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1. Introduction and results

The best uniform approximation of a function / on [—1,1] by real algebraic
polynomials satisfies

lim {£„[/]} 1/n = 0, (1.1)
n - * oo

if and only if / is the restriction to [ — 1,1] of an entire function (Bernstein [2], p. 113,
see also [12], pp. 83-85). For such functions / the rate of best approximation has been
characterized by Varga [24], Reddy [14], Shah [21], and Kapoor and Nautiyal [10] in
terms of order and type of / , lower order and type, and in terms of more general
concepts of order. On the other hand, order and type of / are connected with the
Taylor coefficients, i.e. with the rate of growth of the sequence {/(t)(0)}keN (see [23], p.
41 or [3], pp. 11/12; cf. also [19], [20], [6], [7], [8]) and this has been extended to
iterated orders by Schonhage [17], Sato [16], Reddy [14], Juneja, Kapoor, and Bajpai
[9] (also [22], [13]), and to generalized orders by Seremeta [18], Bajpai, Gautam, and
Bajpai [1] as well as Kapoor and Nautiyal [10]. Combining the two kinds of charac-
terizations (as done, e.g., by Reddy [15], p. 105) approximation theorems in terms of
the sequence {/(k)(0)}teN are obtained. But in such results the rate of best approximation
is always described by a limit relation, e.g. of the form Iimsupn_00n(£n[/])p/n = xpe2"p,
and this causes a considerable loss of precision, as will be discussed in more detail in
Section 3 (in this respect cf. also the remark by Bernstein [2], pp. 114/115).

The purpose of this paper is to derive sharper results for part of the classes of
functions considered in the above papers, including functions of order %2 and zero
order, without employing some concept of order as an intermediate step. Also the
sequence of maximum norms of fm on [—1,1] as well as the Fourier Chebychev
coefficients will be used for further characterizations.

The following notations will be needed. Let C[—1,1] denote the space of continuous
functions on the interval [—1,1], with maximum norm, and £„[ / ] =infpe3,J|/—p||,
where 3Pn is the set of polynomials of degree at most n. For rates of best approximation
the elements q> of the following classes Qfi will be admitted.

Qp = {(p; cp e Cx(xp, oo) for some xp > 1, cp(x) > 0,
(1.2)

(log cp)'{x) ̂  /? log x for each x>x^}.

tThe first author was supported by the Deutsche Forschungsgemeinschaft (Grant No. Go 261/6-1).
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Here yS is a positive number, and C 1 ^ , oo) denotes the set of functions which have a
continuous derivative on (xp, oo). Roughly speaking, Qfi consists of functions cp which
increase at least as rapidly as cexp{/foc(logx — 1)} for some constant c>0.

Setting ho = (l/7i)1/2,hk=(2/n)1'2 for ke N and Tt(x) = cos(fcarccosx),xe[-l,l],feeP =
{0,1,2,...}, the Fourier Chebychev coefficients of a function / e C[ — 1,1] are defined by

ck(f) = hk ] f(x)Tk(x)(l-x2rll2dx (keP).
- i

Our main results are as follows.

Theorem 1. Let / e C [ — 1,1] and cpeClfifor some 0^1. The following are equivalent.

(i)

(iii) |/(r)(0)| =

If the assertion (ii) is omitted, the restriction on p can be relaxed somewhat:

Theorem 2. Let / E C [ — 1 , 1 ] and <pe£lpfor some fi^l/2. Then conditions (i) and (iii)
of Theorem 1 are equivalent.

2. Proofs

We need three elementary Lemmas.

Lemma 1. Let / eC[— 1,1] and suppose that (1.1) holds. The Chebychev coefficients
ck(f) can be expressed in terms of the Taylor coefficients ak = /(<l)(0)/fc! and vice versa, as
follows.

f] (k+j2J)ak+2J2-2J (keP), (2.1)
0

(2-2)

Proof. Equation (2.1) was given, e.g., by Bernstein [2], p. 116, and equation (2.2)
follows by observing that, in view of (1.1) and [23], p. 245, the series

f(x)= E akx
k= t hkck(f)Tk(x)

k=0 k=0

converge for each xe[— 1,1], then inserting
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(cf. [11], p. 297 (6)) and comparing coefficients.

