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Abstract
The gut microbiota has a profound impact on human health. Emerging data show that dietary patterns are associated with different communities
of bacterial species within the gut. Prevotella species have been correlated with plant-rich diets, abundant in carbohydrates and fibres. Dysbiosis
within the gut ecosystem has been associated with the development of non-communicable diseases such as obesity, the metabolic syndrome,
inflammatory bowel disease, irritable bowel syndrome, colorectal cancer, type 1 diabetes, allergies and other diseases. The purpose of this
comprehensive literature review was to evaluate the available data on the impact of diet on the Prevotella genus, as a dietary fibre fermenter
in the gut as well as its implications as a potential biomarker for homeostasis or disease state through its metabolite signature. Studies were
identified by conducting PubMed, Web of Science Core Collection and Google Scholar electronic searches. We found eighty-five publications
reporting the impact of dietary patterns on gut microbial communities, including Prevotella or Prevotella/Bacteroides ratio in particular.
Moreover, the role of Prevotella species on health status was also evaluated. Prevotella possess a high genetic diversity, representing one
of the important groups found in the oral cavity and large intestine of man. The gut commensal Prevotella bacteria contribute to polysaccharide
breakdown, being dominant colonisers of agrarian societies. However, studies also suggested a potential role of Prevotella species as intestinal
pathobionts. Furthermetagenomic studies are needed in order to reveal health- or disease-modulating properties of Prevotella species in the gut.
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In the last decades, researchers started to understand that the gut
microbiota is a key player affecting human health, being an
essential key in human health and disease(1). The focus shifted
on understanding what constitutes a health- (eubiotic) or dis-
ease-promoting (dysbiotic) microbial community(1). Emerging
evidence shows that alterations in the intestinal microbial bal-
ance could lead to dysbiosis and play a pathological role, con-
tributing to the development of non-communicable diseases
such as obesity, the metabolic syndrome (MetS), inflammatory
bowel disease, irritable bowel syndrome, colorectal cancer, type
1 diabetes, rheumatoid arthritis, allergies, autism and major
depressive disorders(1–6).

The human intestinal microbiotawas shown to play a role as a
vital regulator of basic human biological processes such as
modulating the metabolic phenotype, extracting nutrients and
energy from our diets, programming host immune system and
regulating epithelial development(7). These core functions are
linked to the production of essential and extremely diverse
metabolites such as vitamins (vitamin B12, folic acid or
vitamin K), bile acids, neurotransmitters (serotonin, dopamine,

acetylcholine) and SCFA (acetic acid, propionic acid and butyric
acid). These metabolites result from undigested fibre fermenta-
tion by the gut microbiota(8,9).

More than 90 % of the entire population of the human gut
microbiota are represented by two phyla, Firmicutes (which
includes mainly Clostridium, Enterococcus, Lactobacillus and
Faecalibacterium genera) and Bacteroidetes (which includes
notably Bacteroides and Prevotella genera)(5,10).

Preliminary studies showed that somemicrobial species from
the gut ecosystem had been linked to specific dietary habits. To
illustrate, strong research efforts initiated by projects such as the
European Metagenomics of the Human Intestinal Tract
(MetaHIT) (http://www.metahit.eu) project, the American
Human Microbiome Project (HMP) (http://hmpdacc.org) or
the Asian Microbiome Project (http://www.asiangut.com/) had
emphasised a higher diversity of the gut microbes of rural and
preagricultural or isolated populations compared with wester-
nised or industrialised populations.

In this regard, observational studies on these populations
highlighted that these communities are characterised by an
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abundance of Prevotella species within the gut, whereas wester-
nised populations harbour higher levels of Bacteroides than
Prevotella(11–20).

To date, limited information is available linking microbiota or
specific microbial species like the Prevotella genus to health
markers; however, several studies have established a correlation
between microbial taxa and disease(3,4,7). Regarding Prevotella,
studies focused on the associations between the diverse species,
genome and habitats with dietary patterns, health and disease.
Characterisation of the healthy human microbiota by using
next-generation sequencing techniques has revealed a preva-
lence of Prevotella species at mucosal sites, within the respira-
tory system, oral and gut ecosystem. Evidence revealed
beneficial effects of some Prevotella strains in the gut such
as not only improving CVD risk factor profile and glucose
metabolism(21,22), but also pathobiontic properties of some
strains which promoted diseases like the MetS, obesity, inflam-
matory bowel disease or other inflammatory diseases (rheuma-
toid arthritis, asthma, bacterial vaginitis, HIV infection)(23).

