fi)’s, and if not, the firstM/2 (yαi , e
α
i)’s

from the previous stage of the construction.
Thus the description of the construction is complete. As in the proof of

Proposition 2.5, it will be significant that the interesting case cannot occur more
than |Σ| times for a fixed t (since |Σ′| increases by one each time it does). As in that
proof, the first application of this is that it tells us what to pick for N0: We can take
N0 > (2Δ|Σ|)|Σ|, since 2Δ|Σ| is by how much the value of N was divided each time
the interesting case occurred.

https://doi.org/10.1017/jsl.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.47

12 FELIX WEILACHER

Figure 5. The “interesting case” for a step of the construction for a fixed t with
Δ = 3. The top and bottom images represent the before and after states respectively.

Claim 3.6. T is a computable Δ-regular forest.

Proof. At each stage in the construction, we either added new trees as
components, did nothing, or joined separate components at a single new vertex.
Thus T is acyclic.

T has vertex and edge set X and E for the same reason as in the proof
of Proposition 2.5. Also, since we maintain Δ-regularity at each stage in the
construction, to check if a pair (x, e) ∈ X × E is in T, we can run the construction
until x is added as a vertex, and then check if e is one of its incident edges. Thus T
is computable. 	

Claim 3.7. T admits no computable Π-coloring.

Proof. Exactly as in the proof of Proposition 2.5, if some φt were a Π-coloring
of T, we could conclude that the interesting case occurs infinitely often for this t,
contradicting the statement before Claim 3.6. 	

	

We end this paper by showing that the inclusion in Theorem 1.5 is strict as
promised. Actually by results from [5, 6], there is a sense in which being solvable by
a greedy algorithm characterizes the class CONTINUOUS as well: An LCL Π is
in CONTINUOUS if and only if there is some l ∈ � such that Π can be solved on
Δ-regular forests by first finding a proper coloring of the distance l graph (in which
two vertices are adjacent if their distance in the original graph is at most l), then
applying some constant-time local algorithm with that coloring as an input. It is
easy to find proper colorings greedily, hence our statement.

As in the proof of Proposition 3.4, it is also easy to find proper colorings
continuously. This is true even for the distance l graph, hence the reverse direction
in the result mentioned in the previous paragraph. However, in the computable

https://doi.org/10.1017/jsl.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.47

COMP. VS DESCR. COMB. OF LOCAL PROBLEMS ON TREES 13

setting, there is a big difference between l = 1 and l > 1; if a graph is computable
but not highly computable, we cannot effectively determine which pairs of vertices
have distance l from each other if l > 1. This difference will be key to our upcoming
example.

Our example will be a so-called “homomorphism problem.” This means that it
encodes the problem of finding a homomorphism to a fixed finite graph. We use the
same formalization of this as in [4]:

Definition 3.8. Let H be a finite graph (in the usual sense) with vertex set V.
ΠH is the LCL on Δ-regular graphs (V,V , E), where V is the set of multisets whose
Δ-elements are all the same, and E is the set of pairs {v,w} with v and w adjacent
in H.

For example, ΠKk is the problem of proper k-coloring. We start with a
characterization of which homomorphism problems are greedy which may be
interesting in its own right. For example, by Theorem 3.2 and the previous remark
about ΠKk , it generalizes the observation of Schmerl [10] that every computable
maximum degree Δ-graph is computable (Δ + 1)-colorable, but that there are such
graphs which are not computably Δ-colorable.

Lemma 3.9. Let H be a finite graph in the usual sense. ΠH is greedy if and only if
H contains a (Δ + 1)-clique.

Proof. If Σ′ is a size Δ + 1 set of vertices on which H induces a clique, then this
set clearly witnesses that ΠH is greedy.

On the other hand, suppose Σ′ is a set of vertices witnessing that ΠH is greedy.
We will produce inductively a sequence v0, ... , vΔ on which H induces a clique,
maintaining inductively that vi ∈ Σ′ for i < Δ.

We use the notation of Definition 3.1. Let k ≤ Δ and suppose we have vi ∈
Σ′ for i < k, all pairwise adjacent. Apply the definition with this value of k and
c(yi , x) = vi for all i. We get an extension to the half edges incident to x in which,
by definition of ΠH , all these half edges must get the same label, call it vk , and vk
must be adjacent to each previous vi . Furthermore, if k < Δ, x has some incident
virtual edge, and so vk must be in Σ′, maintaining our inductive hypothesis. 	

It now suffices to produce a finite graph H with no (Δ + 1)-clique but with ΠH ∈
CONTINUOUS. We will do this by induction on Δ, and thus call the graph HΔ.

The base case H2 will be a 5 cycle, say with vertices v0, ... , v4, with vi and vj
adjacent if and only if i and j differ by one mod 5.

Given HΔ, we define HΔ+1 by introducing a new vertex, call it wΔ+1, which is
adjacent to each vertex of HΔ.

Claim 3.10. For each Δ, HΔ does not contain a (Δ + 1)-clique.

Proof. We proceed by induction on Δ.H2, a 5 cycle, does not contain a triangle.
Suppose we know thatHΔ contains no (Δ + 1)-clique, and suppose to the contrary
that HΔ+1 contains a (Δ + 2)-clique K. Then since HΔ+1 has only one new vertex
compared to HΔ, the restriction of K to HΔ must give either a (Δ + 1) or (Δ + 2)
clique depending on whetherwΔ+1 ∈ K . In either case this contradicts the inductive
hypothesis. 	

https://doi.org/10.1017/jsl.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.47

14 FELIX WEILACHER

Claim 3.11. For each Δ, HΔ ∈ CONTINUOUS (for Δ-regular forests).

