
9 
The properties of the Lund 

model fragmentation formulas; 
the external-part formulas 

9.1 Introduction 

In the previous chapter we derived a stochastical process for string frag
mentation. The result is a unique process which is at the basis of the Lund 
model for the fragmentation of quark and gluon jets. We used only some 
general properties of a kinematical nature together with the necessary 
requirements of causality and relativistic covariance. The whole discussion 
is based on (semi-)classical arguments (quantum mechanics does of course 
enter into our assumptions on qZj-pair production). 

In particular the process led to precise formulas for the production 
properties (we called these the external-part formulas) and the decay 
properties (the corresponding internal-part formulas, see chapter 10) of a 
finite-energy cluster of rank-connected hadrons. 

The term 'external-part' is used to imply that the cluster is in general 
part of a larger-energy (possibly infinitely-large-energy) cluster. Two inde
pendent Lorentz invariants are necessary to specify the external properties 
of the cluster; these may be taken as the squared mass s and the lightcone 
fraction z used up by the cluster. They describe how the cluster starts 
and ends on some (space-time or energy-momentum-space) points that 
are inside (or on the border of) the larger external cluster. 

In this chapter we will consider the external-part formulas in detail and 
in particular show the following. 

E1 In the Lund model the cluster will be produced in accordance with 
the same formula as for a single particle (but with the squared 
hadronic mass m2 _ s). 

E2 The finite-energy version, Hs, of the space-time distribution of ver
tices, H in Eq. (8.14), approaches H very fast when s is larger than 
a few squared hadronic masses m2. 
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164 The external-part formulas 

We next consider the two functions Hand f in the Lund fragmentation 
model in detail in order to understand some of their properties. After that 
we will exhibit some general properties of all iterative cascade fragmen
tation models of the Feynman-Field kind, [13]. We end the chapter with 
a discussion of an interesting analogy (first pointed out by Artru, [25]) 
between the proper time of a vertex in space-time and the momentum 
transfer between the group of particles produced to the left and those 
produced to the right of that vertex in energy-momentum space. 

9.2 The production properties of a cluster 

We start with the results in Eqs. (8.34), (8.40) and (8.42): 

1 - z dz ( 1 - z ) an r = s--, dPext = ds-zao -- exp(-br) 
z z z 

(9.1) 

Here r corresponds to the squared proper time of the last vertex, which has 
parameter an, and s is the squared mass of the particle cluster stretching 
between the vertex with parameter ao to the vertex with an. (Note that 
the expressions do not contain any relation to the decay of the cluster; in 
particular, the index n in this case does not indicate the multiplicity!) 

These formulas can be rewritten in several different ways, each of which 
exhibits some particular feature of the Lund model fragmentation process. 

1 The vertex distribution in proper time for a finite energy 

If we use the first equation in (9.1) to solve for z in terms of r and then 
change the second equation into a distribution in sand r we obtain 

ran sao-an 
dPext = dsdr (s + r)ao+1 exp(-br) (9.2) 

For a fixed and finite value of s we can read off an expression for the 
correspondence to the distribution H(r) in Eq. (8.14): 

sao ran saoH 
Hsn(r) '" (s + r)ao+l exp( -br) = C(s +s;)~~:l (9.3) 

In this way we have obtained the result we expected but multiplied by 
a factor in sand r + s, the power depending upon the starting vertex. 
(The indices on H in the final expression are meant to show that it is 
s-independent and has the correct power an.) 

For any fixed value of s the function Hsn in Eq. (9.3) approaches 0 
fast for large values of r owing to the exponential decrease. This feature 
is independent of s. A simple estimate implies for r > ro ::::: (an + l)/b 
that the exponential falloff dominates the distribution Hsn. Therefore for 
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9.3 The properties of Hand f 165 

s ~ r 0 (from phenomenological investigations r 0 correponds to a few 
GeV2) a proper normalisation of Hsn will lead to an s-independent result. 
Then it is a good approximation, when s ~ r 0, that 

dPext ~ dss-(an+1)dr Hn(r) (9.4) 
Cn 

The constant C == Cn in Eq. (9.3) is, of course, the normalisation constant 
for Hn. In this way dPext depends only upon the flavor n of the final 
vertex. Actually this is just what we started with when we derived the 
distributions Hrx and f rxfJ: after many steps along a lightcone there is a 
certain probability of finding a vertex of a particular kind independently 
of where we started. We will come back to this saturation property later 
when we consider the internal-part formulas for the decay of a cluster. 