The necessity of larger cohort studies in order to establish a
disease-triggering role of Prevotella species is highlighted, since
inflammatory diseases are multifactorial and Prevotella is also
considered beneficial due to its abundance in healthy gut micro-
biota and association with plant-rich diets(24–26).

Therefore, the selection of the Prevotella genus from the gut
as the main subject for this systematic review lies in its signifi-
cance as commensal of the human gut and its characteristic as
dietary fibre fermenter. We decided to further examine eligible
studies that focus on unravelling the association between dietary
habits, food products and the presence of Prevotella species and
their metabolite signature as well as the relevance of this bacte-
rial genus in health status.

Experimental methods

Literature search

We conducted our literature review in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement(27). The literature search was con-
ducted independently by both authors, with disagreements
resolved by consensus.

We searched the scientific electronic databases PubMed,
Web of Science Core Collection (WoS CC) and Google
Scholar for potentially eligible articles. We developed a system-
atic search strategy, which included the following descriptors
from PubMed: ‘diet’, ‘gut microbiota’, ‘Prevotella’ and ‘health’.
In addition, we considered free-text terms like ‘dietary pattern’,
‘eating behaviour’, ‘plant-based diet’, ‘dietary fibre’, ‘gastrointes-
tinal microbiome’, ‘health status’ and ‘disease’. The logical con-
nectives ‘and’, ‘or’ and ‘and not’ were systematically used to
combine descriptors and terms used to trace the publications.
For the WoS CC database and Google Scholar, we adapted
our final PubMed search strategy. In Table 1, we provide the
exact search strategies of the literature databases. We also
explored for additional articles by checking the references cited
in the primary eligible studies included in this systematic review.
The final search on 4 November 2018 resulted in 274 hits (Fig. 1)
from the databases after excluding 9811 duplicates identified
using Endnote (Thomson Reuters). An initial screening of the
titles and abstracts of articles was then performed to exclude
irrelevant studies. During the systematic evaluation, study data
were reviewed, where possible, in relation to dietary patterns
and levels of Prevotella, changes in the intestinal microbiota,
the role of Prevotella in the gut system, the metabolite signature
and any reportedmetabolic consequence of thePrevotella genus
in rodents and human studies. Then, the full texts of potentially
eligible studies were reviewed before definitive inclusion.

Study selection

Table 2 provides an overview of the a priori defined inclusion
and exclusion criteria that we applied to select eligible articles.

We (G. P. and D.-C. V.) independently screened all 274
abstracts. By applying inclusion/exclusion criteria to the infor-
mation contained in the abstract, we reduced the pool of poten-
tially eligible articles to 155 (Fig. 1). We evaluated the retrieved
full-text articles applying the same inclusion and exclusion crite-
ria that were used for the abstract selection. Any disagreements
during the selection process were discussed among all the
reviewers and unit consensus was reached. Finally, we included
eighty-five full-text articles into our review, after we excluded
seventy articles that did not meet the inclusion criteria.

Table 1. Detailed search strategies for PubMed, Web of Science Core Collection (WoS CC) and Google Scholar

WoS CC (final screen:
4 November 2018, 240 hits) PubMed (final screen: 4 November 2018, 233 hits)

Google Scholar (final screen:
4 November 2018, 9580 hits)

(diet* OR
dietary habit* OR
Eating habit* OR
dietary pattern OR
plant-based diet* OR
dietary fibre*)
AND
TOPIC: (gut microbiota OR
intestinal microbiota*)
AND
TOPIC: (Prevotella)
AND
TOPIC: Health

