
[The following Paper was read at Third and Fourth Meetings,
8th January and 12th February 1897.]

On the Geometrical Representation of Elliptic Integrals
of the First Kind.

By ALEX. MORGAN, M.A., B.Sc.

I.

When an expression has to be integrated which contains the
square root of a rational function of the first or second degree, the
integral can be expressed in terms of the ordinary algebraic
functions or the elementary transcendental functions, viz.,
exponential and circular. But when the polynomial under the
radical is higher than the second degree its integral in general
can only be expressed by means of transcendentals of a higher
kind. The particular case in which the expression under the
square root is a cubic or quartic gives rise to a class of definite
integrals called Elliptic Integrals, because by means of them, as
we shall see, we can express the length of the arc of an ellipse or
other central conic.

CYdx
Legendre * considered the general elliptic integral -j==,

where P is any rational function whatever of x, and X is a positive
rational integral quartic function of x with real coefficients, and
he showed that by partial integrations and by transformations this
integral could be resolved into an algebraic part together with
transcendentals always of three types f, v'iz->

dxf dx r a?dx I"

J Jl - x2 . 1 - k-»? J Jl-a?. 1 - A V J (1 + nx1) -Jl-ar .1- kV

where k is +M and less than 1, and n is real or imaginary.

Without altering the type of the second integral we may write it

J VI-*2 • 1-

* Traite de Fonctions Elliptiques, t. I., Chap, iii., iv. and v.
t cf. CAYLEY'S Elliptic Functions, § 1.
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Putting x = sin<£, we thus have three kinds of elliptic integrals :

First kind, F(*,*> J

Second kind, E(k, <j>) = r Jl - jfcWty d<f>
J 0

r6 d<b
Third kind, H(n, k, <j>) = — . ;===

J o (1 + wsin8^) v 1 - Arsin2 .̂

<£ is called the amplitude, and is a real angle, k the modulus, and
n the /?aram«ter.

The arc of an ellipse can be represented by an elliptic integral
of the second kind. Thus in the ellipse

if we put a; =
then ds' =

.•. s= a sjl

= oE(«, ^),

the arc being measured from the extremity of the minor axis.

I t is thus very easy to find a curve whose arc will represent an
elliptic integral of the second kind, but it has always been a difficult
problem to give a complete geometrical representation of integrals
of the first kind.*

HISTORICAL NOTE.

The name elliptic functions is somewhat of a misnomer, as the whole theory
of these functions is based on the first elliptic integral i\k, $) which can not
be represented by an arc of an ellipse.

* For references to the numerous attempts to solve the problem, see Note
V. in the Appendix of Mttller's edition of Enneper's Elliptische Functionen
(Halle, 1890).
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It was LEOBNDRE {Afemoire aur lea transcendaniei eUiptiques, 1793: Extrcices
du Calcul Integral sur divers ordres de Transcendantes et aur lea Quadratures,
3 vols. 1811-1819 ; and Traiti des Fonctions EUiptiques, 3 vols. 1825-32) who
discovered most of the important properties of the new functions, and invented
a notation for them ; but the founder of the modern theory of elliptic functions
may fairly enough be said to be ABEL (his earlier Memoirs on the subject
appeared in Crelle's Journal, 1826-9. They are collected in (Euvrea Completes
de N. H. Abel par B. Holmboe, 1839. His great Memoir on Transcendental
Functions is published by the French Academy in Mimoirea dea Savant*
Strangers, t. vii., 1841. The most recent edition of his works U N. H. Abel.
Tableau desavieetde son action scientifique. Par G. A. Bjerknes, 1885).

About 1823 ABEL pointed out that in

i, <p)= ra-itfsin
Jo

F(£, 0) is of the nature of an inverse function, and that if we put u=F(k, <p)
then we should study the properties of the amplitude 0 as a function of u,
and not u as a function of 0. Legendre laid great stress on the elliptic
integrals, and tried to deduce the properties of elliptic functions from them,
but Abel pointed out that by following Legendre's method mathematicians
were making the same mistake as if they had tried to deduce the theorems of
trigonometry by studying the properties of the inverse circular functions as
deduced from the circular integrals. It is Abel's idea of the inversion of the
first elliptic integral, and his discovery of the double periodicity of elliptic
functions that have led to the wonderful recent advances in the theory of
elliptic and higher transcendentals in Germany and France.

It is interesting to trace the genesis of elliptic functions out of the early
attempts of geometers to rectify the ellipse.

MACLAUBIN {A Treatise of Fluxions, Edinburgh 1742) and D'ALEMBEKT
{Des Diffe'rentielles qui se rapportent a la rectification de Vellipse ou de Phyperbole
in the Histoire de I'Acad. de Berlin, 1746) seem to have been the first to study
integrals which could be expressed by the arcs of an ellipse or hyperbola.
They found a great many such integrals, but their results were disjointed.

Next, FAGNANO (Produzioni Matepiatiche Del Marchese Oiulio Carlo
De' Toachi Di Fagnano. 2 vols. Pesaro 1750) proved that in any given
ellipse or hyperbola we can in an infinite number of ways find two ares of
which the difference is expressible by an algebraic quantity.

It was ECLEB, however, who first tried to develop a general theory out of
those scattered theorems. He clearly foresaw that with a suitable notation a
new kind of functions, founded on the properties of the arcs of ellipses, would
arise which would become as general and as important in the higher analysis
as were the circular and logarithmic functions. At vol. X. p. 4 of Novi
Gommentarii Acad. Sc. Petropoli (1764), Euler says " Imprimis autem hie
idoneus signandi modus desiderari videtur, cujus ope areas elliptici aeque
commode in calculo exprimi queant, ac jam logarithmi et arcus circulares ad
insigne Analyseos per idonea signa in calculum suit introducti. Talia signa
novam quandam calculi speciem suppeditabunt " We shall see
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that this passage had afterwards a most important effect on the work of
Legendre.

Also Euler {Novi Com., Vols. vi. and vii., 1761) discovered the method of
integrating by algebraical functions the differential equation now known as
Eider's Equation, viz.,

where X is a quartic function of x and Y is the same function of y, say

X = axi + bx3 + cxi+ex+f
Y = ay4+6y3 + cy2 + ey+/ .

(X^-Y
*—y

He thus found the complete algebraical integral of a differential equation
composed of two similar terms, whose integrals taken separately are not
algebraic but only expressible by the arcs of an ellipse or other conic section.

JOHN LANDEK (Philosophical Transactions, 1775; Mathematical Memoirs,
1780) proved that every arc of a hyperbola can be expressed in terms of the
arcs of two ellipses. This theorem was an important step in the simplification
of the theory of such arcs.

LEGENDRE in 1786 published the first of his investigations in connection
with the subject. In that year there appeared his Mimoire sur lea integrations
par (Tares d? ellipse in Mim. de VAcad. des Sciences de Paris. Among other
things he proved that in an infinite series of ellipses formed according to the
same law the rectification of one of the ellipses can be reduced to that of two
others chosen at will from the series.

Not, however, until his attention was arrested by Euler's discovery of 1761
and prediction of 1764 did Legendre perceive the way in which the new
functions were to be attacked with success. He was led by Euler's equation

to examine all the transcendentals contained in ,.—• where F is any

rational function of x, and X a rational function of x of the fourth degree.
He classified the integrals included under this general form into three kinds,
and developed a notation and theory for the reduced integrals as had been
desiderated by Euler in 1764. These results are contained in his Mimoire sur
lei Tranncendantes elliptiques, 1793. All the investigations of Legendre were
afterwards collected and published in his Exercices du Calcvl Integral etc.,
and his Traite" des Fonctions Elliptiques already mentioned.

JACOBI (FundameiUa 2?ova Theories Functionum Ellipticarum, 1829, and
Memoirs in Crelle's Journal, 1828-1858) carried out Abel's idea of the inversion
of the first elliptic integral and introduced a notation to take the place of
Legendre's. He took F{k, <p) as the independent variable and put u for it,
calling <p the amplitude of u or shortly <t>= am«. Then sin0, cos<£ and

A<t>(= Jl _ jfc'sinV) w e r e t h e sine> cosine, and A of the amplitude of u, or
as he wrote them sin am u, cos am it, Aamu. In the Fundamenta Nova he
developed with great elegance the properties of these three elliptic functions
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of u. He also changed the meanings of Legendre's symbols B and II for the
elliptic integrals of the second and third kinds into those denoted by the
equations

f" f"ifcssna cna dnasn'u
Eu= I dn it du, n(u, o)= -«—» j- du

Jo Jo 1—* sn u sn a
He introduced new functions zeta, theta, and eta defined as follows :—

ru ru

Z u = E « - — , log— = Zu du, or 6M = 90 exp. Zu du
K 6o J o Jo

Hu=\JL Bu. sn w.
It was GUDERMANN {Theorie der Modular Functionen in Crelle's Journal,

vol. xviii. p. 12) who proposed the abbreviations sn, en, dn for sin am,
cos am, A am, and Dr GLAISHER (Messenger of Math., vol. xi. p. 86) who
introduced the notation

nsu ncu ndu ecu edit etc.

, 1 1 1 snu cnu ,
for 3 — 3 — etc.

snu cnu dnu cnu dn u

In recent times no worker has done so much to develop the theory as
WEIERSTRASS. While Jacobi's functions snu, cnu, dnu are recognised as
valuable for numerical work, it is granted on all hands that Weierstrass's
functions

u , ,u*

•(•-£<ra = «IIw

n'w\ where a and u' are the two
periods of the function, and
m, m'=0, +1 , +2 +oo
but w cannot, as we see, be =0, therefore m
and m' cannot be simultaneously —0)

and

form the proper basis for the theory of elliptic functions. <ru is the one from
which Weierstrass evolves the theory of elliptic functions, but, from the point
of view of the elliptic integral, pu is the one which, as we shall see, most
naturally presents itself.

II.

Legendre (Traiti des Fonctions Elliptiques, Vol. I. p. 35) showed
that the integral F(&, <j>) was represented by the lemniscate

in the particular case in which the modulus k = —^.
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The equation of the lemniscate is satisfied by the values

x = acos</> VI -

a
y--

But ds* =

d<f>

the arc s being measured from the point <£ = 0, i.e., from the
extremity (a, 0) of the axis of the lemniscate.