This serves as a confirmation for the consistency of the assumption J, 
at the beginning of the last chapter, that there is, even in the limit s - 00, 

a finite number of vertices at the centre of phase space. 

2 The energy-momentum distribution of a finite-mass cluster 

Another obvious way to use the formula (9.1) is to exhibit the probability 
of obtaining a cluster with a given mass .JS, thereby taking a fraction z 
of the positive lightcone component of the original system: 

dz (1- Z)an (-bS) dPext = ds exp(bs)~zao -z- exp -z- (9.5) 

We have then divided the expression for r from Eq. (9.1) into one z
dependent and one z-independent part in the exponential. 

The remarkable feature of this result is that (besides the purely s
dependent parts and the normalisation) we evidently recover the 'old' 
formula, which was derived for a single particle, with the mass m exchanged 
for the mass of the cluster .JS. Consequently, whether a single particle or a 
large-mass cluster arises in going between two vertices with a-parameters 
ao and an the (mass-dependent) probability distribution for picking a 
particular fraction of the energy-momentum is the same. 

9.3 The properties of the distributions Hand f 

At this point it is worthwhile to consider the shape and the properties of 
the unique Lund model distributions in more detail. 

1 The properties of the proper time distribution H 

The distribution in proper time H is the mathematically well-known r
distribution (this is not a misguided pun!) which occurs e.g. in connection 
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166 The external-part formulas 

with radiative processes. Depending upon the values of the parameters it 
has a maximum at r = alb, a mean value (r) = (a + 1)/b and a variation 

around the mean \ (r - (r))2) = (a + 1) / b2. 

Typical phenomenological parametrisations for longitudinal jets (note 
the dependence of a and b upon the gluon radiation to be discussed in 
Chapter 17) would be a '" 0.5, b '" 0.75 Gey-2. We conclude that for these 
values the typical proper time 'before' the string will break is somewhat 
more than 1 fm/ c but that the fluctuations around this value is of the 
same order of magnitude. 

2 The properties of the fragmentation distribution f 

The distribution f is a more complex kind of function. We note that it 
vanishes exponentially fast close to the origin (it has an essential singularity 
there, considered as an analytical function) and that it vanishes according 
to a power law for z - 1. In between there is evidently a maximum. 

In order to investigate this maximum in more detail we rewrite the 
distribution f as an exponential (considering only the case when all the 
a-parameters are equal): 

bm2 
f '" exp<l> with <l> = -- -lnz + aln(1- z) (9.6) 

z 

It is easy to prove that for a = 0.5 the quantity <l> has a maximum for 

z = 1 + bm2 - V1 + (bm2)2 ~ bm2 - (bm2)2/2 (9.7) 

We conclude that the typical z-values will increase with bm2 and that the 
maximum of f will occur for a z-value around 0.3 using the value of b 
quoted above and a mass-value close to the centre of the mesonic mass 
spectrum, the p-mass m ~ 0.77 GeY /c2. 

3 The typical hyperbola breakup 

A useful exercise is to consider the relationship between the r-parameters 
of two adjacent vertices in the case where a hadron of mass m, taking a 
fraction z of the remaining lightcone energy-momentum, is produced in 
going from vertex 1 to vertex 2. It is left to the reader to prove that 

r 2 = (1 - z) (r 1 + :2) (9.8) 

From Eq. (9.8) we deduce that if there is a fluctuation in the value of 
z taken by the hadron the result will be a value of r 2 that is much 
larger (for z ~ Zt, where Zt is a typical value of z) or much smaller (for 
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Fig. 9.1. The typical breakup hyperbola divided into particle-mass pieces. 

Z ~ Zt) than rl. The first possibility is suppressed due to the area law (the 
exponential area suppression) while the second One is power suppressed. 

The final result is that the Lund model fragmentation functions tend 
to produce vertices around a hyperbola (i.e. the locus of the points with 
a fixed value of r == '1:T), albeit with some fluctuations. The distance from 
the origin to the hyperbola, '1:t, is related to the typical mass of the hadrons 
in the cascade decay. 