Proof. For this proof we abandon talk of half edges and switch to the usual
notion of a graph. We prove by induction on Δ that every continuous forest with
maximum degree ≤ Δ admits a continuous homomorphism toHΔ.

For the base case, let G be a continuous forest on a Polish space X with maximum
degree 2. By [2], we can find a clopen maximal 4-discrete set A. Let G ′ be the
continuous graph G � (X \ A). Also by [2], let d : (X \ A) → � be a continuous
coloring such that each d –1(n) is 7-discrete. Note that each G ′-component is a path
of length at most 7, and so d labels the vertices of each component with unique
labels.

We now define our continuous homomorphism, call it c. Set c(x) = v0 for x ∈ A.
Now consider a G ′-component, call it P. P is a path of length at most 7. The
endpoints are possibly G-adjacent to points in A, and if both are so, the length of
P is at least 3. Observe then that we can always extend c to P while keeping it a
homomorphism toH2: This is trivial if we are not in the case where both endpoints
of P are adjacent to a point in A, and if we are in that case, we can alternate between
v0 and v1 along P if the length of P is even, or circle the 5-cycle H2 once then do
this alternation if the length is odd. (Note that P is long enough to allow this.)
Furthermore, since d � P is injective, we can do this in a constructive way using d
to break symmetry. That is, we can extend c to a homomorphism G � H2 in such a
way that the value of c at a point x depends only on the values of d and the indicator
function �A of A on B(x,N) for some large constant N. It follows from this and the
continuity of d and �A that c is continuous. (See, for example, Theorem 3.2 in [5].)

The inductive step is now easy. Suppose we have this result for some Δ ≥ 2, and
let G be a continuous forest on a Polish space X with maximum degree ≤ Δ + 1. We
will define a continuous homomorphism c to HΔ+1. By [2] again, we may define c
be wΔ+1 on a clopen maximal independent set. Let G ′ = G � (X \ c–1(wΔ+1)). This
is a continuous graph with maximum degree ≤ Δ by maximality of c–1(wΔ+1). Thus
by inductive hypothesis there is a continuous homomorphism c′ : G ′ � HΔ. Since
wΔ+1 is adjacent to every vertex in HΔ, we can just extend c to all of X by setting
c � (X \ A) = c′. 	

Acknowledgements. Thanks to the American Institute of Mathematics for hosting
the workshop at which much of this research was conducted, as well as to the
organizers of that workshop, Clinton Conley, Stephen Jackson, Andrew Marks,
and Slawomir Solecki. Thanks also to Jan Grebı́k for suggesting that Theorem 1.4
ought to be true, and encouraging me to write up the proof of it.

REFERENCES

[1] D. R. Bean, Effective coloration, this Journal, vol. 41 (1976), no. 2, pp. 469–480.
[2] A. Bernshteyn, Probabilistic constructions in continuous combinatorics and a bridge to distributed

algorithms. Advances in Mathematics, vol. 415 (2023), Article no. 108895.
[3] ———, Distributed algorithms, the Lovász local lemma, and descriptive combinatorics. Inventiones

Mathematicae, vol. 233 (2023), pp. 495–542.
[4] S. Brandt, Y.-J. Chang, J. Grebı́k, C. Grunau, V. Rozhoň, and Z. Vidnyánszky, Local problems

on trees from the perspectives of distributed algorithms, finitary factors, and descriptive combinatorics, 13th
Innovation in Theoretical Computer Science Conference (ITCSC), vol. 215 (M. Braverman, editor),

https://doi.org/10.1017/jsl.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.47

COMP. VS DESCR. COMB. OF LOCAL PROBLEMS ON TREES 15

Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (LZI), Germany, 2022, pp. 29:1–29:26.

[5] ———, Deterministic distributed algorithms and descriptive combinatorics on Δ-regular trees,
preprint, 2022, arXiv:2204.09329.

[6] Y.-J. Chang, T. Kopelowitz, and S. Pettie, An exponential separation between randomized and
deterministic complexity in the local model. SIAM Journal on Computing, vol. 48 (2016), pp. 122–143.

[7] N. Linial, Locality in distributed graph algorithms. SIAM Journal on Computing, vol. 21 (1992),
no. 1, pp. 193–201.

[8] A. B. Manaster and J. G. Rosenstein, Effective matchmaking (recursion theoretic aspects of
a theorem of Philip hall). Proceedings of the London Mathematical Society, vol. s3–25 (1972), no. 4,
pp. 615–654.

[9] L. Qian and F. Weilacher, Descriptive combinatorics, computable combinatorics, and ASI
algorithms, preprint, 2022, arXiv:2206.08426.

[10] J. H. Schmerl, The effective version of Brooks’ theorem. Canadian Journal of Mathematics,
vol. 34 (1982), no. 5, pp. 1036–1046.

DEPARTMENT OF MATHEMATICAL SCIENCES
CARNEGIE MELLON UNIVERSITY

WEAN HALL 6113
PITTSBURGH, PA 15213, USA

E-mail: fweilach@andrew.cmu.edu
URL: https://www.math.cmu.edu/∼fweilach/

https://doi.org/10.1017/jsl.2023.47 Published online by Cambridge University Press

https://arxiv.org/abs/2204.09329
https://arxiv.org/abs/2206.08426
mailto:fweilach@andrew.cmu.edu
https://www.math.cmu.edu/~fweilach/
https://doi.org/10.1017/jsl.2023.47

	1 Introduction
	2 Highly computable forests
	3 Computable forests