An important result follows from this, viz., from the addition,
subtraction, multiplication, and division of elliptic functions it
follows that arcs of a lemniscate can be added, subtracted, multiplied
and divided algebraically just as the arcs of a circle can *.

After much time spent on the problem, Legendre (Traiti des
Fonctions Elliptiques, Vol. I. p. 36) invented a sextic curve which
represented, for all values of k, the function F(k, <f>) with an
algebraic function subtracted.

He took the curve whose coordinates satisfy the equations

\y = k'h cos<£(l + m -

where k' is the complementary modulus, i.e. = -J\ - k2.

But ds =

.-. (2) S

* As early as 1716, long before Legendre had discovered the method of
multiplying and dividing elliptic functions, Fagnano was able to multiply
and divide arcs of lemniscates (see Methodo ptr misurare la Lemniscata,
pp. 343-368 of vol. 2 of his Prodnzioni MaienuUkhe).

t Cayley at §62 of his Mlyptic Functions states the value of x and y
erroneously.
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In order that the second elliptic integral may disappear we must
have

3#
* = k^ =

Hence we have

—sin<£ cos</> J1 -

The objection to this solution is that the arc * represents not F(k, <f>)
but this integral minus an algebraic Junction. This algebraic
quantity can be made to vanish by a suitable choice of the ends of
the arc *, but it is not in general zero, and hence the sex tic curve
invented is not a perfect representation of the first elliptic
transcendental, f

The curve under consideration is, however, an interesting one.
From (2) we see that kr may have any value provided it is not
greater than £. On eliminating <j> in (1) after having inserted the
above values of h and m, we find the equation of the curve to be

Hence the curve is of the sixth degree, and since there are no odd
powers of x and y the curve is divided into four equal and similar
parts by the axes of coordinates. The curve is of the form given
in Fig. 11. On inserting the values of h and m, (1) gives

sin</>

Hence, if <f> = 0 then x = 0, y = -Tr
fc

if $ = —then x=l, y= 0

* For example, if we integrate between the limits 0 = 0 and <t>—^r

then the additional algebraic function obviously vanishes, and we get

«j = F ( i , i ) where »x is the fourth part of the curve.

t Yet Legendre remarks (F. E . , vol. ii., p. 591) " Le probleme . . . .
de trouver une courbe algdbrique dont les arcs representent gen&alement la
fonction elliptique de premiere espece F(k, <j>) paratt n' admettre aucune avtre
solution." We shall see that we have travelled far since then.
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that is, CA is the semimajor axis of the curve and its length is —,
K

and CB is the semiminor axis and its length is 1, and they lie
respectively along the y and the x axes. The dotted curve outside
is an ellipse on the same axes, and we see that the sextic curve
differs very little from an ellipse.*

III .

Legendre, as -we have seen, showed that, when the modulus is

—£r> F(k, <£) is represented by a "lemniscate. SERRET (Liouvil/e's
V2

Journal, vol. viii., p. 145) extended this by proving that, whatever
the modulus, elliptic integrals of the first kind are represented by
arcs of the cassinian oval, of which the lemniscate is only a par-
ticular case.

The equation of the cassinian in polar coordinates with centre
as origin is

(1) r4

2a being the distance between the two foci, and 6s the product of
the distances d and a" of any point on the curve from the foci.

There are three cases accordingly as ftsga.

First case.

If 6 = a, then dd' = bi = a>, and d + d" = 2a, and (1) is the equa-
tion of the lemniscate studied by Legendre.

Second case.

If b<a, then dd' = 62<a2, and d + d'<2a. Hence the curve
consists of two loops equal to each other. (Fig. 12.)

* The case fc2=J is generally solved, as we have seen, by the lemniscate
which is only of the fourth degree, and its arcs express the integral F(i, <f>)
without any additional algebraical quantity. If we take the solution of this
case given by (3) we find that the equation is

2 ^ = 2 - ^ - 1 ^
Athough this curve is not so simple as the lemniscate it has the advantage of
differing little from an ellipse.
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Put —- = sin 2<f>, so that 2<f> is the angle between the tangents

drawn from the centre.*
If p be the length of the perpendicular from the centre on a

tangent, and r the radius vector to the point of contact, then from
(1) it can be shown that the p, r equation of the cassinian with
centre as origin is

r* + V - a1

But for the rectification of any curve we have
~r>d6

Hence in this case

Solving (1), after substituting a4sin22<£ for£4, we get

r = a(cos20 + \/cos''20 — <

,„. . ,2f2a3(cos2^± N/COS22(?-I
.-. (2) gives s= o2 —i -

Substituting for b* and simplifying we get

62f(
a J

. ' •

Vcos220 - cos22^)

If we integrate between 00 and 6, we see that owing to the
double sign in the numerator the radius vectors corresponding to
these initial angles will determine upon the curve two arcs which
we may represent by s(d0, 6) and o-(0o, 6), or by s(d) and cr(0) if
we integrate between 0 and 6.

* This is perhaps most easily seen by noticing that the condition for
tangency is that (1) have equal roots, that is a4 coŝ fl = a4 - ft4, where 26 is
the angle between the tangents. Hence

64 = a4(l-cos220)
= a4sin220

.•. —=sin20. But by hypothesis —j--sin2 .̂ Therefore 20=20, ».e.,
a a

2$ is equal to the angle between the tangents drawn from the centre.
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Hence from (3) we have

/AS m m u (-"(COS20+ N/COS220-<(4) s(ti0, 6) = —

/-x , „ m bfe(cos20- Vcos220 -
(o) <r(0Ol0) = —— = = = = =

J e0 \Icosr20 - cos*2<f>

Whence we get

(6) 8(0e,

(7) s{eQ,o)-^,o)J^
a

If in (6) we put

(8)

and in (7) put

(9) sin0 = cos</> sin^

then from (6) and (7) respectively we obtain

(10) ,(0O, 6) + <r(60, 0) = f. f*

If we make 0O = O, we see from the relations (8) and (9) that
Xo = 0 and fo = O

.•. (10) and (11) become respectively

(12) -fl[>(0) + <r(<9)]

(13)
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6
But sin2<£ = —5, whence it can easily be shown that

Hence the moduli, sin<£ and cos<£, of the elliptic integrals on the
right hand of (12) and (13) are complementary. *

Third, case.
If b>a, then dd' = bi>a\ and d + d'>2a, and the cassinian

takes the form shown in Figure 13.

This case might be discussed in exactly the same way as the
foregoing.; we need however only state the results.

In this instance we put -p- = sin2<£

We then get two equations corresponding to (6) and (7), viz.,

0, 6) - <r(e0) 6)

6) = ?**! f "

2Jl f ' (
« Je0

In this case the relations connecting 0, Xi and ^ corresponding
to (8) and (9) are

OS-)

n'2c!> =

s i n 2<t>

1 - 2 coss<£ sin
s in 2</>

* Of course all this applies equally to the case 6=o , for then <t>=-r,

in which case the two loops meet at the centre and we get the Iemniscate, and
from (5) we see that the arc represented by <r(S0, 0) disappears as it ought to
do since the polar equation of the Iemniscate is only of the second degree in r.
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Then the results corresponding to (12) and (13) are

(14) i

(15)

where the moduli sin</>, cos<£ are again complementary, viz.,

From (12), (13), (14), and (15) we see that in every case and
whatever the modulus, the elliptic integral of the first kind can be
represented by the sum or difference of two arcs of a cassinian oval,
and conversely (by addition and substraction of (12) and (13), or
of (14) and (15)) the arc of the cassinian oval is represented by the
sum or difference of two elliptic integrals of the first kind whose
moduli are complementary.*

IV.
The next to attack the problem we are investigating was W.

ROBERTS of Dublin (Liouville's Journal, vol. viii., p. 263, vol. ix.,
p. 155, vol. x., p. 297).

* Comparing Serret's result with Legendre's in the last section, it should

be observed that if in (8) we make $-<p, then X=-yr> hence, the amplitude

being a right angle, we may write *(0) + <r(0)=», where «, is as before one-

fourth of the total length of the curve. Then from (12) we get

n

Similarly, if in (13a) we put $=.-—{ and of coarse s in2#=— 1 then \—-pr*

we then as above get from (14)

From these two equations we see that, just as in Legendre's solution, by
properly choosing the ends of the arc, i.e., by integrating between suitable
limits, the elliptio integral of the first kind/or any modulus and toithout any
extra algebraical quantity is represented by the arc of a oassinian ovaL

2 Vol.15
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He showed that the curves in which a sphere is cut by a cone
of the second order, one of whose principal external axes is a
diameter of the sphere, can be rectified by means of an expression
containing all three kinds of elliptic integrals. Taking the par-
ticular case in which the elliptic integrals of the second and third
kinds vanished he got a single curve on the surface of the sphere,
whose arc reckoned from the extremity of the semi-axis was
expressed by an elliptic integral of the first kind. He showed that
the form of this curve was similar to that of the lemniscate, and
that it was the locus of points on the sphere the product of whose
distances from two fixed points on the sphere was constant.*
Hence Kiepert called this curve, discovered by Roberts in 1843, the
" spherical lemniscate."

V.

SERRET returned to the problem of the geometrical representa-
tion of the first elliptic integral, and wrote an important Memoir
on the subject (Liouville's Journal, vol. x., p. 257) and an Addi-
tional Note (p. 286). A new method of solution was suggested to
him by the fact that the equation of the lemniscate

is satisfied by
z + z3 z-z3

x=aTT*' y = aT+¥

whence (1) da= Jda? + d? = a * 2 dz

v 1 + z4

so that the arc is expressible as an elliptic integral, f

* If the radius of the sphere were made infinitely great it would become a
plane, and the curve on it would become a plane lemniscate.

t This leads to exactly the same solution as Legendre's on p. 7, for let
1 — 2s z /2

sin<£ = — , and therefore cos<£ =

and

Whence, after differentiating and reducing, we get
d<(> 2dz

B u t

d<b « -n / 1 A
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By generalising this method he was able to prove that not
merely the lemniscate and the cassinian but an infinite number of
plane curves represented the first elliptic transcendental.

In the generalisation of equation (!) he discusses

ds2

(la) ds> ~dx> + dif = &-=£-

where P is a quartic rational function of z, and C a constant.
Of course P does not include multiple factors else, after

extracting the square root of each side, (la) would not lead to an
elliptic integral.

