THE RELATION BETWEEN RADIO LUMINOSITY AND MAGNETIC FIELD IN ROTATION-POWERED PULSARS

Serge Pineault Université Laval Physics Department Ste-Foy, Quebec Canada GIK 7P4

ABSTRACT. The relationship between radio luminosity L and magnetic field B is re-investigated under the assumption that the new spindown mechanism proposed by Huang <u>et al</u>. (1982) becomes dominant at large periods ($\dot{P} \propto P^2$). Magnetic dipole braking is still assumed to provide the main torque at short periods ($\dot{P} \propto P^{-1}$). Both spindown torques depend on B² (assuming proportionality between internal and external fields) so that the resultant magnetic field in this hybrid model is given by (note the difference with the standard expression):

 $B^2 = 1.0 \times 10^{39} \dot{P} P / (1 + \gamma P^3)$ Gauss.

A value of 3.6 is used for γ (Pineault 1986). For the radio luminosity we use the values tabulated by Manchester and Taylor (1981).

The results of the correlation analysis give log L = 0.80 log B + constant, with a correlation coefficient of 0.29, a highly significant result for the sample of 291 objects used (nominally < 0.0001%). For comparison, in the standard model, the correlation coefficient is only 0.04 (this differs from the results of Lyne <u>et al</u>. (1985) because of a different luminosity definition). The implications of this analysis on the distribution of pulsar properties in models with luminosity evolution (Gunn and Ostriker 1970, Lyne <u>et al</u>. 1985) and on the apparent correlation between transverse velocity and magnetic field (Cordes 1987) are currently under study.

REFERENCES

Cordes, J. M. 1987, these Proceedings Gunn, J. E. and Ostriker, J. P. 1970, <u>Astrophys. J.</u>, <u>160</u>, 979 Huang, J. H., Lingenfelter, R. E., Peng, Q. H. and Huang, K. L. 1982, <u>Astron. Astrophys.</u>, <u>119</u>, 9 Lyne, A. G., Manchester, R. N. and Taylor, J. H. 1985, <u>Mon. Not. R.</u> <u>astr. Soc.</u>, <u>213</u>, 613 Manchester, R. N. and Taylor, J. H. 1981, <u>Astron. J.</u>, <u>86</u>, 953 Pineault, S. 1986, <u>Astrophys. J.</u>, <u>301</u>, 145 <u>49</u>

D. J. Helfand and J.-H. Huang (eds.), The Origin and Evolution of Neutron Stars, 49. © 1987 by the IAU.