If we place all the vertices along this hyperbola the energy-momentum 
fractions taken by the hadrons form a geometrical series: 

Zt, Zt(1 - Zt), ... , Zt(1 - Zt)n,... (9.9) 

(note that the remainder fraction is given by (1 - zdn after n steps). 
When we move along the hyperbola the remainder fraction cannot be 

too small. It must necessarily be larger than sols with So of order (n. 
Therefore we obtain a formula for the typical multiplicity, nt, in a Lund 
model fragmentation event: 

n log(slso) 
(1- Zt) t '" sols => nt '" 10g[1/(1 _ zd] (9.10) 

This result can be interpreted geometrically; see Fig. 9.1. The length of the 
hyperbola is '" '1:t log(sl so) with '1:t the hyperbola parameter defined above. 
(Note that the notion of length, of course, corresponds to the invariant 
length in Minkovski space.) 

If the hyperbola is cut up into pieces corresponding to particle masses 
then each piece will cover a typical rapidity gap ~y. In Fig. 9.1 One hadron. 
at rest is shown. According to our findings in Chapter 7 the space size of 
such a yoyo-state is given by its mass. 

We conclude that with a hadron density 11 ~y along the hyperbola we 
will obtain the same multiplicity formula as in Eq. (9.10) if we put 

~y = 10g[1/(1 - Zt)] (9.11) 
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168 The external-part formulas 

9.4 The particle density in a general iterative cascade model 

In order to understand the significance of the result in Eq. (9.11) we will 
consider some properties of the iterative cascade fragmentation models, 
which were mentioned in Chapter 7. For simplicity we consider the sit
uation when there is only a single flavor and a single kind of meson. 
The probability of obtaining the first-rank particle with a given energy
momentum fraction z is J(z)dz. We note that J must be normalised to 
unity: 

101 dzJ(z) = 1 (9.12) 

We now define the totally inclusive single-particle distribution F(z )dz as 
the number of hadrons (irrespective of rank) with fractional energy
momentum z. This function is not normalised to unity as is J in Eq. (9.12) 
but, instead, to the total number of hadrons produced. 

Inside the scaling cascade scheme this number is in general divergent. In 
this subsection we will derive the behaviour of a general iterative cascade 
model and in the next we will specialise to one particular shape of J and 
perform some of the calculations in detail. 

To investigate the properties of F we note that there is an integral 
equation which relates F and J: 

F(z) = J(z) + fo 1
-

z 
(1 ~ OJ(OF C1 ~ 0) (9.13) 

The interpretation of the equation is that a hadron with z may be the 
first-rank hadron in the jet (this is the first contribution J(z)dz on the right
hand side of Eq. (9.13)). After the first-rank particle has left a fraction 
1 - ( (with probability J(OdO the number of hadrons with z that occur 
further down in the jet is F(z/(1 - ())dz/(1 - O. This gives the integrand 
in the second term of Eq. (9.13) (after division dz). We must sum over all 
values of ( compatible with the requirement that the argument of F is 
between 0 and 1. 

The equation can be solved by means of the moments method. We 
obtain from Eq. (9.13) 

M(r) = 101 zrF(z)dz, C(r) = 1o\1-zYJ(z)dZ, 

r1 m(r) 
m(r) = Jo zrJ(z)dz ~ M(r) = 1- C(r) 

(9.14) 

which we leave to the reader to prove. 
The normalisation condition in Eq. (9.12) implies that C(O) = m(O) = 1. 

This evidently means that M(r) diverges when r ---+ 0, which corresponds 
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to the normalisation equation for F. The reason for this divergence is that 
in Eq. (9.13) no provision is made for ending the cascade: there is no 
smallest value of z, or in other words the process is totally scaling. Instead 
one obtains a rapidity plateau (note that y :::::: log z implies dz I z = dy). 
After a rapidity region in the forward direction, the fragmentation region 
of the original quark, there will be a uniform distribution of hadrons 
in rapidity space. In practice this fragmentation region is about 1.5-2 
rapidity units. This means that a large part of the energy is inside the 
fragmentation region. It is populated by the first few particles in rank but 
the density of particles is strongly fluctuating and dependent upon the 
flavor quantum number carried by the original color charge. 

In the Lund model it is not sufficient to consider only the fractional 
energy-momentum along the jet, i.e. in one of the lightcone directions, 
as in iterative cascade models. There is also the energy-momentum along 
the opposite lightcone direction, for which we must account. This is the 
reason why in the last subsection we had to bring the plateau to an end 
by the request that we can use up the fractional energy-momentum only 
to the level sols. In the integral equation in Eq. (9.13) the plateau will, 
however, go on forever. 