Nor can P have real factors, for since

(2) dx + idy . dx- Idy = C2-^-

we see that every real value of » which would make the right-hand
side of (2) infinite would necessarily make both dx + idy and
dx — idy infinite, and this is impossible since P has not multiple
factors.

Therefore P can only have four imaginary factors, and, since
their product is real, they must be conjugate two and two, say
6 and /? conjugate and c and y conjugate. Then (la) becomes

(3) dsl = dx + dy = } ... lf

We may therefore let P =p.ir, where p and IT are two conjugate
functions each of the second degree in z. Therefore (2) gives

(4) dx + idy , dx-idyd ~~H
p ir

The two functions on the left hand side are, therefore, conjugate
and have 1 for modulus. Serret goes on to prove in section II . of
his Memoir that these conjugate quantities must have the form

dx + idy_ Ar3 dx-idy_T)p*

or (5) a; + iy = O —=-5 and x-iy = Q\ p \
ip- Dp2 Jir. Ar2
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where r is any integral function of the variable z, D the G.C.M.
of ' r and its first derivative, and /> and A the conjugate complex
quantities of r and D respectively.

But by a real and rational substitution

dz> , «_V
may be transformed into 7- ; 5-7—; =(• - *x» - P)(* -«)(« - 7)

where a and a are conjugate complex quantities.
Hence we may write (3) as follows

(6)

and .*. p ,

For the success of Serret's method it was necessary to choose
r and p so that they contained no factors except those of p and n-
respectively. Wherefore he put

Therefore from (5)

For shortness let

(9)
_ _ _ _ _

Now /(*)•-

Therefore by partial fractions

We wish to find the condition that the curve determined by x
and y in (8) be algebraic.
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Since x + iy = O \/(z)dz we see from (10) that in order that

x and y be purely algebraic and not contain a logarithmic part the
conditions are

(11) ^'""(o) = 0 and f ">( - a) = 0.

But from (10) by multiplying up we get

/(«)(»- o)m+1(z - o)»+' or (z-a)m(z + a)n

Arranging the right-hand side according to powers of s we get

wherefore we see that

f

which shows that if one of the conditions in (11) be satisfied the
other will necessarily follow.

Hence the sufficient and necessary condition that the curves
determined by x and y in

be algebraic is <£(ml(a) = 0. And the arcs of those curves are
elliptic integrals of the first kind, for

(z-a)m

V
.-. also
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Wherefore, by multiplication,

or -oj
(f - a2)(s2 - a2.;

dz

which is an elliptic integral of the first kind.

Also, since m and n may be anything whatever, we have a
double infinity of curves, analogous to the lemniscate, represented
by (8), and since the arcs of those curves are elliptic integrals of
the first kind they can be added, subtracted, multiplied, and divided
just as the arcs of the circle and lemniscate can.

After performing the integration in (8) and substituting the
values of a and a that satisfy the conditions, we equate the real
and imaginary parts on each side and so obtain the coordinates
x and y of the required curve as functions of the parameter z.

We shall take two examples to illustrate this infinite group of
curves discovered by Serret.

FIRST EXAMPLE.

If m= 1, n being any integer, then the condition that the curve
be algebraic is <£'(") = 0.

Now, from (9) we see that

whence, obtaining <£'(«) and putting a instead of z and equating to
zero, we get

(13) ^-±-^ = 2^-li
v ' aa. n + 1

But, if we reduce
r dz r d<j>

® I, i is, - z\ to fche standard form CI , = >
J v (s - « )(«" - a ) J v 1 - Arsin2</)

we find that &2, the square of the modulus, is =
4oa
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wherefore, from (13)

4aa- n+l

Hence if we take a and its conjugate a. so that they satisfy (13),
then the curves defined by

- a)(z + afdz

will be algebraic, and their arcs will be represented by the integral

0 —, whose modulus k is = \ r : and, as n may
J v/(z2-a2)(z2-a2) yn + l'

be any integer whatever, we have an infinite number of such
curves.*

SECOND EXAMPLE.

Next take m = 2. Then the condition that the curves be
algebraic is <£"(«•) = 0.

(z-aY(z + a)n

But <f>(z) = -—-— \ w + i • Differentiating twice and putting

a for z, <f>"(a) = 0 gives

a2 + a2
 = 2(n + l)(n - 2) ± 4 J2n(n + 1)

If a and a satisfy this condition, then the arcs of the algebraic
curves denned by

f (s - a Hz + a)"dz
(16) * + Hf-0j ( , . a j a , + a ^ ,

dz
will be represented by the elliptic integral C°J J(#-a\

* If we make » = 1 then k=—j^, i.e., the lemniscate is the simplest case of

this infinite class of curves. To obtain its equation we may proceed thus :—

If n = l then from (13) a + a = 0 and aa=l, whence a = t and a"= -i.

Putting these values in (14) we get, after one or two steps,

z3 z
whence x=C-j—r , y = C — — j - . Eliminating z between these, we get
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the square of whose modulus is from (15)

af_n(n+l)± J2n(n
4aa (w+l)(ra + 2)

If we also make n — 2, then (15) gives

. * 2 A !
a + <>•= —75 > a n a aa = 1

3whence a2 = = 7 Q —

Putting these values in (16) we get ultimately

On rationalising the denominator and then equating the real and
imaginary parts on each side we obtain for the coordinates

llz5 . Uz> . z

, - Q I " 3^3 9

The curve is of the sixth degree, and, in an Additional Note to his
Memoir, Serret shows that its equation in polar coordinates is

9r2(r2 - 2C2cos20)2 + 8 C V - 2C2cos20) +
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where 2C (cf. equations (1) and (1°)) is the distance between the
two foci of the curve.*

VI.

As we have said on p. 16, Serret could only satisfy the condi-
tions that the curve be algebraic if r contained no other factors
than those of p, viz., z - a and z + a. He said, " En general pour
une forme de'termine^ des polyndmes r et p les conditions ne pouront
subsister en meme temps; mais il existe un cas tres e'tendu, ou
elles pourront toujours 6tre satisfaites, c'est celui, ou les polyndmes
r et p ne renfermeront que les facteurs lineaires des polyndmes
donn&s p et jr."

L. KIEPERT in a dissertation entitled Be curvis quorum arcus
integrdLUms ellipticis primi generis exprimuntur (Berlin, 1870)
showed that this restriction was not necessary, and that therefore

* We have always taken the condition 0("1'(a)=O, but of course we take
the one or the other of the conditions (11) according as m or » is the smaller.
If the smaller exceeds 2 then the condition for a and a will be at least of the
third degree and cannot in general be resolved, but this does not affect the
reasoning by which we obtained an infinity of curves for any given value of
the smaller of m or ?i.

Moreover, n has throughout been supposed integral, but M. Liouville
proved in Liouvilh's Journal, vol. x. p. 293, that n need not be integral but
only rational in order that Serret's infinity of curves for x and y remain
algebraic.

We have seen that 0<ln'(o)=O leads always to a relation symmetrical and
homogeneous in a and a. Serret shows that this relation in its most general
form is

2 iV-)
„_(>,-» ' (m-p + l))(m-q+l)l(p+l

x (2a)*(2a)«(a + a)2"^-« = 0

CAYLKY {Elliptic Functions, chap, xv.) states the relation between a and a

(a + a)"
much more briefly thus:—Putting f for i-rr——, the square of the modulus,

then the relation is

If we make m = 1 or 2, etc., then this gives the same values of the modulus as
we have obtained above.
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S e r r e t ' s c lass of c u r v e s could be g r e a t l y e x t e n d e d . F o r le t
bu io, . . . bx b e o t h e r x imag ina r i e s , a n d ft, ft, . . . ft
t h e i r con juga tes . A l s o l e t

r = { z ~ a ) m ( z + a ) n ( z - b , ) n \ z - b . ^ . . . . ( z - b . ) " '

Then as in V. (7) we will get corresponding equations for p,
D and A. Also as before let p = z2 - a2, TT = z2 - as.

Then corresponding to V. (8) we get

' J (a - a)'" + \z + a)n+l(z - ft)'li + \z -

'• J/(s)«fe. say-

Also V. (9) now becomes

4>(z)=f(z)(z-a)m + 1

X.(*)=

Instead of V. (10) we have

f(z) = -J'~"
m!(z - a)

+

+ . . . . +
«*'(*-
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On multiplying up and comparing the powers of z on the left
and right-hand side of this we get as in V. (12)

(3) <ft(OT)(q) + yfr(n)(-q) + x ^ A ) + + x M f t ) = 0
ml n\ rij! nz\

In order that * and y be purely algebraic we get x + 2 condi-
tions corresponding to V. (11), viz.,

But because of (3) these reduce to x 4-1 conditions, which can
always be fulfilled for we have x+ 1 quantities at our disposal, viz.,

a, b» b2, bx

or their conjugates a, /3lt /?2) fiz.

Thus the conditions that the curves represented by (1) be
algebraic can be fulfilled, and since p and IT are, as we have said, the
same as before, the arcs of these curves will be represented as
formerly by an elliptic integral of the first kind, viz.,

-r- dz

• - a 1 )

EXAMPLE.

Kiepert does not give a direct example of (1) we shall therefore
fully discuss the following case.

Let r = (z - a)(e + a)(z - b)n

.: from (1)

and from (2) we get

af(z-/3)"

(z- af(z - f3)"+

(z~af(z + af
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That the curves (4)'be algebraic the conditions are

^ +XT

Now
-jf^ = + +(n+l)J r s

<p(z) z-a z+a z + a x '\z-b z-p

f 1 1)J r'\z-b z-

(z* - cfXz + ay (g-b)(z-P)

Hence the condition <£'(a)= 0 evidently gives

(5) (a" + o^fa1 - a(6 + /8) + 6)8} + (n + l)a(a2 - a»)(6 - 0) = 0.

The second condition, ^'( - a) = 0, will obviously be got from
this by putting - a instead of a, therefore

(6) (a' + aa){a! + a(6 + /3) + 6j8} - (n + l)a(aa - a»)(6 - /3) = 0.

Adding (5) and (6) we get

the conjugate of which is (a2 + a*)(a* + b/3) = 0.

By subtraction we get

(a2 + a2)(as-o2) = 0.

