The number n is multiply perfect if and only if $\mathcal{T}_1(n) \equiv 0 \pmod{n}$. By (1) this is equivalent to

(2)
$$T_1(n) \equiv S_1(n) - \varphi_1(n) + 1 \pmod{n}$$
.

The right hand side of (2) is congruent to $-\sum_{d|n,d>1} \mathcal{M}(d) dS_1(n/d) + 1 \equiv -\sum_{d|n,d>1} \mathcal{M}(d) n\frac{1}{2}(1+n/d) + 1 \pmod{n}.$ If n is odd, each 1 + n/d is even and $n/n\frac{1}{2}(1+n/d)$. Thus an odd n is multiply perfect if and only if $T_1(n) \equiv 1 \pmod{n}$.

Now let $n = \prod_{p \mid n} p^{\alpha}$ be even. Correcting the statement of our problem we have to assume $n \neq 2$. We wish to show that n is multiply perfect if and only if $T_1(n) \equiv 1 + n/2 \pmod{n}$. Thus we have to show $\sum_{d\mid n, d > 1} \mu(d) n_2^{\frac{1}{2}}(1+n/d) \equiv n/2 \pmod{n}$ or $\sum_{d\mid n, d > 1} \mu(d)(1+n/d) + 1 \equiv 0 \pmod{2}$. This is equivalent to (4) $2\mid \overline{\gamma} = \sum_{d\mid n} \mu(d)(1+n/d)$.

But
$$\Sigma = \sum_{d|n} \mu(d)(n/d) + \sum_{d|n} \mu(d) = \sum_{d|n} \mu(d)(n/d)$$

= $\varphi(n) = \prod_{p|n} (p^{\alpha} - p^{\alpha} - 1).$

Thus Σ is even unless n = 2. This proves (4).

<u>P</u> 3. Let F be a finite field of characteristic p. Let V_n be an n-dimensional vector space over F. In V_n a symmetric bilinear form (a,b) is given. Let $n \ge 2$ if p = 2 and $n \ge 3$ if p is odd. Show that there is a vector $a \ne 0$ in V_n such that (a,a) = 0. P. Scherk

Solution by the proposer. Let $F = \{\xi, \eta, \ldots\}$ be a finite field of characteristic p. Let G denote the multiplicative group of all the squares $\neq 0$. If p = 2, $\xi^2 = \eta^2$ if and only if $\xi = \eta$. Thus the mapping of the elements $\neq 0$ of F onto G is oneone and G is the multiplicative group of F. If p > 2, this mapping is two-one and G is a subgroup of index two in the multiplicative group of F. Let \overline{G} denote the complement of G in this group.

If 1 + G = G, $1 \in G$ would successively imply 2, 3, ..., p-leG and finally $p = 0 \in G$. Thus

(1) $1 + G \neq G$.

Let $V_n = \{a, b, ...\}$ denote a vector space of dimension n over F with a symmetric bilinear form (x,y). If (a,a) = 0, the vector a is called isotropic.

If p = 2 and $n \ge 2$, V_n will contain two linearly independent vectors b and c. We may assume they are non-isotropic. The equation $\xi^2 = (b,b)/(c,c)$ has a solution $\xi \in F$. It follows that $(b + \xi c, b + \xi c) = (b,b) + 2\xi$. $(b,c) + \xi^2 \cdot (c,c) =$ $(b,b) + \xi^2 \cdot (c,c) = 0$.

From now on let p > 2, $n \ge 3$. For every vector a let M_a denote the set of the norms $(\lambda a, \lambda a) = \lambda^2(a, a)$ with $\lambda \ne 0$. Thus either a is isotropic or $M_a = G$ or $M_a = \overline{G}$.

We choose any three mutually orthogonal vectors $\neq 0$. if none of them is isotropic, two of them, say b and c satisfy $M_b = M_c$. We may assume (b,b) = (c,c). Thus

$$(b + \xi c, b + \xi c) = (b, b) + 2 \xi. (b, c) + \xi^{2}. (c, c)$$

= $(b, b) + 2 \xi. 0 + \xi^{2}. (b, b) = (1 + \xi^{2})(b, b).$

Case (i): $-1 \in G$. Then let ξ be a solution of $1 + \xi^2 = 0$. The vector $\mathbf{b} + \xi$ c will be isotropic.

Case (ii): $-1 \in \overline{G}$. By (1) there is a ξ such that $1 + \xi^2 \in \overline{G}$. Thus there is a vector d such that $M_b \neq M_d$.

Since $n \ge 3$, there is a vector $e \ne 0$ such that (e,b) = (e,d) = 0. O. Since M_e must be distinct from either M_b or M_d , we have found two vectors, say e and f such that (e,f) = 0, $M_e \ne M_f$. We may assume $l \in M_e$, $-l \in M_f$ and hence (e,e) = 1, (f,f) = -1. This yields (e + f, e + f) = (e,e) + (f,f) = 0.

NOTES

ON THE DISCRIMINANTS OF A BILINEAR FORM

Jonathan Wild, Prince Albert, Sask.

Let E denote a vector space of dimension n over a field of characteristic $\neq 2$. In E a symmetric bilinear form f(x, y) is given. Define E_f^* as the subspace of those vectors x for which f(x, y) = 0 for all $y \in E$. Thus rank $f = n - \dim E_f^*$. Furthermore, define ind f = maximum dimension of a subspace in which