(‘diet’[MeSH Terms] OR ‘diet’ [All Fields]) OR (‘diet’[MeSH Terms] OR ‘diet’ [All Fields]
OR ‘dietary’ [All Fields]) AND patterns[All Fields]) OR (‘feeding behaviour’ [MeSH Terms]
OR (‘feeding’ [All Fields] AND ‘behaviour’ [All Fields]) OR ‘feeding behaviour’ [All Fields]
OR (‘eating’ [All Fields] AND ‘habits’ [All Fields]) OR ‘eating habits’ [All Fields]) OR
(‘dietary fibre’ [All Fields] OR ‘dietary fibre’ [MeSH Terms] OR (‘dietary’ [All Fields] AND
‘fibre’ [All Fields]) OR ‘dietary fibre’ [All Fields])) AND (‘gastrointestinal microbiome’
[MeSH Terms] OR (‘gastrointestinal’ [All Fields] AND ‘microbiome’ [All Fields]) OR
‘gastrointestinal microbiome’ [All Fields] OR (‘gut’ [All Fields] AND ‘microbiota’ [All
Fields]) OR ‘gut microbiota’ [All Fields])) AND (‘prevotella’ [MeSH Terms] OR ‘prevotella’
[All Fields]) c (‘health’ [MeSH Terms] AND (‘1 January 2008’ [PDAT]: ‘4 November 2018’
[PDAT])

(diet* OR
dietary habit* OR
eating habit* OR
dietary pattern OR
plant-based diet* OR
dietary fibre*)
AND
(gut microbiota OR
intestinal microbiota*)
AND
Prevotella
AND
health
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Review statistics

A total of eighty-five studies extracted from 155 articles met the
inclusion criteria and were analysed in the systematic review.
The detailed steps of the systematic review article selection proc-
ess are given as a flow chart in Fig. 1.

Risk of bias within studies

The risk of bias was unclear in all trials. Lack of information pre-
cluded a proper evaluation of the risk of bias for all studies.

Results

We identified sixty-eight articles and seventeen literature
reviews published between 2008 and 2018 that have investi-
gated the impact of different dietary habits on gut microbial com-
munities, in particular on Prevotella levels or Prevotella/
Bacteroides ratio. Moreover, the influence of urbanisation,
industrialisation and geographical or ethnic factors on shaping
the gut ecosystem as well as the role of gut microbiota in
different diseases were evaluated (online Supplementary
File S1)(8,12–16,18,20,22,29–34,38,43–45,47,55,62,63,66–68,70–74,79,82–114).

Records identified through 
database searching 

(n 10 053 
Web of Science=240 

PubMed= 233, Google 
Scholar=9580)

Additional records identified
through hand searching

(n 32) 

Records after duplicates removed
(n 274)

Records screened
(n 274)

Records excluded 
(n 119)
Reasons:

Titles and abstracts providing 
no information about 

associations between diet, gut 
microbiota (Prevotella in

particular)  or Prevotella and
health status

Studies on other than humans or 
rodents

Full-text articles
assessed for eligibility

(n 155) 

Full-text articles excluded,
(n 70) 

Reasons:
-No information about dietary 
habits and correlation with
the Prevotella genus from the
gut or failure to provide 
information about the 
association of Prevotella with
health status
-Articles screening the 
Prevotella species from other 
animals than rodents

Studies included in
qualitative synthesis

(n 85) 

Fig. 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram of the study selection process.

Table 2. Inclusion and exclusion criteria for the systematic review

Inclusion criteria for systematic review Exclusion criteria

• Studies published in the last 10 years, from 1 January 2008 to
4 November 2018 were included in the search;

• English language;
• Studies reporting the impact of diet, geography on the presence of

the Prevotella genus within the gut ecosystem or studies comparing the
impact of long- and short-term diets on gut microbiota, or studies
reporting the metabolite signature of Prevotella species;

• Studies reporting the correlation between host health and the
presence of Prevotella species in the gut ecosystem;

• Human and animal (rodent) studies

• Articles screening the Prevotella species from other animals (not rodents);
• Datasets which did not provide information related to eating habits, dietary

interventions and associated nutritional properties and levels of thePrevotella
genus in the gut or association of Prevotella ssp. with health status;

• Failure to provide data for Prevotella presence within the gut ecosystem
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The studies described significant differences in the gut micro-
bial ecosystem, influenced by dietary habits, lifestyle, geography
and environmental factors, by using molecular techniques
such as 16S rDNA pyrosequencing and shotgun metagenomic
data(10–12). Most of the gut bacteria (approximately 60 %) cannot
be cultured due to their particular requirements for anaerobiosis
and nutritional needs. Therefore, the development of these tech-
niques provided new knowledge on the composition and func-
tionality of the gut microbiome as an ecosystem and its variation
across the world(10).