In order that this equation be fulfilled we must have either

a2 + a5 = 0 or a 2 - a 2 - 0 .

We shall examine each of those conditions for the curve being
algebraic.

First ease, a2 + a2 = 0.

(5) then gives (a2 - a*)(b -/3) = 0

hence either a 2 -a 2 = 0 or &-/? = 0.

The first of these is impossible for taken along with a2 + a* = 0,
it would give zero for a and a.

We therefore must take b - j8 = 0, or 6 = /3, so that the curve
(4) is

which, see the foot-note on page 19, is the lemniscate.
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Second case, a2 - a2 = Q or a2 = a2.

dz f dzC dz f dz
, = I -z rBut the arc s -

which is no longer an elliptic integral of the first kind, and there-
fore we need not further discuss the case.

VII.

The most general solutions, however, of the problem we are
investigating have been obtained by employing the Weierstrassian
notation for elliptic functions.

The transition from the older notation to that now almost
universally employed can be very briefly stated for our present
purpose.

Call the arc of a curve u, then up to the present we have used
the relation

dz
-Jap*

But the elliptic function z of the argument u defined as above by
the equation

XiFl =

can be transformed into Weierstrass's elliptic function pu of the
argument u defined by the equation

(1) (V'uf or

(psM denotes the cube of pu) where gt and gs are the invariants of
the 2nd and 3rd degrees of the quadric function

If

then the are u of the curve is, in the new notation, an elliptic
integral of the first kind.
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Furthermore, if 2tu and 2a/ be the two fundamental real and
imaginary periods respectively of this doubly periodic function pw,
and 2a>" their sum, and if we put e^ for pw, e2 for pw", and e3 for
pw', then

= 4(pw - ^Xpu - «2)(pM - es).

Comparing this with (1) we see that

0 = ^

•From ptt we define the cru function of Weierstrass by the
equation

«P logon*

with the additional equations

<r(0) = 0, o-'(0) = l, <r"(0) = 0

for the determination of the constants of integration.*

* The best summary of Weierstrass's functions is contained in H. A.
Schwarz's Formeln und Lehrsatze zum Oebrauche der elliptischen Functionen,
nach Vorlesungen und Aufzeichnungen des fferrn K. Weierstrass (2nd
edition, 1893). The theory of these functions is developed in Halphen's
Traitd des Fonctions Elliptiques. Weierstrass's Memoirs have been col-
lected and published in Mathematische Werke von Karl Weierstrass (Berlin,
Bd. I. 1894; Bd. II. 1895). In Bd. II., pp. 245-309, are two articles Zur
Theorie der elliptischen Functionen. No better account of the methods of
Legendre, Jacobi and Weierstrass can be found than that in Muller'a edition of
Enneper's Elliptische Functionen, Theorie und Oeschichte (Halle, 1890). It
contains also for the student of the subject a great mass of bibliographical
details. The best Memoirs in English on Weierstrass's methods are three by
A. L. Daniels in vols. vi. and vii. (1884 and 1885) of The American Journal of
Mathematics. Dr A. B. Forsyth has a Memoir on the same subject in vol.
xxii. (1887) of The Quarterly Journal of Mathematics. In Oreenhill's Elliptic
Functions some parts of the modern notation are developed alongside of the
old. In chap. vii. of A. C. Dixon's excellent little book on Elliptic Functions,
there is a very brief sketch of the p - and £ - functions (Halphen uses the

symbol £u for -r- \ogau or —u). Harkness and Morley in chap. vii. of their

Treatise on the Theory of Functions devote about 60 pages to the p - , <r-, and
f- functions.
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VIII.

KIKPERT* by using the Weierstrassian notation was able to
obtain a more general solution than Serret's. Indeed, we shall
show that Kiepert discovered a class of curves, whose arcs are
elliptic integrals of the first kind, which includes Serret's infinity of
curves as a particular case.

If <f> (u) be a doubly periodic function of the argument « of the
r* degree having 2a> and 2co' as its primary periods then we shall
in what follows use two methods of expressing this function by
means of the o- - function.

First, f it is always possible to find 2r +1 quantities
C, «!, Oj ar, bu b, £>,, so that

>-{,>(«-{,) <r(u-br)
(1) <K«) = C r ( u _ a ) ( r ( M _ a 2 ) o-(u-ar)

where G is a constant, and blt 62) br are the values
of M for which <£(M) vanishes, and alt a^, ar are the
values of u for which <f>(u) is infinitely great.

I t can be proved that as a consequence of (1)

(2)
Conversely, if al, an 6, br satisfy

equation (2), then every doubly periodic function of the r*h degree
can be expressed as in (1).

Secondly, Kiepert makes very frequent use of another mode of
expressing any doubly periodic function <j>(u) of the r"1 degree, viz.,
a modified form of the expression given at p. 20 of the Formeln
und Lehrsdtze

Among the values ait a.2, ar of u for which <j>(u) is
infinite there may be only m different from each other, viz.,

and these may occur respectively rx, r2 rm times

• Inaugural Dissertation De curvi* quarum areas integralibus ettiptici*
primi generis exprimuntur (Berlin 1870); Uebar Curvert deren Bogen ein
elliptisches Integral erster Oattung ist (Orelle's Journal, vol. lxxix., 1875; and
Berichte der naturforechenden Gesdlschafl z« Freiburg, 1876).

+ Cf. Formeln, p. 15, or Halphen's F. E., TOI. I , p. 213.
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i.e., the infinities may respectively be of the orders

n> rt rm,
so that r1 + ri+ +rm = r.

Now, in the development of <j>(u) according to powers of u - a,
the sum of the terms with negative exponents may be, say,

(3) cn i(w-a,)-1+ e,,a(M-<*!)-«+ . . .

• • • + « i , n - i ( « - « > r r i + 1 + " i , r i ( " - « 1 r r i

with similar series for u - a.,, etc., and lastly

From these expressions it is evident that if we put

«« , . , ) for ^ — — r i

<f>(u, a.2), <j>(u, a3) <£(w, a,n) having similar meanings, then

(4) <f>(u) - <)>(u, a , ) - <f>(u, a2) - <f>(u, am) = X(u), s ay ,

where \(u) m«st by hypothesis be a function which cannot become
infinite for any finite value of u.

If we write down the expanded form of (4) we see that
C 1)1 + CS)1 + + c m l 1 = 0 .

Also, on differentiating each side of (4) we obtain that the derivative
of x(w) is doubly periodic since the derivatives <£' are so. But every
doubly periodic function must have infinite values, therefore x'(M)
cannot be a function of u, it can at most be a constant. If we put
in turn u+2<a and u + 2u>' for u in the differential of each side of
(4), we shall find that this constant is zero. Hence, since \'(M) i s

zero, x(«) i8 constant, say, c^
Wherefore we may write (4) as follows:

u - am)
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where, as we have seen,

(6) Cj, !+C3, !+ . . . +Cm, ! = 0.

Comparing the right-hand side of (5) with the expression given
above for <j>(u, a,), it will be seen that we have omitted the part

( - 1 ) in the 2nd, 3rd, 4th, etc., terms. Of course this is
(v-l)\

permissible since the factor omitted only affects the coefficients.

Now, using (5), let the equation of the curves we are going to
investigate be

•" ^1 v v + . • •
»— l ' du

(7) * + iy = co+ 2

' ' ' , m, v
du"

with the condition (6) amongst the coefficients.
We have to find the condition that those curves be algebraic, and

to find a method of obtaining the modulus of the elliptic integral
of the first kind which the arcs of the curves represent.

Differentiating (7) we get

dx + idy
W

Froi

(9)

-/(«)•

3 Vol.15

du
r4 a

— 2. C.

m (1) we

dx + idy
du

dx-idy

o-{u-al)
t

r» +1 \oa(Ttu _

get similarly

IIcr(

n<r(M - b)

» . . -. <r(w — a,

„ c?" + 1log(r(M-am)

u-a )rm+x

https://doi.org/10.1017/S0013091500031965 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500031965


30

where F, y, /?, alt a2, . . . am are the conjugate complex
quantities of C, c, b, <%, a2, . . . am respectively.

If the argument u (which is an elliptic integral of the first kind,
vide p. 25) represent an arc of the curves, then

„ , „ dx + idy dx--idy
dx* + dy* = du2 or - ; 2 = 1.

du du

Therefore from (9) and (10) it follows that

[cr = i,
( { n ( M - 6) = O-(M - a / i + 1<T(U- a2)

r2 + l . . . cr(u - am

are the sufficient and necessary conditions that the curves (7)

expressed by the integral f(u)du be algebraic.

These conditions are satisfied if (since 6^ 6a . . . are the
ze^os of/(w))

- o .

We have here m + »'i + r2+ . . . +rm or m + r equations of
condition, which can be satisfied since we have the m quantities
alt a2 . . . om, and the r coefficients c at our disposal. From the
former we get as in Serret's case the modulus of the elliptic
function. In trying to find the modulus there are in practice
very great, if not sometimes insuperable, algebraic difficulties; but

we can generally simplify the process, for x + iy = f(u)du will

frequently lead to an expression containing various <r - functions
and their logarithmic derivatives, and from the properties of such
functions we can get many of the conditions to disappear, making
it easier to find quantities to satisfy the remaining conditions. We
shall illustrate this by three examples.
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FIRST EXAMPLE.

(13) Let ± + **?-A»)

with the further condition that au a2 and their conjugates alt a2

are such that their differences aj-Oj, ax —a2) a^ — c^, a2-a2 are
semiperiods.

Comparing (13) with (8) we see that the conditions correspond-
ing to (12) for the curves being algebraic are

f /(«.)-0, /'(a1) = 0> /"(«,)-0 /<->(«,) = (>
( I /(*,) = 0, /'(<*) = 0, /"(a,) = 0 /*" (a,) = 0.

But, by the properties of the cr functions, if A. be a positive

d2\ + \
integer, then * —o\ + î °8<7'M = 0. if M = w, CD', or to" (o>" = tu + <u').

Hence it is evident from (13) that/(a,) , /(a2) and all their even
derivatives vanish, so that in (14) only the following m + n
conditions remain to be satisfied :—

* cf. Halphen's F. E., Vol. I., p. 27.
p' = 4p3 - #,p - g3 (by definition)

.-. p" = 6 p 2 - ^ a

p'" =.12pp' = 6(pp' + pp')
p'v =6(pp"+2p'p'+P"p)

p'p" + 3p"p'+p"'p)

(2A -

_ 3)p(2X-4)p, + p(2X-3)p], y r +
2!