Lemma 2. For each keN,jeP one has

(*}'). (2.3)

Proof. Setting a(k,j) = {k+j2J)/(k^J), one has to show that a(k,j)<.22i for each jeP.
Since a(k + l,j)Sa(k)j) for each fceN.jeP, as is easily seen, it suffices to prove that

a(l,j)^22j O'eP). (2.4)

Now

•7 •• -L i n m n fti
(jeP),

where the last inequality follows by induction, and the proof is complete.
Assertion (2.7) of the following lemma is a known characterization of condition (i) of

Theorems 1, 2 in terms of Fourier Chebychev coefficients. It is a slightly modified
version of a result of Bernstein (see, e.g., [5], p. 107 or [12], Theorem 74), where the
hypothesis is I f=o |c J + n + 1( / ) | = C'(|cn+1(/)|),«^oo, instead of (2.6).

Lemma 3. Let f eC[ — 1,1] and (peQp for some P>0. Then

(2.5)

Moreover, (2.6) implies that

:-»<x if and only j/ |ck(/) | =(

Proof. By (1.2) and the mean value theorem one has for each r>xfi, setting

g(r +j) -g(r) = M r + 8J) ̂ jp log r (<5 e (0,1), j e P),

and thus (2.5). This implies
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i.e. (2.6). The one part of (2.7) is an immediate consequence of the standard inequality

(2.8)

(cf., e.g. [5], p. 107, (8.41)). Conversely, if |cfc(/)| = 0(l/<p(/c)),fc->oo, the Fourier-
Chebychev series of / is uniformly convergent on [—1,1] in view of (1.2), and (2.6)
implies that

EJLf] S ||/(x) - t hkck(f)Tk(x) || g £ hk\ck(f)\
k=0 *=n+l

Proof of Theorem 1. If (i) is assumed, it follows by (1.2) that (1.1) is satisfied. Thus
(2.2) can be used. Inserting (2.8) and (i) into (2.2), and observing (2.5), we have

and, by the binomial theorem,

j=o

which remains bounded, as fc-»oo, if and only if P^j. This proves the implication
(i)=>(iii).

If (iii) holds, (1.2) implies again that the Taylor expansion of / converges uniformly
on [— 1,1], so that, for each re P,

^M2'r\
,k%(k-r)\

Using (2.5), (2.9), and (2.10), we find for each r>xp

where the last equation holds provided /?^1. This proves (ii).
The implication (ii)=>(i) is an immediate consequence of the well-known inequality

(see e.g. [5], p. 103)

and the proof is complete.
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Proof of Theorem 2. As has been noted in the above proof, the implication (i)=>(iii)
remains valid for fi ̂  1/2.

If (iii) holds, the Taylor expansion of/is uniformly convergent on [—1,1], so that

n
00 I fw

fc! ~

Using (2.5), it follows as in the proof of (2.6) that £„[ / ] = a)(2n+1/<p(n+l)), n-*co, so
that (1.1) is satisfied. Now (2.1) can be employed, and hence by (iii) we have for each
k<=N

j=o j=o

Using (2.5) once more and Lemma 2, one has

and as in the proof of Theorem 1 it follows that the latter sum is bounded, provided
p^ 1/2. Thus (i) follows in view of (2.7).