Dietary patterns shape the gut microbiota composition

Specifically, studies on the human microbiome have suggested
that long-term dietary habits, geographical and ethnic factors
could shape the gut microbiota into the so-called ‘enterotypes’
that were not specific to certain continents or nations(12,21).
The ‘enterotypes’ hypothesis was introduced in 2011 by
Arumugam et al. as a useful method to stratify human gut micro-
biomes(28). Wu et al. used shotgun sequencing of the faecal sam-
ples from American individuals and used multiple clustering
techniques, but found only two of the three original clusters:
Bacteroides and Prevotella(29). The third cluster was not distinct
in their data, with Ruminococcus (Clostridiales order) equally
abundant in both of the first two enterotypes. They compared
their findings with a previously published study on Italian
and rural African children, wherein Italian children had
Bacteroides-dominated gut microbiomes and African children
had Prevotella-dominated gut microbiomes(29). Although con-
sensus that these enterotypes are the result of long-term dietary
behaviour is usually accepted, the concept itself has also been
challenged, since other studies have proposed the existence
of microbial community gradients rather than distinct entero-
types(30). Studies highlighted afterwards only two community
types: one dominated by Prevotella and one dominated by
Bacteroides or members of the Firmicutes Bifidobacterium(26).

De Filippo et al.(20) reported a considerable difference in gut
microbiota at a phylum level, namely Firmicutes/Bacteroidetes
ratio, between African children who followed a low-fat high-
fibre diet and Italian children who consumed a high-fat and
high-protein modern diet. The African children were living in
a village of rural Burkina Faso, in an environment close to that
of Neolithic subsistence farmers, while the Italian children were
living in Florence, in an environment typical of industrialised
Europe. The African children showed a significant enrichment
in Bacteroidetes and depletion in Firmicutes (P < 0⋅001) with
abundance of Prevotella and Xylanibacter bacteria and more
SCFA (P < 0⋅001) compared with European children. The
authors assumed that the polysaccharide-rich diets of African
people shaped their gut microbiota in a way that helped to max-
imise energy intake from fibre while also protecting them from
inflammation and non-infectious colonic diseases(20).

Several other observational and cohort studies underlined
the abundance of Prevotella species in Indian(31), Chinese,
Kazaks(32), Turks, Moroccans(33), Indonesian, Thai(12),
Filipinos(14), African (Malawian, Egyptian(34), Tanzanian and
BaAka hunter–gatherers(15,18)) and Venezuelan rural or isolated

populations(35), whereas Bacteroides were abundant in popula-
tions fromwestern countries in Europe and America(11–14,19,29,34).
The abundance of the Prevotella genus in these populations is
determined by its capacity to digest complex carbohydrates
and by the genetic and enzymatic potential to break down cel-
lulose and xylan from foods(19). A specific strain, Prevotella copri,
has been shown to be an important biomarker for diet(13,36).
Nakayama et al. have underlined in a study on Filipino children
that the growth of P. copri and P. stercorea were stimulated by
vitamin A and β-carotene from bananas and mangos(14). The
authors also outlined that not only these two species of
Prevotellaceae, but also species of Veillonellaceae (Dialister
succinatiphilus) and Erysipelotrichaceae have a positive corre-
lation with dietary carbohydrate. A high intake of fat positively
correlated with Bacteroides, Ruminococcus, Blautia, Dorea,
Megamonas and negatively correlated with Prevotella(14,31).
Moreover, Li et al. showed in their study on healthy Chinese
herdsmen that Prevotella gradually decreased with the degree
of urbanisation, while Bacteroides, Faecalibacterium, Blautia,
Collinsella, Ruminococcus, Coprococcus and Dorea increased
with the degree of urbanisation(32). In addition, Mancabelli et
al. highlighted in their meta-analysis of publicly available shot-
gun datasets of human faecal samples collected from urbanised
and traditional preagricultural populations that industrialisation
has shaped the gut microbiota through the acquisition and/or
loss of specific gut microbes, thereby potentially impacting on
the overall functionality of the gut microbiome(21). For example,
Xylanibacter (Bacteroidetes) and Treponema (Spirochaetes)
were only found in individuals from agricultural communities,
which indicate that they could be symbionts lost in urban-indus-
trialised societies(14,19). Enrichment in Succinivibrio and
Treponema, which also possess a high-fibre degrading potential,
is important for agrarian populations like the Africans, as the typ-
ical diet is high in fibre and complex carbohydrates(14).