The height of the plateau, i.e. the density of hadrons in the centre, 
can be calculated by simple means from Eq. (9.14). We may conclude, by 
expanding for small values of the moment parameter r, that M(r) - Rlr 
where 

1 (dC(r)) 101 (1) - = - -- = log -- J(z)dz 
R dr r=O 0 1- z 

(9.15) 

which we again leave for the reader to prove. 
We conclude that F(z )dz behaves as Rdz I z == Rdy for small values of 

z, i.e. for rapidities far from the 'tip' of the jet. Thus the result in Eq. 
(9.11) is very general with ~y identified with 1/R, i.e. the mean value of 
log[1/(1 - z)] as calculated from the fragmentation function f. 

We may in an intuitive sense identify ~y with the mean loss of rapidity 
per produced hadron. It is interesting to note that we again find a similar 
scaling energy-momentum distribution as for the virtual quanta in the 
MVQ and the partons in the PM in Chapters 2 and 5. In particular the 
result obtained in the Schwinger model for excitations by means of an 
external charged pair ±g leads to the result R = 1; cf. Chapter 6. 

A detailed calculation of the inclusive distribution using a simple model 

The method of moments is a very powerful mathematical technique but 
it may be difficult to understand the results on an intuitive level. We will 
therefore show by explicit calculation how the central plateau is built up 
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by the contributions from the hadrons of different rank. The results of 
the calculation will also be useful further on, in Chapter 13. 

We consider a very simple iterative cascade model with a constant 
fragmentation function, j, which then in order to be normalised as in 
Eq. (9.12) must equal unity. Although it is simple, it was used rather 
successfully at the beginning of the Lund model, [13], assuming then that 
all vector and pseudo scalar mesons were produced in accordance with 
their statistical weights. We now know that this is not the case. Further 
a constant distribution does not fulfil the requirements for a consistent 
fragmentation process listed at the beginning of Chapter 8. 

A detailed study of the model is, however, instructive because it is 
straightforward to provide explicit results for the inclusive distributions of 
the nth-rank particles for all values of n. The first-rank particle is evidently 
distributed according to f. After it has taken Zl (with the same probability 
for all zI) the second-rank particle will take z = z2(1 - zI), with a flat 
distribution for Z2 also. 

This means that the inclusive distribution of the second-rank hadron is 

D(2)(z) = J dZ1dz2b(Z2(1- zI) - z) 

= ((1-z) ~ = 11 dX1 = log (~) (9.16) 
Jo 1 - Zl z Xl z 

Using the same method we obtain for the nth rank hadron 

D(n)(z) = J (fI dZj) b (zn 11(1- Zj) - z) 
J=l J=l 

(
n-1 d) (n-1 ) 

= J p :! e PXj-Z 
J=l J J=l 

(9.17) 

where e is the Heaviside function, equal to unity for a positive argument 
and vanishing elsewhere. We have also defined the obvious new variables 
Xj = 1 - Zj. In order to perform the integral we introduce Yj = log(1jxj) 
and write, exchanging the product of the Xj for a sum of the rapidities Yj 
(the sum being introduced by means of a b-distribution, dyb(E Yj - y)) 

D(·)(z) ~ J dYEl [exp( -y) - z] J (ll dYj) /j (~Yj - Y) (9.18) 

We obtain a symmetrical integral (for N = n - 1), which is most easily 
solved by iteration: 

(9.19) 
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We finally obtain by direct integration over y 

D(n)(z) = [log(1/z)]n-l 
(n - 1)! 

171 

(9.20) 

which is a nice and very satisfying result to derive! The following comments 
may be made. 

• All but the first-rank hadron have a distribution in z which vanishes 
when z ~ 1. Since log(1/z) = log[1 +(1-z)/z)] C!:: 1-z when z ~ 1 
we find that the nth rank distribution will vanish like 

(9.21) 

The reason is evidently that there have already been n -1 earlier energy 
'handouts'. The above result is a very general property of all physical 
systems, usually referred to as the spectator relation: if there are n basic 
constituents sharing a common energy and you require the inclusive 
distribution in energy for one of them its fraction usually behaves as in 
Eq. (9.21). 

• The result (9.20) can be described as a distribution in y = log(1/z): 
n-l 

D(n)(z)dz = dy (:-1)! exp(-y) (9.22) 

i.e. a Poisson distribution in rapidity. The distributions are evidently 
all normalised. This is exactly what was obtained in the external 
excitation model, derived from the Schwinger model in [39]; cf. 
Chapter 6. 