3. Remarks

In connection with Theorem 2, a result of Bernstein [2], p. 116 (cf. also [12], p. 89) is
to be mentioned which states that under the condition limn_aoV/n|an|1/n = 0 there exists a
sequence {nk}keN such that

Bernstein's hypothesis is slightly more restrictive than our requirement /? ̂  1/2.
We further compare the above results with known characterizations in terms of order

and type of an entire function ([14], Thm. 3, [3], p. 11/12). For / e C [ - l , 1], 0<p<oo,
, the following are equivalent:

/ i s the restriction to [— 1,1] of an entire function of order p and type T, (3.1)

, (3.2)

lim sup nd/^OJl/fiiy"" = xpe. (3.3)
rt-*co

In particular, setting

) e-xa<pdx) (3.4)
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for some ae(0,1), all functions / with the property that

£ „ [ / ] = V<7>» («elVI), (3.5)

for some j = 1,2,3 satisfy (3.2) with same values of x and p. Similarly, all / with the
property that

| | (neN), (3.6)

for some j= 1,2,3 satisfy (3.3) with same T and p. Thus the above characterization in
terms of p and x does not allow to distinguish between different values of j . If we restrict
p and x to 0<p^2, 0^T<2 p /p , however, the above cpj are in Clp with /? = 1/p, so that
Theorem 2 associates the cases j= 1,2,3 in (3.5) and (3.6) to each other in the right order.

More refined characterizations than those in (3.1)—(3.3) were given by Reddy [14],
Seremeta [18] (who generalized results of Schonhage [17]) and S.M. Shah [21]. They
used more general concepts of an order which make sense in cases where the usual
order is infinite. But due to our definition of Q^ there is no overlap between their results
and the present paper.

There is, however, an overlap with results of Kapoor and Nautiyal [10] who defined
as the generalized order of an entire function / the quantity

. _ ,. a(log M(r,f))
p(a, a, / ) = hm sup — - ,

,.-,«, a(logr)

where M(r, f)=max^=r\f(z)\ and a(x) is a nonnegative, increasing function to be chosen
from certain sets Q, Q (see [10], p. 65).

Setting P(L) = max{l,L} if aeQ and P(L) = 1+Lif aefl, and defining, for a given
entire / , a strictly increasing sequence {An}r=o °f naturals such that A.o = 0,f(z) =
£ " = 0 anz

x" with an=/=0 for all n, the results in [10] (Theorems 1 and 4) can be interpreted
as follows (for the case a(x) = logx cf. also Reddy [14], Thm. 5 and [15], La. 3).

Let / satisfy (1.1). The following are equivalent.

/ is the restriction to [ —1,1] of an entire function of order p(a,a.,f) = p, (3.7)

P( lim sup . a ( M ) ) = p, (3.8)

• V0%Wn)

0-9)

»(^I^IT4I)
This can be applied, e.g., to a(x) = logx (then aeQ) and/eC[— 1,1] with £„[/] =
l/(Pj(n) for each neN, where; = 4,5 and

>l), (3.10)
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with the result that (3.8) is always satisfied with p = x/{x— 1). Thus condition (3.8) is not
suited to distinguish between <p4 and cp5. The same holds with respect to property (3.9).

The situation is similar in case at(jc) = logt+1(x), for some keN, where log!(x) =
Iogx,logt+I(x) = log(logfc(x)), and / * e C [ - l , 1] with £„[/*] = 1/iMn) for each neN,
where

Ux) =exp {yx exp, [(log, W)1/L]} (3.11)

for x large enough, L>\, y>0 and exp!(x) = exp(x), expt+1(x) = exp(expt(x)). For each
keN, condition (3.8) is satisfied with p(<xk,<xk,fk) = L, so that, again, the choice of y has
no influence upon the generalized order.

An application of Theorem 1, however, will produce sharp results for the above
examples, i.e. to different (p,\j/ in (3.10), (3.11) different rates of increase of {/(r)(0)}r6N are
assigned.

The above phenomena are due to the fact that in the definitions of order, type, and
generalized orders, the maximum modulus M(r) is compared with a very special set of
reference functions only. So the lack of precision there does not imply that M(r) itself
would be useless for characterizing rates of best approximation. In this respect see also
the forthcoming paper [4].
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