Overall, people living in African countries have higher
gut microbiota diversity dominated by Actinobacteria
(Bifidobacterium); Bacteroidetes (Bacteroides–Prevotella);
Firmicutes (C. histolyticum, Eubacterium, Oscillibacter,
Butyricicoccus and Sporobacter); Proteobacteria (Succinivibrio,
Shigella and Escherichia) and Spirochaetes (Treponema) and
depleted in only Actinobacteria (Bifidobacterium catenulatum),
Firmicutes (Clostridium difficile and Akkermansia muciniphila).
Meanwhile, for people living in Western countries such as in
Europe and America, gut microbiota is enriched in Firmicutes
(Blautia, Dorea, Roseburia, Faecalibacterium, Ruminococcus,
Oscillospira, C. perfringens, C. difficile and S. aureus);
Bacteroidetes (Bacteroides), Actinobacteria (B. adolescentis and
B. catenulatum) and Verrucomicrobia (A. muciniphila)(20,21).

Association of dietary habits with microbial and
metabolic profiles and the link with health or disease
states

The distinct dietary habits of populations living in different geo-
graphical areas are reflected in their microbial diversity and met-
abolic profile. To exemplify, Western diet is characterised by
high consumption of animal proteins and fat (meat, fish, dairy
products), refined carbohydrates (processed foods, sweets)
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and low levels of fibre intake fromplants(9,37). In contrast, Eastern
diet consists of staple foods such as rice or noodles, soup and
several dishes with a lot of vegetables. Populations living in iso-
lated areas (like preagricultural populations) have a diet based
on foods gathered and/or hunted from their proximate environ-
ment rich in carbohydrates and fibre(14,20).

Even though Prevotella has been linkedwith a vegetable-rich
diet and Bacteroides with protein/fat rich diets, little is known
about the composition of the gut microbiota in people with spe-
cific dietary patterns like vegetarian, vegan, Mediterranean or
omnivorous(13).

In the last 10 years, few studies have reported the differences
in faecal microbiota of individuals following a vegetarian, vegan
or omnivorous diet, but studies on large cohorts are missing.
Vegetarian, ovo-lacto vegetarian, lacto-vegetarian or vegan diets
have increased in popularity lately, as studies reported beneficial
effects on human health in terms of prevention of CVD, cancer
and diabetes(38). The Mediterranean diet is characterised by a
high intake of vegetables and fruits, legumes and whole grains
combined with a moderately high consumption of fish, low
intake of saturated fat, meat and dairy products and regular
but moderate consumption of red wine and the use of olive
oil as the principal source of dietary lipids(39). This type of diet
has also been linked to protective roles against several diseases
like obesity, type 2 diabetes, inflammatory diseases and
CVD(39–41). On the contrary, the omnivore diet which is typical
for Western diets from industrialised countries apparently led
to a composition of the microbiota that is more associated with
different types of diseases like obesity, insulin resistance, dysli-
pidemia and inflammatory disorders(42).

Most studies reported that vegetarians harbour higher
numbers of Prevotella species as well as a high Prevotella/
Bacteroides ratio compared with non-vegetarians (omni-
vores)(38,43). However, one study by Wu et al.(44) reported that
levels of Prevotella were not significantly different between
omnivores and vegans from the USA, as the residence in a wes-
ternised culture might determine a more ‘restrictive’ microbiota
structure. Ferrocino et al. showed in a cross-sectional study that
vegans and vegetarians have an abundance of Prevotellaceae
and ovo-lacto vegetarians were characterised by the presence
of P. micans, B. vulgatus and Faecalibacterium prausnitzii.
P. copri was also found in a characteristic bacteria of the
omnivore subjects, which is consistent with its presence in
non-agrarian diets(38,45). B. vulgatus is associated with agrarian
diets, being well known for its ability to encode the largest num-
ber of enzymes which target the degradation of pectin(6,46).
F. prausnitzii was found to be a characteristic species in the
faecal samples of the subjects who followed a vegetarian diet(47),
and it has recently been shown that it has the probiotic ability
to produce vitamin B12 and to hydrolyse lactulose and galacto-
oligosaccharides(48). F. prausnitzii has also been recognised as
being one of the most abundant butyrate producers in human
faeces(48).