From this it can be seen that since p'u> = 0, pV = 0, p V = 0' (see
Formeln, p. 11) .\ P'"M, pvw, and all .the other odd derivatives
of pw vanish for u = o>, w', or <o". But

when M = a), u>', or o>".
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which are linear and homogeneous equations among the m + n
coefficients c, whence the conditions that the curves be algebraic
can be satisfied.

We may satisfy the given condition that Oj-«i, etc., be semi-
periods in two ways, viz.,

or

l a '= -3-.

so that from (13) we get two functions f(u) to satisfy the case we
are discussing, viz.,

and

* We get other two sets of values that satisfy the given conditions by

changing the sign of — in each of the above, but of course these values

would just be the conjugates of the foregoing.

t A little consideration will show that the curves represented by this
equation (which is erroneously stated by Kiepert on page 11 of his dtsserta-

dx + idy (z-a)m(z + a)"
tion) embrace all Serrel'i curves -=—- = -, . . . -r-r-.. For in the

dz (z - a)m+1(z + a)"Tl

latter we see that there are two infinities which are the same but of opposite
signs, viz., r = + a , and ; - - a . So also in the curves represented by (16),

cPlogot*
remembering that 4 a— = - p«, and that p(0) = 00, and p'(0) = 00, we see that

0} (1)' it) (t)r

the infinities are «*=-g 5- and «= - -5- + — , i.e., they differ only in sign.
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SECOND EXAMPLE.

Next take an example suggested by the two equations just

given.

<A 1

» d2" + 1 I I ta (a'\ I <a <a'\ 1
+ 2 C2 •», 9v + AloS(T\u + -9--5-}-lo8'T\u- — --t-) (•

r = l ' Wl* I ' & &f \ J, & J \

Comparing this with the general equation (8) we see that

For the present case the equations of condition corresponding to
(12) are

, ) - 0

0

0

(18) ,
/(as) = 0 /'(as) = 0 . . /^^ai)=0

/(«.) = 0 /'(«4) = 0 . . /<»'-»(a4)=0

If the argument u is increased by to, then
(19)
logo-

becomes

M + HL J - M - <» + y ) + logo-̂ w + - J - - J ) - logcr̂ M - y - y

M + 0) + M + _ j + 3(1) <I)'V . / (I) O)'\

_ _ _ | _ l0g<r^M + _ _ _ j .

But, since +2<o is one of the periods of the function, this is
equal to

M-<« + y ) - log(r(M + .£.) + logo-^M-y- y ) -logo^w + y - y
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which is just (19) with a negative sign.

But cu, = ctj + a), and o4 = a3 + co

/ (» , )=- / (*>) and / ( a 4 )= - / (« s )

so that if /(<Xi) vanishes so must f{aj), and if /(<%) vanishes so must
/(a4), and the same is true of their derivatives, so that in (18) we
may omit the 2nd and 4th rows, and thus the number of necessary
conditions is reduced by one-half.
Again, both parts of the right-hand side of (17) belong to the type

logcra — log<r(M — to).

But by the properties of the <x - functions

(20) {logtm-logcr(w-co)} vanishes if u= ± to', + to +to'
du42X+1

and

(21) {logcra-logtr(M-co)} vanishes if u= ±—, + — + co'.
*7«.2X 2 2

But

Also

O1-O1 =

01-02 =

a,-«3 =

a,-a4-

03-01 =

CO

- CO

to

T
CO

~T
to

3co

a , - a . = - co - to'

.*. all odd derivatives of / (a , ) vanish
[the first half by condition (20),
and the second half by (21)].

.-. /(a3) and all its even derivatives
vanish [the first half by (21),
and the second half by (20)].

Hence, finally, taking all these into account, (18) reduces to
only m + n conditions, viz.,

1 K)
which can be satisfied since we have the m + n coefficients c at our
disposal.
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Kiepert works out at great length the particular case of the
group of curves (17) when m — n=l.

The equation he finally gets is

whose shape is given in Figure 14.

THIRD EXAMPLE.

As another group of the infinity of curves discovered by him-
self Kiepert takes

= 2 c x ^ ( « + &,-)+ 2 c
\=0 ' X=0 '

x=o '

where /8,, /32, . . . /3t are real quantities, and for brevity

yp \u) represents

d<x+2) 1 2
j ^ ^ { g + g ( +

r - 1
2 )}

(X-0,1,2, . . . )

where 2a is any period of the elliptic function, and e is the 7th root
of unity.

He shows that the necessary conditions can be satisfied that
(22) may be algebraic.

He examines in detail the case •where r = 3," ^ = 0, k—1, and
2a = —

2<o 2 a A

-7—J
2«) 2a)'

2o)'V / 2*)\ , / 2o>'

)| J
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He shows that the cartesian equation of the curve is
(a;2 + y1)3 - y(y* - 3a:2) = 0 and its polar equation r3 = cos30.*

The curve consists of 3 equal parts as in Figure 15. Similarly
all the algebraic curves (22) are composed of r equal parts.

IX.

The weakness of both Serret's and Kiepert's methods for plane
curves is that they cannot be extended to space curves. As we
have seen, they both start from the expression x + iy; they form
an elliptic function for this, and find the conditions that the curve

be algebraic, i.e. that {-T-1 + \T~) = constant. Of course such a

method is not applicable to curves of double curvature. To get a
method applicable at once to curves of single and double curvature
Kiepert's method has been somewhat modified by R. VON LILIENTHAL

in a dissertation entitled Zur Theorie der Curven deren Bogenlange
ein elliptisches Integral erster Art ist (Berlin, 1882). He proceeds
thus: he puts the co-ordinates x and y (and z also for a space
curve) equal to certain elliptic functions. Then he forms the

• t (dx\2 idyV tdxY- /dy\2 idz\*expression for l -^ l + 1^1 or I ̂ -1 + 1-^1 +1-=—1 and finds ther \dut \duf \duj \du) \duj

condition that these sums are constant, i.e. that the co-efficients of
the infinite terms vanish.

• Observe the analogy of this curve to the lemniscate rs=cos20, which of
course consists of two equal loops.

We can very easily reduce the expression for an arc u of r'=cos30 to an
elliptic integral of the first kind ; for

dn=

Take r* = —, . •. the above becomes
P

dp f dp
du = - —, or u --

f
— — IJ/4p* _ 4

Kiepert shows in Crelle's Journal, Vol. LXXIV. (1872), how to divide an
arc of the curve r3=cos30 into 7, 13,19, 31 or, generally, 6q + l equal parts.
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Lilienthal illustrates his method by applying it to the case of the
plane lemniscate and the " spherical" lemniscate, and in the latter
part of his paper he discusses the connection between spherical
curves whose arcs are elliptic integrals of the "first kind and surfaces
of minimum area for given perimeter (Minimalfliichen).*

Starting with the lemniscate, he puts

AcPlogo-(w - a) A'drlog o-(?t - a') Ajtfflogo^u - ar) A/ePlogo-^* - a,')
dtf + dtf + dn* + chi?

or

| sc = Ap(M-o) + A'p(w-o') + AIp(M-o1) + A1'p(M-a1')

{ y = Bp(« - a) + B'p(w - o') + B, p(« - o^ + A/pfi* - < )

where a', Oj', A', A/, B', B/ are conjugate respectively to

a, a,, A, A n B, Bj.

Our problem is to determine those quantities BO that

( dx\* {dy\z

-=-1 + I-/-) = constant,
du] \duf

We have

(2) •£• = Ap'(w - a) + A'p'(w - a') + AJP'(M - ax) + A/p'(M - a/).

If we develop this in the neighbourhood of u = a we get f

* For the properties of minimalflachen see Todhunter's History of the
Progress of the Calculus of Variations (1861); Riemann's Memoir Ueber die
Fl&che vom Heinsten Inhalt bie gegebener Begrenzung, revised by K. Hattendorff,
Bd. 13 der Abhandlungen der KOniglichen Oesellschaft der Wissensehaften zw
Oo'ttingen (1867); and particularly H. A. Schwarz's article MisceUen aus dem
Gebitte der Minimalflachen, at pp. 168-189, vol. i., of his Mathemxttische
Abhandlungen (Berlin, 1890).

t For the development of p'(u-a) see Formeln, p. 11, and for the other
three terms we use the theorem that if f[u) be an elliptic function of u, then
its development in the neighbourhood of «=<* is

4. \U ~ a' /t">(a). {Cf. Forsyth's Theory of Functions of a Complex
711

Variable, p. 50).
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10 V '

') + (u-a ) A ' p > - a '

A I / / l\ / A A I III l\ \ w l / 1 Hit

+ A! p (a — <*!) + (M — <h )A-i p (« - <h ) + 5 P V°

! " h^df+A'p'(a " o < ) + A l p ' ( a " ° 1 ) + A 1 ' p ' ( o " ^

+ JA'p" (a - a') + AlP" (a-a1) + A,'p" (a - < ) + ^ ^ ( M - a)

. (dxV= 4A' 4A{A'p'(a - a') + A,p'(« - a.) + A,'p'(a
"\duf (u-a)°~ (u-af

- 4A{ A'p" (a - a') + AlP" (a-a1) + A/p" (a - < ) +±

- 2A{ A'p'"(« - a') + AlP"'(« - a,) + A1'p'"(a -a,')}
M - a

where F(u - a) is finite at the point u = a.

Similarly, in the neighbourhood ot u = a1 we get

dul ( , ) ( i )

- 4A1JAp" (a, - o) + A'p" (a, - a') + A/p" (a, - a,') +

. - a'

By putting B for A throughout, we get the corresponding two

expressions for I —I .
\dut
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Hence we have

(3)
f B = ,

A A'
A A,
A A ;
A'A,

(A, B'

•Al f B ,

+ BB'
+ BB,
+ BB,'
+ B'B,

= -*A'

'= - iA, '

= 2AA'
= 0
= 2AA,'
= 2A'A,

so that the foregoing equations of condition reduce to

A 'p ' (« -a ' )+ A l ' p ' ( « - < ) = <»
\ from II.

