The number n is multiply perfect if and only if $\sigma_{1}(n) \equiv$ $0(\bmod n)$. By (1) this is equivalent to

$$
\begin{equation*}
T_{1}(n) \equiv S_{1}(n)-\varphi_{1}(n)+1 \quad(\bmod n) \tag{2}
\end{equation*}
$$

The right hand side of (2) is congruent to
$-\sum_{\mathrm{d} \mid \mathrm{n}, \mathrm{d}>1} \mu(\mathrm{~d}) \mathrm{dS}_{1}(\mathrm{n} / \mathrm{d})+1 \equiv-\sum_{\mathrm{d} \mid \mathrm{n}, \mathrm{d}>1} \mu(\mathrm{~d}) \mathrm{n}_{2}(1+\mathrm{n} / \mathrm{d})+1(\bmod \mathrm{n})$.
If n is odd, each $1+n / d$ is even and $n \left\lvert\, n \frac{1}{2}(1+n / d)\right.$. Thus an odd n is multiply perfect if and only if $T_{1}(n) \cong 1(\bmod n)$.

Now let $n=\prod_{p \mid n} p^{\alpha}$ be even. Correcting the statement of our problem we have to assume $n \neq 2$. We wish to show that n is multiply perfect if and only if $T_{1}(n) \equiv 1+n / 2(\bmod n)$. Thus we have to show $\sum_{d \mid n, d>1} \mu(d) n \frac{1}{2}(1+n / d) \equiv n / 2(\bmod n)$ or $\sum_{d \mid n, d>1} \mu(d)(1+n / d)+1 \equiv 0(\bmod 2)$. This is equivalent to

$$
\begin{equation*}
2 \mid \Sigma=\Sigma_{d \mid n} \mu(d)(1+n / d) \tag{4}
\end{equation*}
$$

But $\Sigma=\Sigma_{d \mid n} \mu(d)(n / d)+\Sigma_{d \mid n} \mu(d)=\sum_{d \mid n} \mu(d)(n / d)$

$$
=\varphi(n)=\Pi_{p \mid n}\left(p^{\alpha}-p^{\alpha-1}\right)
$$

Thus Σ is even unless $n=2$. This proves (4).
P 3. Let F be a finite field of characteristic p. Let V_{n} be an n-dimensional vector space over F. In V_{n} a symmetric bilinear form (a, b) is given. Let $n \geqslant 2$ if $p=2$ and $n \geqslant 3$ if p is odd. Show that there is a vector $a \neq 0$ in V_{n} such that $(a, a)=0$.
P. Scherk

Solution by the proposer. Let $F=\{\xi, \eta, \ldots\}$ be a finite field of characteristic p. Let G denote the multiplicative group of all the squares $\neq 0$. If $p=2, \xi^{2}=\eta^{2}$ if and only if $\xi=\eta$. Thus the mapping of the elements $\neq 0$ of F onto G is oneone and G is the multiplicative group of F. If $p>2$, this mapping is two-one and G is a subgroup of index two in the multiplicative group of F. Let \bar{G} denote the complement of G in this group.

If $1+G=G, 1 \in G$ would successively imply $2,3, \ldots, p-1 \in G$ and finally $p=0 \in G$. Thus

$$
\begin{equation*}
1+G \neq G \tag{1}
\end{equation*}
$$

Let $V_{n}=\{a, b, \ldots\}$ denote a vector space of dimension n over F with a symmetric bilinear form (x, y). If $(\mathrm{a}, \mathrm{a})=0$, the vector a is called isotropic.

If $p=2$ and $n \geqslant 2, V_{n}$ will contain two linearly independent vectors b and c. We may assume they are non-isotropic. The equation $\xi^{2}=(b, b) /(c, c)$ has a solution $\xi \in F$. It follows that $(b+\xi c, b+\xi c)=(b, b)+2 \xi \cdot(b, c)+\xi^{2} \cdot(c, c)=$ $(b, b)+\xi^{2} \cdot(c, c)=0$.

From now on let $p>2, n \geqslant 3$. For every vector a let M_{a} denote the set of the norms $(\lambda a, \lambda a)=\lambda^{2}(a, a)$ with $\lambda \neq 0$. Thus either a is isotropic or $M_{a}=G$ or $M_{a}=\bar{G}$.

We choose any three mutually orthogonal vectors $\neq 0$. if none of them is isotropic, two of them, say b and c satisfy $M_{b}=M_{c}$. We may assume $(b, b)=(c, c)$. Thus

$$
\begin{gathered}
(b+\xi c, b+\xi c)=(b, b)+2 \xi \cdot(b, c)+\xi^{2} \cdot(c, c) \\
=(b, b)+2 \xi \cdot 0+\xi^{2} \cdot(b, b)=\left(1+\xi^{2}\right)(b, b)
\end{gathered}
$$

Case (i): $-1 \in G$. Then let ξ be a solution of $1+\xi^{2}=0$. The vector $b+\xi c$ will be isotropic.

Case (ii): $-1 \in \overline{\mathrm{G}}$. By (1) there is a ξ such that $1+\xi^{2} \in \overline{\mathrm{G}}$. Thus there is a vector d such that $M_{b} \neq M_{d}$.

Since $n \geqslant 3$, there is a vector $e \neq 0$ such that $(e, b)=(e, d)=$ 0 . Since M_{e} must be distinct from either M_{b} or M_{d}, we have found two vectors, say e and f such that $(e, f)=0, M_{e} \neq M_{f}$. We may assume $1 \in M_{e},-1 \in M_{f}$ and hence $(e, e)=1,(f, f)=-1$. This yields $(e+f, e+f)=(e, e)+(f, f)=0$ 。

NOTES

ON THE DISCRIMINANTS OF A BILINEAR FORM

> Jonathan Wild, Prince Albert, Sask.

Let E denote a vector space of dimension n over a field of characteristic $\neq 2$. In E a symmetric bilinear form $f(x, y)$ is given. Define E_{f}^{*} as the subspace of those vectors x for which $f(x, y)=0$ for all $y \in E$. Thus rank $f=n-\operatorname{dim}$ Ef. Furthermore, define ind $f=$ maximum dimension of a subspace in which