Moreover, it has frequently been reported that SCFA (acetate,
propionate and butyrate) are produced by intestinal microbiota
during the fermentation of undigested polysaccharides. In con-
trast, non-digested proteins are broken down into smaller pep-
tides or amino acids, in the end resulting in branched-chain fatty

acids (valerate, caproate), phenolic compounds, amines and
ammonia(49). It has been demonstrated that these microbial
metabolites help controlling the colon pH, regulating energy
control and prevent pathogen bacteria growth as well as modu-
lating bacterial gene expression leading to the production of
enzymes involved in amino acid metabolism(7,50).

Evidence shows that SCFA levels were higher in native
Africans on agrarian diet compared with African Americans or
European children (Italian)(14,19). Propionate was positively
correlated with the presence of Prevotella in African children
and negatively correlated with Bifidobacterium, Blautia and
Lachnospiraceae(14). Specifically, propionate is formed mostly
through the succinate pathway that is characteristic of
Bacteroidetes(51) and has been shown to be metabolised in
the liver. Its implications in reducing serum cholesterol and
decreasing hepatic lipogenesis, thus preventing weight gain in
overweight adult humans, was demonstrated(52).

Butyrate was enriched in European children and positively
correlated with Bifidobacterium, Bacteroides, Blautia, Dorea
and Faecalibacterium(13). Butyrate is frequently produced via
butyryl-CoA:acetate CoA-transferase with consumption of
acetate and is mainly characteristic of the Firmicutes phylum.
Butyrate promotes barrier function and reduces inflammation
when present in sufficient quantity(53). It becomes the major fuel
source for colonic epithelial cells, reducing theneed for energy allo-
cation to these cells from the host(53,54). In addition, Chen
et al.(55) analysed the fibre utilisation capacities of Prevotella or
Bacteroides by testing fibres (arabinoxylans from sorghum bran,
arabinoxylans from maize bran and fructo-oligosaccharides)
in an in vitro fermentation system. The authors highlighted that
through the fermentation of the mentioned substrates, Prevotella
produced two to three times more propionate than the
Bacteroides-dominated microbiota. Conversely, lower levels of
butyrate were obtained(55). Acetate is a fermentation product
for most gut anaerobes and consistently reaches the highest con-
centrations among the SCFA in the colon. Approximately, 70 %
of the acetate is used as an energy source by the liver, but is also
used as a substrate for the synthesis of cholesterol and long-chain
fatty acids(56). Moreover, it was revealed to act as an appetite
regulator and thus aid in reducing obesity(57).

Thus, the amount and relative abundance of SCFA may be
considered as biomarkers of a healthy status(12).

De Filippis et al. showed that vegetarians and vegans had a
high-level adherence to the Mediterranean diet, which positively
associated to Prevotella and increased levels of SCFA (acetic,
propanoic or butanoic acids) and negatively correlated to uri-
nary trimethylamine N-oxide (TMAO) levels(13). In contrast, con-
sumption of proteins and fat in omnivorous diets positively
associated to higher levels of branched-chain fatty acids
(valerate, caproate) and urinary TMAO(13). TMAO is a metabolite
which has been recently shown to increase the risk of cardio-
vascular and atherosclerosis in bothmice and humans independ-
ently of traditional cardiometabolic risk factors and through
inhibiting hepatic bile acid synthesis(58,59). TMAO results from
carnitine and choline found in animal products (eggs, beef, pork
and fish), which are converted by the gutmicrobiota to trimethyl-
amine, oxidised in the liver and released into circulation as
TMAO(58). In addition, the content of choline and L-carnitine in
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the traditional Mediterranean diet is more than 50 % lower than
in a typical Western diet(12).

Interestingly, Chen et al. showed in a study on mice that
TMAO levels were decreased by resveratrol, a natural poly-
phenol found in grapes, berries and wine, which attenuated
TMAO-induced atherosclerosis(60). The authors further
explained that resveratrol increased hepatic bile neosynthesis
via gut microbiota remodelling (increased levels of
Lactobacillus, Bifidobacterium, Akkermansia, but decreased
levels of Prevotella)(60).