'p '(a1-a') + A1'p'(a1-«1') = 0j
A'p" (a - «') + A/p" (a - a,') = 0}

f from III.
A'p" (a, - a') + A,'p" («! - a,') = O)

« - a') + A/p'"(a - a[) -0\
vfrom IV.

«»l-«') + A1'p"'(«)-«1') = 0 |

Now these conditions will evidently be fulfilled if we can find
an elliptic function which will be zero at a and <h, and infinite at
a' and a\. Hence the function has the form

f(u) = ep'(u - a') + C,P'(M - < ) .

Also, we see from the above equations of condition that the zeros
and infinities are each of the 3rd order, so that we may also
represent f(u) as in the equation viii. (1).

Therefore we may write

and these are the equations we have to satisfy.
If we develop f(u) in the neighbourhood of a' we get,*

remembering that

^logo-(W - o) = ^(w - o)f, and ^logo-(« - a) = - p(w - a),

* Formdn, p. 10, and footnote p. 26.
+ It ought perhaps to have been mentioned that

—u is a contraction for — .
a <ru
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{ 9 (£(«' - «) + £<«' - «,) - •£(* - a,-))'

By putting a/ instead of a' we get the corresponding expression
for the development of the function in the neighbourhood of a,.

For shortness put

(6)

K for

O" O" (T

K, for p(a' - a) + p(a' - ai) - p(a' - a,')

and let K', K/, KLj' be the corresponding expressions when we put
a2 for a, and a/ for a'.

Remembering also that

~

t £!(„_„') u -a

and that — ( - « ) = (w), and p( - M) = pw.

we get from (4) and (5),

+ 3KK1p(« - a') + SK'Ex'p(« - a,*) + iK(9K1
t - 3 K , ) ^ ( M - a')

+ }K'(9K,'* - 3K,')—(M - o/) + constant.

* Formeln, p. 11. t Formeln, p. 10.
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By putting u = 0 on both sides we find that the

(8) Constant = ^ f f f f } - f p'(«') - | V « ) " 8KKlP(«')

- 3K'K1'p(a1') + f (9K- - 8 K ^ a ' ) + f (9K/ - 8K,')-(a1').

We see from (7) that the necessary and sufficient conditions that
f{u) take the second form required in (4) are that K,, K,', Kj, K2'
as well as the constant term vanish, for then (7) will become

But the sum of the zeros equals the sum of the infinities [see
VIII. (2)].

i.e. a + o, = o'

.-. a'-a = -

and «'-»! = - (oj' - a )

and of course a' - a/ = - (a/ - a')

.•. from (6)

K I T ' TZ* — XT ' TT XT '

Wherefore the conditions that ~KU Kj', K,, Ks', and the con«<an< in
(7) vanish are equivalent as we see from (6) to finding the condi-
tions that

(9) :£(«'_«) + -£(«'-«,)--£(«'_ a/) = 0
and (10) p(a ' -o)+ p ^ ' - ^ ) - p(a'-a1') = 0

and also constant = 0.

But since a' - a,' = (a' - o) + (a' - a,); then applying the two
addition formulae.

o-' . <r' . . , p'w - p'« „
= —(M) + — (v) + £- i— *

• Formeln, p. 13.
t ^orme^re, p. 14.
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(9) and (10) are reduced respectively to finding the conditions
that

(11) P>( a ' -a)-P ' ( g ' - g i )_0
p(a'-o)-p(a'-a,)

(12) p(a'-a) + p(a'-a,) = 0.

But, as already stated,

p'w = 0, pV = 0, pV = 0

p a) = elt p b> = e3, p to" = e2.

We see, therefore, that (11) will be satisfied if a' -a, a' -«j are
semiperiods; and, since e1 + e2 + es = 0 (see p. 26), we see that (12)
will also be satisfied if one of the e's vanishes. To find which e can
vanish, we proceed thus:
k, the modulus of the elliptic function, must be + w and < 1, and

If ^ = 0, then # = 2 ; if «„ = 0, then #• = £ ; if ea = 0, then /fca= - 1 ;
so that we can only possibly have e2 = 0.

••• (13)
a' - a = &)'; a' - a; = w; a' - a\ = (a' - a^ + (a' - a) = w + w' = w".

Putting these values in (6) we get

K = ^ ; "̂  ; and, as we have already seen, K'= - K.
o*(v )

With these data it can now be shown that the constant (8)
vanishes, and therefore the proof is complete that the necessary
conditions can be fulfilled that the third member of (7) is reducible
to the form of the third member of (4), which in turn we have
shown to be the condition that the curve is algebraic.

To find the cartesian equation of the curve we may proceed
thus:

Insert the above values of K and K' in (7a), and at the same
time put

J__ _
"0""

* Formdn, p. 30.
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we then get
f(u) = p'(w - a') - p'(« - a,').

Comparing this with our original equations (1) and (2) we see that
A ' = l , A , ' = - l .

Also, according to (13) we can put*
(0 0)' (l> <li

, <o to , 10 (o

a = + , a, = — — — — .
9 9 ' ' 99

(14)

a= 2 - 2 „ *

Hence in (1) we have, remembering also the values in (3),
to to \ / to to \ / ^ to\ / to o)

From this we get

(16) SB-,V

/ to < o \ / to"\ ,

But p\"-y--2J = P\«-yJ and

Also (see Formeln, p. 14).

(17) p ( M + » ) . p ( M - , ) =

Remembering that e, =0

and that {^ = - (e& + e^ + e^) \
\ (Formeln, p: 12)J

.•. in this case isrj = «sa
> and ^s = 0.

Wherefore (17) gives us

* Compare these values with Kiepert'a values on p. 32 for the group of
curves which includes the lemnisoate.
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Again (see Formeln, p. 14)

+awpi* ( 2 i [ )

- 9s

Therefore,

whence p-j- = ie3.

Therefore (18) gives

T ) or

„ . . , , / to <a'\ 2e3
2

Similarly vlu-T + - \ = e +

and
/ ft) ft>'\

( ft) ft)'\

Putting these values in (15) and (16) they reduce to

0) ft)'

x-iy — 4e3-

Eliminating the p - function between these, we get finally

i.e., the curve is a lemniscate.

4 Vol.15
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X.

As we have already said, the great advantage of Lilienthal's
notation is that it can be readily extended to space curves. To
show this Lilienthal takes the case analogous to the plane lemnis-
cate. We have

x = Ap(w - a) + A'p(w - a') + A,p(w - a,) + A / p ^ - %')

(1) y = Bp(w - a) + B'p(w -a') + Btp(w - a^) + B,'p(w - a/)

2 = Cp(w - a) + C'p(w - a') + C{p(u - a^) + Ci'p(w - a/).

In order that I T - I +13^) + ( j ~ ) n a v e n o P°in* 0 infinity

have (see p. 39)

we

(A2+Ba+C2=0

' (A^ + B^ + Cy-O

II. 1

0

(AA' + BB' + CC')p'(« - <*') + (A A, + B Ba + 0 C,)p'(a - (h)

+ (A A/ +BB, ' + C C,')p'(« - « I ' ) = 0

j + BB, + CC,)p'(ai - a) + (A'A, + B'B, + C'Ci)p'(a, - a')

+ ( AJ'AJ + B^B, + C'COpXoi - < ) = 0

and systems corresponding to III . and IV. by putting p" and p'"
instead of p' in II.

These equations, as we have seen, assume the simplest form
when a, a', alt and aj have the values given in IX. (14); so that

a - a' = - (ah - a,') = - a>' = a/ (since 2a>' is a period)
a — a, = a) — co' = a) + <•>' = to"
a — ai = — («i — a') = to.

But p'to, pV, and p'u" are zero, therefore also p'" vanishes for
the semiperiods,* so that the conditions II. and IV. are at once
satisfied, and we are left to find the necessary and sufficient con-
ditions that

+BS + C 2 = 0

• Halphen'a F. E., p. 27.
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(AA' + BB' + OO')pV +(AA1

+ (AA,' + BB1' + OC1')p"<o =0

(AA, + BB, + CC,)p'V + (A'A, + B'B, + C'C,)p"o>

1'AI + B1'B1 + C1'C,)p'V = 0.

Let us now put

A = r e * a , B=pe^, O = R e ' T , A ' = r a"*", etc.

A, = *•,«*"!, B^fte^i, C^R/Ti , A,' = rvs-*"i, etc.

so that I. becomes, remembering that e =cos2a + isin2<x,

Sr2 (cos2o + isin2a ) = 0
2r1

s(cos2a1 +isu^aj) = 0

or, separating the real and imaginary parts,

)
2r2cos2a =0
2r*sin2a =0

III. becomes

p'V(r« + p

and another similar expression.

But ela + %ai = (coso + i sina)(cosai + i sina,)

= cos(a + 04) + ! sin(a + 04)

Similarly «*a~*°i= cos(a - oj) + i sin(a - a,).

Hence, putting these values in the above and separating the
real and imaginary parts we get

p'V Sr8 + p'VSrr,cos(o + o,) + p"(o2rricos(o - 04) = 0
p"co"Srr1sin(a + Oj) + p"o)2rr,sin(a - aj) = 0
p'V STY1 + p"tu"2rricos(o + a,) + p"(o2rr1cos(o - 04) = 0
p'V2rTi8in(a + 04) + p"fc)2wisin(a1 - a) = 0.

https://doi.org/10.1017/S0013091500031965 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500031965


48

By comparing these four equations we see that we can replace
them by the following:—

'VSr2 + p"a»"2rr,cos(a + 04) + p'̂ StTjCOsfa - 04) = 0

IIP. -(
27T,sino cosoj = 0

P. and I I P . contain eight equations of condition among twelve
unknowns, but one of the quantities r, p, R, r,, plt Bx we can from
the beginning assume equal to any quantity we choose, and the
three remaining undetermined quantities only refer to the rotating
of the original coordinate system, so that we have sufficient data to
satisfy the necessary conditions for the existence of a curve of
double curvature corresponding to the plane lemniscate.