• From the sum over all ranks we obtain the totally inclusive distribu
tion, which, according to the predictions from the integral equation 
(9.13), corresponds to the particle density R = 1: 

00 dz 
D(z)dz = L:D(n)(z)dz = dy = - (9.23) 

n=l Z 

A useful exercise is to carry through the calculations above also for 
the case when f is exchanged for fa = (a + 1)(1 - z)a. Then one obtains 
Da(z) = (a + 1)(1 - z)a /z, i.e. a rapidity density equal to Ra = a + 1. 

In this way we can see in detail how the rapidity plateau occurring 
in the iterative cascade models is built up. From the properties of D(n) 
we conclude that the maximum of the distributions moves towards larger 
values in rapidity with increasing n; this is a useful exercise for the 
interested reader. Note, however, that an nth-rank hadron may very well 
have a larger z-value than the first-rank hadron (although with a small 
probability). 
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• For the model with a constant f the rapidity plateau evidently goes 
all the way from the tip and there is no evidence of a fragmentation 
region (but for the model with fa there is such a region). 

The reason why the model with a constant f works rather well is that 
if three times more vector mesons than pseudoscalars are produced as 
direct particles then the decay products from the vector mesons will move 
towards smaller z-values. This effect means e.g. that while the prediction 
for inclusive 11:+ mesons for z ~ 1 is zDn+ ::::: 0.1 it becomes around 0.4 
for z ::::: 0.4 because of the many 11:+'s from the decays. 

It is possible to derive many other analytic expressions, e.g. for the 
two-particle correlation functions, by the same means as for Eq. (9.13) 
and we refer to the original literature, [13]. We will not do it here because 
there are many kinematical complications. If this kinematics is included 
in the analytical equations the results become so complicated that it is in 
general much easier to take recourse to computer simulations. 

It is very satisfying and highly recommended at this point for the reader 
to obtain a set of simple but useful and understandable distributions by the 
use of a Monte Carlo simulation program such as JETSET or HERWIG, 
just in order to appreciate the effects of really introducing kinematics! 

9.5 The relationship between the vertex proper time and the momentum 
transfer across the vertex 

We will now use the external-part formulas in a way proposed by Artm, 
[25]. We will start by showing that the quantity r, which in space-time has 
been related to the proper time of a vertex, in energy-momentum space 
can be interpreted as the invariant squared momentum transfer between 
the two jets produced by the appearance of the vertex. 

Thus a vertex appearing at the space-time point V = (x+, x_) (with 
r = K2x+x_) will divide the total system (see Fig. 9.2) into a right-moving 
jet with energy-momentum Pr = (P+o - KX+, KX_) and a left-moving jet 
with PI = (KX+, P-o - KX_). 

The situation depicted in Fig. 9.2 can be interpreted as if the original 
q-particle with P + = (P+o, O) is transformed into the right-movers and the 
original q-particle with P _ = (0, p-o) is transformed into the left-movers. 
There is then evidently a momentum transfer in this process equal to 
q == P + - Pr = -(P - - Pz) = K(X+, -x_). 

We note that in order to obtain positive masses for the two systems it 
is necessary that this momentum transfer is a spacelike vector, i.e. that the 
(Lorentz-)square of the vector is negative. The fact that it is the negative
lightcone component which becomes negative in our formula is due to 
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K« ~ 
Fig. 9.2. The vertex V = (x+, x_) divides the system into right-movers (hadrons 
1, ... , j - 1) and left-movers (hadrons j, ... , n). 

Fig. 9.3. The energy-momentum transfer between the right-movers produced by 
the original q and the left-movers produced by the original q. 

our choice to define the momentum transfer in the direction from right to 
left. 

Pictorially we may describe the situation as in Fig. 9.3 in which there 
are two 'transformation points' where q becomes the rightmovers and q 
becomes the leftmovers and the momentum transfer q connects the two 
points. The result is evidently very similar to a simple Feynman diagram. 

The system can be further partitioned. Each of the two new jets is 
naturally subdivided into smaller systems by means of internal vertices. 
This process can be continued until we reach the level of individual 
particles. 

We may in this way relate the production process in the model, as 
shown in Fig. 9.4, to a particular multiperipheral diagram shown in Fig. 
9.5 with the final-state hadrons coming out along a 'chain'. 

There is a dual relationship between the picture we have had of pro
ducing the particles in space-time (cf. Fig. 9.4) and this kind of diagram. 
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Pn 

KX_(n_l) 

Fig. 9.4. The production of a multipartic1e state in the Lund model. Note that 
the difference vectors between the space-time vertices correspond to the energy
momenta of the produced hadrons, while the positions of the vertices correspond 
to the energy-momentum transfers. 