Thus, while it is still unknown what constitutes a healthy gut
microbiome, some studies have linked a microbial dysbiosis to
some disease states. High levels of Prevotella were linked to
obesity(61) and significantly associated with BMI(62), insulin
resistance in non-diabetic people(61,63), hypertension(64) and
non-alcoholic fatty liver disease (NAFLD)(65). Furthermore,
Prevotellawere also linked to high blood pressure and impaired
glucose metabolism(46)

. However, other studies did not find
correlations between obesity(13,66,67), type 1 or type 2 diabe-
tes(68,69) and lower levels of Prevotella. In fact, Hjorth et al.
reported that subjects with increased waist circumference and
high Prevotella/Bacteroides ratio could easier lose body fat on
diets high in fibre and whole grain than subjects with a low
Prevotella/Bacteroides ratio(70). In addition, Prevotella and
Bacteroides levels were decreased at baseline in MetS subjects
and increased after an intervention with Mediterranean diet
and low-fat diet. In contrast, no significant microbiota changes
after the dietary intervention were observed in the group of
obese subjects without the MetS(66). Furthermore, studies in mice
indicate that Prevotella can determine features of the MetS.
Colonisation of germ-free mice with a Prevotella-rich microbiota
from patients with hypertension induced higher blood pressure
compared with mice receiving microbiota from a normotensive
donor(64).

P. copri colonisation in mice on a high-fat diet promoted
increased insulin resistance(63). Furthermore, Kovatcheva-
Datchary et al.(71) showed that after a dietary intervention with
barley, kernel-based bread (BKB), blood glucose and serum
insulin responses improved compared with the group that
received white wheat bread. Moreover, they compared the fae-
cal microbiota of individuals who showed the least or no
improvement in glucose or insulin responses (non-responders)
to those who showed the most pronounced improvement
(responders). They observed an abundance of Bacteroidetes
(Prevotella) and high P/B ratio after BKB intervention in
responders, but not in non-responders.Dorea and Roseburia ini-
tially increased at baseline but decreased in responders after
BKB intervention. Regarding the SCFA profile, no significant
differences were observed between the two groups. To investi-
gate the effect of Bacteroides and Prevotella species on glucose
metabolism, germ-free mice were colonised with human faeces-
derived Bacteroides thetaiotaomicron and P. copri for 14 d and
fed a standard chow diet. The levels of Prevotellawere higher in
mice colonised with responder versus non-responder donor
microbiota, which suggested that Prevotella may contribute to
the BKB-induced improvement in glucose metabolism(71).
Similarly, De Vadder et al.(72) showed that mice colonised with
the succinate producer P. copri exhibited metabolic benefits,

which could be related to succinate-activated intestinal gluco-
neogenesis (IGN). They concluded that the activation of IGN
is positively correlated with Prevotella, which could in fact
account for the beneficial metabolic effects such as improved
glucose metabolism, by increased glucose tolerance(72).

Likewise, Vitaglione et al. showed that after an intervention
with whole grain products, levels of Prevotella increased and
a significant positive correlation was identified between SCFA
and the abundance of Bacteroidetes in obese subjects(73).

Furthermore, levels of Prevotella, Bacteroides and Dorea
were favourably correlated with an improved CVD risk factor
profile, such as BMI, waist circumference, triglyceride levels
and blood pressure, in a randomised crossover study designwith
3 g of highmolecular weight β-glucan for 5weeks(22). In contrast,
Kelly et al. highlighted recently that some species of Prevotella
(Alloprevotella, Paraprevotella, Prevotella 7) were associated
with CVD risk(74).

Moreover, Henao-Meija et al. elucidated the role of Prevotella
in non-alcoholic fatty liver disease, which is a hepatic manifes-
tation of the MetS and has a leading role in triggering chronic
liver disease in the Western world. They outlined that a
Prevotella-rich dysbiosis was finally associated with pathology
of the liver(75).

Discussion

The objective of this qualitative systematic review was to evalu-
ate the available data revealing the modulation of the Prevotella
genus from the gut ecosystem by different dietary habits as well
as its implications as a potential biomarker for homeostasis or
disease state through its metabolite signature. Moreover, the
association with other bacterial species like Bacteroides and
its role as a dietary fibre fermenter in the gut were also assessed.