Lilienthal goes through a long analysis in order to obtain the
equation of the spherical lemniscate from the equations of condition
I", and I I P . He finally obtains

[
x= Csin</>x

where 0 is a constant, and sin<£ = T rj, k being the modulus of

the elliptic function.
He proves that this curve lies on the sphere *

* Lilienthal does not remark that if <p--^r, then the radius of this sphere

is infinite and the above curve becomes a plane lemniscate, for its modulus is

—&. (since sin0 = .—,2 J, and the above equations for x and z (y of coarse

vanishes) are the same as those for the plane lemniscate on p. 44. See also
first footnote on p. 14.
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a* I (v 2 C e ' s i n ^ " 6lV ;2

V CO0 /

and on the hyperbolic cylinder

s < f t ) 2 3 *

'

and on the elliptic cylinder

(y + 2e1Ccos<ft)8

1 ~ ~ •*•

and that the two cylinders touch the sphere from within.
Kiepert had in his Dissertation arrived at exactly similar results.
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XI.

Although Lilienthal devoted a long chapter to a discussion of
the application of his method to Kiepert's curve ^ = 0083^ (vide. p.
36) he does not mention that there is an analagous space curve.
Modifying somewhat his equations for the plane curve, let

x = A—(M - a) + A'—(« - «') + A,—(u - a,) + A/—(w - a,')

(1)
y = B-^(M - «) + B'^-(u - o') + B^i-u - aj + B ^ w - a,')

+ B2—(w - a,,) + B2'—(u - Oj')

z = C—(w - a) + C—(w - a') + C,—(u - a,) + C/—(M - a/)

where the accented quantities are the conjugates of the correspond-
ing unaccented ones, and

y
2a>'

Therefore, since -= (u) = -r-T
du <rs ' du2

dx

2a> 2<o'

2u>' 2o)_ _ + _ ,

— pit. we get

- a) - Oj) - AJ'P(M - a,')

(M - a,) - A2'p(w - Oj').

If we develop this in the neighbourhood of u = a we get (see
Formeln p. 10, and footnote p. 37).

(u - a); - . . . - A' p(a - a') - (u - a)A' p'(« - a') - . . .

- A1p(a-a1)-(M-a)A1p'(a-ai)- . . .
- Aj'p(a — a/) - (u — a)Aj'p'(a — Oj') — . . .

- A, p(a - Oj) - (it - a)A2 p'(a - a2) - . . .

-Aj'p(«-aa')-(«-a)A2'p'(a-a2')- . . .

https://doi.org/10.1017/S0013091500031965 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500031965


(d
x\

i 
A

2

fa
) 

=
(

^
^

''A 2A ,7
T

^ 
(A

'P
'(

a  -
 «

') 
+

 A
iP

'(
a  -

 «
i)

 +
 A

i'
p

'(
« 

- 
a
/)

 +
 A

2p
'(

a 
- 

a*
) 

+
 A

j'p
'(

a 
-«

„'
)}

 +
 F

(w
 -

 a
)

w
he

re
 F

(M
 -

 a
) 

is
 f

in
it

e 
in

 t
h

e 
pr

ox
im

it
y 

of
 u

 =
 «

.

S
im

il
ar

ly
 i

n
 t

h
e 

ne
ig

hb
ou

rh
oo

d 
of

 a
L
 a

n
d

 «
2
 w

e 
g

et
/d

xX
*

 
A

2
 

2 
A

\f
a
) 

=
(M

-a
1
)4 

+
 (

w
'J -a

1
)'

 
^

A
P

(a
i "

a
) +

 A
'P

(a
i-

a
')

 +
 

A

9  A
^

H
 

{
A
P

'(
«

 
a
) 

+
 A

'P
'(

« 
«'

) 
+

 A
'P

'(
« 

- 
O

 
+

 A
3
P

'(
«

i 
- 

«2
> 

+
 A

J'
P

'K
 -

 «
»'

)}
 +

 ^
(M

 -
 a

,)

(dx
\2  

A
,2

 
2

A

17
,) 

=
 7

7,
—

^v
>+  

/
,
/ 

*
\i

 {
 A

p 
(o

j -
 a

) 
+

 A
'p

 (
a,

 -
 a

')
 +

 A
,p

 (
a,

 -
 a

,)
 +

 A
,'p

2A
2

+ 
—

—
 

{ 
A

p'
(O

ij 
- 

a)
 +

 A
'p

'(
a 2

 -
 a

')
 +

 A
,p

'(O
j -

 a
,)
 +

 A
i'p

'(
oj

 -
 a

/)
 +

 A
2'p

'(a
2 

-«
•/

)}
 +

 F
2
(«

 -
 «

„)
. 

£2

B
y 

p
u

tt
in

g 
B

 a
n

d
 C

 r
es

pe
ct

iv
el

y 
fo

r 
A

 w
e 

g
e

t 
th

e 
co

rr
es

po
nd

in
g 

ex
pr

es
si

on
s 

fo
r 

(-
=^

1 
a

n
d

 I
 -y

-1
 

.

\a
u

j 
\d

u
f

-j
-\

 
+

 ("
7^

1 
+

1 
j-

.l
 m

u
st

 v
an

is
h,

 t
h

e 
co

nd
it

io
ns

 f
o
r 

w
hi

ch
 a

re

A
2

+
B

2
+

C
2

=
0 

A
,2

+
B

1
2  +

 C
12  =

 0
 

A
22  +

 B
22  +

 C
22  =

 0

' 
(A

A
' +

 B
B

' +
 C

 C
')p

(«
 -

 «
')
 +

 (
A

 A
, 

+
 B

 B
, 

+
 C

 C
, )

p(
« 

- 
«,

) 
+

 (
A

 A
/ 
+

 B
B

/+
C

 C
/j

p
^
 -

 »
,')

+
 (

A
A

2
+

B
B

2
+

C
0

2
)p

(a
 

-a
2
) 

+
 (

A
 A

,' 
+

 B
 B

2' 
+

 C
 C

a')
p(

a 
-«

2
')

 =
 0

(A
X
A

 +
 B

^
 +

 Ĉ
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The values of a, alt cij, a', a/, a2' we have already stated.
Hence there are nine equations of condition, and these can be

fulfilled since we have nine quantities at our disposal, viz.,

A B C A ^ J C J AJBJOJ,

or their conjugates. So that corresponding to Kiepert's plane
curve r3 = cos3<£ there exists a curve of double curvature whose arcs
represent the elliptic integral of the first kind.

I shall prove the same thing by another method which will be
found exceedingly useful in the next section.

-7- = - Ap(w - a) - A'p(it - a') - Ajp(u - «,) - A,'p(w - a/)

- A2p(« - %) - A2'p(w - a,')
For shortness write this as follows :

dx
^ =
dx

or
 5

 =

dx
° r dH = ~

Similarly

~ - Cp(w - a) - R(«) = - C,p(H - a,) - »,(«) = - C2p(M - a,) - B^u).

Then, in order to prove that the curve (1) is algebraic, we have
to show that the conditions are satisfied that

\duf \duf \du)

have no infinite terms for u = a, u = a1, or u = a2.

To show this we have to develop

dx dy dz
du' du' du

in the neighbourhood of the points a, O] and et2.

https://doi.org/10.1017/S0013091500031965 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500031965


53

For the development of p(w - a) see Halphen's F.E., vol. I., p. 92,
and for that of P(«) see footnote, p. 37. Using these, we get for
the proximity of u = a

Similarly for the neighbourhoods of u = a1 or n = a, we get

dx A, . . / \«

du (u — a.,)

. . . -

Squaring (2) we get

(u-a)4 (u-a)°l

where F(tt - a) is finite in the neighbourhood of u = a.

By putting B and C respectively in place of A we get similar

expressions for ^ j and ^ j .

Then the necessary conditions that (^Y + (d^\\ (^Y

\duf \du) \duf
be not infinite for u = a are (where 2 denotes the sum of all similar
terms got by interchanging A, B, and C, and P, Q, and R)

or we may write them

(3) 2A2 = 0, 2A.P(o) = 0. 2A.P'(a) = 0
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Similarly in the neighbourhood of M = a1 and u = a, respectively
we get

(4) ZA^-0 , 2 ^ . ^ 0 = 0, 2A1.P1'(a,) = 0

(5) 2A2
2 = 0, 2A2.P2(«2) = 0, 2A2.P2'(a11) = 0.

Thus we have in (3) (4) and (5) altogether nine equations of
condition to be fulfilled in order that the given curve be algebraic,
and these can be satisfied since we have nine quantities at our
disposal, viz., A B C AJBJCJ AJJBJCJ or their conjugates, and
hence we come to the same conclusion as before.

XII.

Again, by Lilienthal's notation we can readily generalise
Serret's plane curves and obtain a corresponding group of curves
on a sphere.

We have seen (vide equation (16) p. 32 and footnote there) that
for Serret's curves

*£*-.!,•••

i.e.,

(1) x + iy - ^ i , ,

(O tl)' ll) <O

where 0 = ^ - ^ , and Oj = ~ y + y

The curves having obviously two infinities, « = a and u = ax,
therefore writing the expressions for x, y, and z in Lilienthal's
notation [cf. X. (1)] we get

https://doi.org/10.1017/S0013091500031965 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500031965


(2) a; = A p(w-a ) + A1p"(u-a )+ . + A2, p<2l/>(tt-a )

+ A' p(M - a' ) + A2'p"(w - a' ) + + A'g, p(2">(w - a' )

with similar expressions for y and s by putting B and C respectively
in place of A.

For shortness, write the above

) p ( w - a ) + . . . . + A2

or
x = A,p(w - a,) + Aop"(w _ Oj) + . . . . + A2ll + ip(2"'(M - «i)

similarly

i/ = Bp(M-o) + B.,p"(w - a) + . . . . + B2|, p(2")(M - « ) + Q (tt)

= Bj>(u - a,) + B3p"(« - o,) + . . . . + B2, + ip(2')(w a,) + Q,(«)

« = 0 p ( ! t - a ) + 0 / ( « - 8 ) + . . . . +C0, p(2')(M - a ) + R (M)

= CMw - flj) + C3p"(M - aL) +

Comparing this abbreviated notation with the full expression for x
given above, it is evident that P Q E J?x Q, Rt have only even
derivatives.

Then, just as in the preceding sections, in order to prove that
the curves for (3) are algebraic we have to show that the conditions
are satisfied that

duf +\duf +\du

be constant for w = a, or u = a .