P+o 

qi = K(X+I,-X_I ) 
PI 

q2= K(X+2,-x_2 ) 
P2 

q3= K(X+j ,-X_j ) 

~ 

qn = K (X+n, - X_n ) 
P(n-I) 

Pn 

Po 

Fig. 9.5. The production process described in terms of momentum transfers in 
a chain. 

The string production vertices (the space-time production points) are ex
changed for a set of momentum transfers (the connecting links along the 
chain in the multiperipheral diagram). The invariant size of these momen
tum transfers (apart from the factor K) corresponds in Figs. 9.2 and 9.5 to 
the distance from the origin to the space-time vertex points. 

Models of a multi peripheral type have been under intense investigation 
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8y = log 1 log S1 ( ) log Sf 
() () 

log S 

Fig. 9.6. The total range of rapidity'" log S subdivided into the rapidity ranges 
of the right- and left-movers and the rapidity difference c5 y '" -log 1. 

since the 1950s and one notes the close resemblance to the Feynman 
diagrams for a two-body to many-body interaction. We will come back 
to such models in the next chapter after we have further developed our 
understanding of the Lund model fragmentation formulas. 

We will meet the same kind of diagrams when we relate the lightcone 
singularities in deep inelastic scattering to the leading-log approximation 
formulas derived by the theorists working with Gribov, cf. Chapter 19. 

We note that the momentum transfer divides the state so that the right
movers are, intuitively speaking, dragged apart from the left-movers. The 
proper measure for this effect is the rapidity difference between them. 

We note that 1 can be expressed in terms of the total squared mass s 
of the original system and the squared masses Sl and Sr of the left- and 
right-moving systems through the equation (for the reader to prove): 

SI = (SI + 1)(sr + 1) ~ SISr 

This means that for large-mass systems 

-ini ~ Ins -insl -lnsr 

(9.24) 

(9.25) 

The right-hand side of this expression is basically the rapidity difference 
fJ y between the right-movers and the left-movers. To see this we note that 
according to our results in the last subsection the available rapidity region 
for a system of mass .JS to deliver its particles is ~ log S (i.e. the length of 
the typical hyperbola). Then, as seen in Fig. 9.6, after having taken away 
the rapidity region inhabited by the left- and right-movers, we are left 
with a rather approximate measure of the rapidity difference fJ y. From the 
distribution in 1, H(I), the distribution in fJ y is 

'" d( fJ y ) exp [ -( a + 1)fJ y] (9.26) 

(we have neglected the slowly varying exponential). Thus we obtain a 
prediction for the (approximate) distribution of the rapidity gaps in our 
breakup process: when evaluated inclusively, it should be an exponentially 
decaying distribution with a + 1 as the exponential rate. 

This is reminiscent of the formulas occurring in Regge-Mueller analysis, 
in which the parameter a plays the role of a Regge parameter. We will 
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come back to this interpretation of a again later when we consider the 
internal decay properties of the clusters. 

It is necessary to understand that there are several 'ifs and buts' in 
connection with the results on c5 Y given above. We note that the rapidity 
difference between two neighbors in rank actually can be both positive 
and negative even if we know the rank-ordering. In order to see this 
consider the joint probability 

P((c5Y)n) = J dzd(zt) 1 ~2Z1 f (1 ~2 Z1) c5 ((c5Y)n -log (;~)) (9.27) 

(the index n stands for rank neighbors). It is easy to manipulate 
formula into 

101 dz 
P((c5Y)n) = N 2 -(1 - z)a exp[bm2 exp(c5Y)nl 

o z 

the 

( -4bm2 h (c5 Y)n) 
x exp z cos -2- (9.28) 

This integral must be calculated by numerical methods. One obtains a 
generally smooth distribution with a maximum around (c5Y)n = 0 but with 
an appreciable tail on both sides. 

Thus a lower-rank particle may be faster than a higher-rank particle. It 
may even happen (with admittedly a small probability) that two particles 
close in rapidity may be far away in rank-ordering. 

In a real experiment it is very difficult to observe rank-ordering because 
many directly produced particles are resonances which will decay quickly 
(mostly into pions but also into some kaons etc). Furthermore most of 
the particles in the final state contain u- and d-flavors and antiflavors. It 
is nevertheless known in many experimental situations that if one orders 
the observed particles in rapidity then the distribution in the rapidity gaps 
will be basically exponential (for large values of c5 y). There are, however, 
many different contributions to this distribution and it is not a useful way 
of determining the parameter a from such measurements. 
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