The results of this review indicate that some Prevotella strains
such as P. copri or P. stercoreawere associated with plant-based
diets, rich in polysaccharides and fibres, typical for rural
communities, whereas the Bacteroides genus was correlated
with a high-fat, high-protein modern diet, typical in Western
countries. Moreover, P. copri was highlighted as an important
biomarker for diet and lifestyle, due to its abundance in different
populations across the world(13,36). The abundance of Prevotella
species were shown in many populations with fibre-rich diets,
due to its potential to digest and breakdown complex carbohy-
drates from foods(76). Therefore, observational studies outlined
high levels of Prevotella species in Indian(31), Chinese,
Kazaks(32), Turks, Moroccans(33), Indonesian, Thai(12),
Filipinos(14), African (Malawian, Egyptian(34), Tanzanian and
BaAka hunter–gatherers(15,18)) and Venezuelan rural or isolated
populations(35), whereas Bacteroides were abundant in popula-
tions fromWestern countries in Europe and America(11–14,19,29,34).
In addition, vegetarian, vegan andMediterranean diets were also
linked with high levels of Prevotella and a high Prevotella/
Bacteroides ratio(12).

Evidence reported that these dietsmight havebeneficial effects
on human health, in terms of protecting against several diseases
such as obesity, type 2 diabetes, inflammatory diseases and
CVD(39,41). These diets were positively correlated with increased
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levels of SCFA, which are produced by the intestinal microbiota
during fermentation of undigested polysaccharides and have
well-documented beneficial roles(77,78). Prevotella species were
shown to bepositively associatedwith propionate production that
has important roles in preventing weight gain by reducing serum
cholesterol and decreasing hepatic lipogenesis(52).

Prevotella strains are classically considered commensal bac-
teria due to their extensive presence in the healthy human body
and their rare involvement in infections. However, emerging
studies have linked increased Prevotella abundance and specific
strains to inflammatory disorders, suggesting that at least some
strains exhibit pathobiontic properties(23).

Several limitations should be considered when interpreting
the results of this study. First, assessing the way dietary habits
or specific nutrients like dietary fibre impact the gut microbial
composition could lead to different bias, as the bacterial com-
munities have a great diversity and the interactions between spe-
cific nutrients and commensal bacteria from the gut are still not
very well known. Moreover, the great inter-individual variability
between different populations, the lack of in-depth metage-
nomic studies and small sample sizes for interventional studies
could also increase the risk of bias.

A review from 2017 underlined the interaction between
P. copri and the immune system, revealing pathobiontic proper-
ties such as releasing inflammatory mediators from immune and
stromal cells and promoting inflammatory diseases (periodonti-
tis, rheumatoid arthritis, asthma, bacterial vaginosis, HIV infec-
tion, the MetS and inflammatory bowel disease)(23). At the
same time, inflammatory diseases are highly heterogeneous
and the complex interactions between host genetic risk factors
and environmental exposures are also important.

Some studies positively correlated Prevotella levels with
obesity, type 2 diabetes and NAFLD(65), while others did not find
any correlations between these diseases and abundance of
Prevotella(80,81). In addition, high levels of Prevotella were pos-
itively associated with glucose improvement in mice or
improved CVD risk factor profile in humans(13,66,67).

Another recent review by Ley(25) analysed the possible ben-
eficial and detrimental implications of Prevotella strains from the
human gut on host health. It emphasises the importance of better
understanding of Prevotella’s wide genetic diversity, ecology
and interaction with other commensal bacteria from the gut,
in order to be able to modulate its levels(25).

Prevotella may only play a part in certain disease endotypes,
since they may exhibit different properties due to a high genetic
diversity within and between species. These discrepancies in dif-
ferent studies may be due to the complex interrelatedness of the
diseases, and additional investigations of immune mechanisms
inmetabolic disease are needed in humans. Thus, there is a need
for more studies in humans to ascertain a causal and potential
disease-triggering role for Prevotella(23).

Conclusion

As Prevotella is a genus with high genetic diversity within and
between species, they could explain its abundance in human
healthy microbiota and only certain strains may exhibit

pathobiontic properties. Nevertheless, there is a need for more
studies in humans to ascertain a causal and potential disease-trig-
gering role for Prevotella and more in-depth metagenomic stud-
ies are needed in order to reveal the health- or disease-
modulating properties.
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