Now,

du

We have to develop this in the neighbourhood of w = a.
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But
I

M* + C4«
4

pw =

v p'u =

„
p M -

P M

PIVM =

pVtt =

1.2

1.2.3
M4

1.2.3.4

1.2.3.4.5

1.2.3.4.5.6
- . 7

(vide Halphen's F. E., vol. I. p. 92)

.W3 +6c,Me

+ 2c., +12c4tt
a + 30caw

4 +56c8w
6 + . . .

+ 24C4M +120C6«3 + 336C8M
6 + . . .

+ 24c4 +360C,MS+1680C8W4+ . • .

+ 720C4M +6720c8w
3+ . . .

We may therefore include the even and odd derivatives of pu
under the following useful general formula:—

( 2 r + l ) ! s

dx
Using the latter for the development of — above, we get

du
dx 2A 4!A« ^ l A a , . , (2v+2)!A{B,

+ ( C1.1A.+ 6!^^+ . . . +

* For the development of V'(u) in the proximity of u=a, cf. footnote, p.
37, keeping in mind that P(«) has only even derivatives as already pointed
ont.
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Similarly, for the neighbourhood of u = «,, we get

dx _ 2A. 4! A, _ (
V5' du~ (M-O,)* (M-flO5" * - (

+ ( Ci.iA,+ clt,A3+ . . . +

On replacing A by B and 0 respectively, we get the

corresponding expressions for -JL and — .
du du

Now, in order that the condition

be fulfilled in the neighbourhood of u = a, and u = alt it is of
course necessary that the terms containing u-a and u-Oj in the
denominator vanish. On squaring (4) and (5) we see that the
necessary conditions for this are (where 2 denotes the sum of all
similar terms got by interchanging A, B, and C, and F, Q, and R)

2A(A, + A4+

2A,(A4

(6)<
2 F ' (a)[2 A
2PIV(a)[4!A2+6!A4 +
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and similar equations to be satisfied for the neighbourhood of
u = Oj. But from (2) we see that

(7) £ = J 4 = A)Sav; and £ = ! = £ , andsoon.

Henco we may put

(8) B, = AB, B4 = A,B . . . . BoV=A.I,_1B.

C2 = AC, C4 = A,C . . . . Ca, = A ^ C .

Therefore (6) reduces to

(9) 2A2 = 0, 2A.P"(«) = 0, SA. PIV(a) = 0 , . . SA.P<2»+2>(a) = 0.

Similarly, for the neighbourhood of u = «„ on putting

(10)

o,-/«o,f
we get
(11) 2A* = 0, SA,. P,"(o,) = 0, SAj.P,IV(o,) = 0 . . 2A,.P/ '+^a,) = 0.

We thus have in (9) and (11) altogether 2v + 4 equations among
2v + 6 quantities

A B C AjBiC, A A, . . . . A,,_i JJ. ^ . . . . /»„_,.

But if we further stipulate that the curves be spherical ones,
this is equivalent to other two conditions, for, proceeding in the
same way as Lilienthal does for the spherical lemniscate, we have to
find the conditions that the expression (x - a)* + (y- f$f + (z - yf be
constant, i.e., have no infinities for u = a, u = a1.

Now, developing in the proximity of w = a the value of x given
in (3) we get (ef. footnote, p. 37, and equation (4) above)

A 3!A2

x- + -1-{u-af (u-a)* (u-a)31
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Wherefore, keeping (8) in mind, we have

/A_+
(w - af (u - a)*

+ ( ) + , +

Similarly, in the neighbourhood of u = Oj

(u - a,)2
 (M - a,)4 (M _ OJ

We get the corresponding expressions for y — j8 and a - y on
replacing A by B and C respectively.

Then, on squaring, we find that in order that the curve be
spherical, i.e., in order that (x - af + (// - fi)2 + (z - y)2 have no
infinities at u = a and u = a1( the terms containing u-a and M-«[
in the denominator must vanish.

Therefore, in addition to equations of the types in (9) and (11)
we also get

(12) |
- 7] = 0.

Hence we have altogether 2v + 6 equations of condition and
and 2v + 6 quantities at our disposal, so that the necessary conditions
can be satisfied that, corresponding to Serret's infinite group of
plane curves we have an infinite group of spherical curves whose
arcs are elliptic integrals of the first kind.

Finally, I wish to prove that corresponding to Kiepert's infinity
of plane curves there is an infinity of spherical ones whose arcs
represent the first elliptic integral.

The equation for Kiepert's curves is (see p. 29)

dx + idy _ Ŝ (F+1logp(u - <Q *» (fr+'logofo - qm)

~ ~ d l T ' 2 ^ d + > + " + Z C m ' ^ + l
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i.e.,

. % dlogo(M-a,) '"» <f log<r(M - Q
(la) x + ty= 2 C — + . . + i c —

7 = 1 raw ]> = 1 OM

where the infinities u = al, at, am have any given values.
We shall call the equations used (la), (2*), etc., to indicate that

they are the analagous ones to (1), (2), etc., in the previous part of
the section.

Since the points at infinity are « = «,, a^, am we may
represent the coordinates of Kiepert's curves thus:—

(2a)o;= Ai,op(tt-

'I,,p(w-al') + A' l i ,p>-a'1)+ . . . + A',, ,pW(« - a',)

p(u-a^) + A%1p'(n-ai) + . . . + A,. rpW(t* - a,)

'j, op(w - a,') + A'2i ip'(u- a'2) + . . . + A'j, v^"\u - a'2)

+ A m, op(M - an) + A M, I P ' (M - a m) + . . . + A m,vV
{v)(u -am)

+ A'm, op(« - « ' „ ) + A'm, I P ' (M - a'm) + . . . + A'm, vp(')(M - a ' J

and similar expressions for y and z by putting B and G respectively
for A.

The contracted notation corresponding to (3) will be

(3a)

x = Ah op(w -•a1) + A,, JP'(M - «I ) + • • • + A,_ ^ " ' ( M - «i ) + P, (M)

p(»)(M - a2 ) + P2 (u)

= Am, OP(M - am) + A™, I P ' (M -am)+ . . . + A ^ yp(')(M - «„) + Pra(w)

y = Bl i Op(M- <H ) + B,, , p ' ( i » - a , ) + . . . +B1,, ,pW(M-o1) + Q1(u)

(« - O + Bm,,p'(M - o,) + . . . + B ^ , pW(u - ara

( M - a 1 ) + C],1p '(M-a1) + . . . +C,, ,pW(w •-<»,) + R ^ u )

(« - am) + Cm, ,P'(M - a,) + . . . + C^ „ pW(« - am) + BJu).
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Therefore

Developing this in the neighbourhood of u = a1-we get, since the
derivatives are alternately odd and even (vide the general expres-
sions for the odd and even derivatives of pw on p. 56),

dx _ 2Ali0 3JA,,,
( *> du~ ( M - « , ) 3 + ( U - O , ) 4 - -

•(Cj.sAn + Cij.jA,̂  + . . . +C2 I J ,A, , , ,_ , ) (M-<

+ ("3.

and corresponding expressions for — in the neighbourhoods of

Also, putting B and C respectively in place of A we get

. ., . . dy , dz
similar expansions for -?- and -r- •

du du

Then expressing the conditions that I—I +1—1 +1—1
XduJ \duf \duf

* Taking for granted that v is even ; of course it does not matter whether
it is odd or even—it is merely a question" of which sign we shall use.

5 Vol.15
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may have no infinities &t u = a1 we get

2A,, 0(^1,!

(6a)

. . 2A\,=0

j , „ = 0j, „ 0

2P1'(a1)[-2A1,0 +3!A1,1-4!Ali2 +
2P1"(a,)[-2A1,0 + 3 1 ^ - 4 ! ^ +
2P,'"(aI)[-2A].o + 3!A1,1-4!A1,S +
2P" r ( ) [ 3 ! A 4 ! A

2P1>1)[-4!A1,a + 5!

But

(7a) _LL = ^ i = ^ J = ^ 0, say; and -^1
A j , 0 -"l, 0 ^1,0

and so on.

Hence we may put

• " 1 , 2 _ ^ 1 . a

,1 B,,, 0,.,'

'l,0» ^ 1 , 2 = = *^1,2^1,0> • ' * * ^ l , V '

Therefore (6a) reduces to

(9a)

am) we get

prw =0
Similarly for the points u = a,, u = a3,

2A2 i 0=0, 2A2,0P2'(a2) =0, 2,

2A,2,0 =0, 2A3,0P,'(a3) =0 2A3,0 P3
("+1'(a3) =0

SAL O = O, 2A™, 0P'M(am) = 0 2Am,, P J ' ^ K ) - <>
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In order that the curves be algebraic we thus have to satisfy
the above (v + 2)m equations of condition among the (v + S)m
quantities:—

Ai, o Bl t o C!i 0 A., j A, 2 "i,v

ACT, o B m , 0 Cmt „ Am> !

But if the curves be spherical ones this will introduce other m
conditions corresponding to (12) viz.,

A,, p [P, (a,) - a] + B,, 0 [Q, (a,) - /?] + Ct,, [B, (a,) - y] = 0

y] = 0

- a] + Bm. 0[Qm(aB) - /3] + Cm, 0[Rm(am) - y ] = 0.

We have thus altogether (v + 3)m equations of condition and
these can be satisfied as we have (v + 3)m quantities at our disposal,
so that we have an infinity of algebraic spherical curves similar to
Kiepert's plane curves and whose arcs likewise represent the elliptic
integral of the first kind.

Kiepert asserted that to all the curves of single curvature
whose arcs are elliptic integrals of the first kind there exist
analogous curves of double curvature whose arcs are also first
elliptic transcendentals. He says (De curvis quarum circus, etc., p.
23), " omnes illse curvse, quse in piano possunt investigari, singulares
tantum casus sunt curvarum duplicis curvaturre." He only proved
his assertion, however, in the particular case of the lemniscate
which Roberts had done about 30 years before, and even to that
case he could not apply the method he had discovered for plane
curves. We now see that by generalising Lilienthal's method for
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plane curves, the feature of which is that it takes into account the
behaviour of a curve at its singular points, we can prove the
complete truth of Kiepert's statement. I have shown this in the
case of the curve r3 = cos3<£ and, indeed, of Kiepert's plane curves
in general which include Serret's infinity of curves and all the
others as particular cases. These results, so far as I know, have
not been obtained before, and they seem to be of considerable
importance as they supply what was awanting in order to complete
the geometrical representation of elliptic integrals of the first kind.
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