BOUNDARY BEHAVIOR AND QUASI-NORMALITY OF FINITELY VALENT HOLOMORPHIC FUNCTIONS

DAVID C. HADDAD

A function defined in a domain D is n-valent in D if $f(z)-w_{0}$ has at most n zeros in D for each complex number w_{0}. Let $\mathscr{V}=\mathscr{V}\left(r_{0}, n\right)$ denote the class of nonconstant, holomorphic functions f in the unit disc that are n-valent in each component of the set $\left\{z:|f(z)|>r_{0}\right\}$. MacLane's class \mathscr{A} is the class of nonconstant, holomorphic functions in the unit disc that have asymptotic values at a dense subset of $|z|=1$. (For a detailed discussion of \mathscr{A} see MacLane [4].)

In [2, Theorem 3] we showed that $\mathscr{V} \subset \mathscr{A}$. Bagemihl and Seidel [1] and MacLane [4] independently showed that $\mathscr{N} \subset \mathscr{A}$, where \mathscr{N} is the class of nonconstant holomorphic functions in the unit disc that are normal in the sense of Lehto and Virtanen [3]. Furthermore, Lehto and Virtanen showed [3, Theorem 2] that a normal function having asymptotic value c at $e^{i \theta}$ has angular limit c at $e^{i \theta}$.

Is there any relationship between the two classes \mathscr{V} and \mathscr{N} ? Clearly, $\mathscr{N} \not \subset \mathscr{V}$ since $e^{1 /(1-z)}$ belongs to \mathscr{N} but not to \mathscr{V}. In this paper we show that \mathscr{V} is a quasi-normal family of order n and each function $f \in \mathscr{V}$ is a quasinormal function of order at most $n-1$ (the definitions are below). We show that this result is the best possible so that $\mathscr{V} \not \subset \mathscr{N}$. Furthermore, Letho and Virtanen's result on angular limits is true for functions in \mathscr{V}. Thus each function in \mathscr{V} has angular limits at a dense subset of $|z|=1$.

A general reference on quasi-normal families is Montel [5, Chapter 2]. However, it is necessary for our purposes to elaborate on some of his definitions.

A sequence of functions defined in a domain D converges subuniformly in D if the sequence converges uniformly on compact subsets of D. A set $E \subset D$ is sparse in D, if E is a finite set of points or if $E=\left\{z_{n}\right\}$ is a countable set and the distance (on the Riemann sphere) from z_{n} to ∂D tends to zero as n tends to infinity.

A family Q of holomorphic functions in D is a quasi-normal family in D if every sequence of functions in Q has a subsequence which converges subuniformly in $D-E$, where E is a sparse subset of D. (In general, E depends on the particular subsequence.)

If $\left\{f_{k}\right\}$ is a sequence of holomorphic functions in D converging to f subuniformly in $D-E$, then a point $z_{0} \in E$ is an irregular point for the sequence

[^0]$\left\{f_{k}\right\}$ if $\left\{f_{k}\right\}$ does not converge to f subuniformly in any neighborhood of z_{0}. Irregular points occur only in the case when $f \equiv \infty$. The order of the sequence $\left\{f_{n}\right\}$ is the number of irregular points for the sequence. A point z_{0} is a strongly irregular point for $\left\{f_{k}\right\}$ if for k sufficiently large, $f_{k}(z)$ takes on all complex numbers in every neighborhood of z_{0}.

A sequence $\left\{f_{k}\right\}$ is strong if either it converges subuniformly in D to a holomorphic function or it converges subuniformly in $D-E$ to infinity and each point of the sparse set E is strongly irregular.

It is not hard to show that every sequence in a quasi-normal family has a subsequence that is strong.

If Q is a quasi-normal family of holomorphic functions in D, then the order of Q is the supremum of the orders of the strong sequences in Q. (This definition differs from Montel's [5, p. 66]; Montel takes the supremum over all sequences in Q, not just the strong sequences.)

A holomorphic function f in $|z|<1$ is a quasi-normal fnuction of order n if the family $\{f \circ \psi\}$, where ψ runs through all the Möbius transformations of $|z|<1$ onto itself, is a quasi-normal family of order n. (This is the obvious extension of Lehto and Virtanen's definition of a normal function.)

It is convenient to introduce the following notation. If $w=f(z)$ is a nonconstant, holomorphic function in $|z|<1$, we denote by F the Riemann surface of f^{-1} as a covering surface of the w-plane. Let p denote the projection from F onto the w-plane and let \hat{f} be the one-to-one conformal map of $|z|<1$ onto F so that $f=p \circ \hat{f}$. If T is a curve in $|z|<1$, we let

$$
m_{F}(T)=\int_{T}\left|f^{\prime}(z)\right||d z| .
$$

A component of the set $\{z:|f(z)|=r>0\}$ is called a level curve of f.
Lemma 1. Let Q be a family of holomorphic functions in a domain D. Let $\left\{D_{k}\right\}$ be a sequence of domains such that $\bar{D}_{k} \subset D, D_{k} \subset D_{k+1}$, and $\cup_{k=k}^{\infty} D_{k}=D$. The family Q is quasi-normal in D if there is a sequence $\left\{j_{k}\right\}$ of positive integers and two distinct complex numbers a and b such that $f(z)-a$ and $f(z)-b$ have at most j_{k} zeros in D_{k} for every $f \in Q$.

Proof. That Q is a quasi-normal family in D_{k} of order at most j_{k} follows from a theorem [5, p. 67] of Montel. Thus each sequence $\left\{f_{\alpha}\right\} \subset Q$ has a subsequence $\left\{f_{1 \alpha}\right\}$ that converges subuniformly in $D_{1}-E_{1}$, where E_{1} has at most j_{1} points. The sequence $\left\{f_{1 \alpha}\right\}$ has a subsequence $\left\{f_{2 \alpha}\right\}$ that converges subuniformly in $D_{2}-E_{2}$ where E_{2} has at most j_{2} points. Proceeding inductively, we obtain a sequence $\left\{f_{k \alpha}\right\} \subset\left\{f_{\alpha}\right\}$ for each k such that $\left\{f_{k \alpha}\right\}$ converges subuniformly in $D_{k}-E_{k}$, where E_{k} has at most j_{k} points. The diagonal sequence $\left\{f_{k k}\right\}$ is a subsequence of $\left\{f_{\alpha}\right\}$ that converges subuniformly in D minus the sparse set $\cup_{1=1}^{\infty} E_{k}$. Thus Q is a quasi-normal family in D.

Lemma 2. Every function $f \in \mathscr{V}=\mathscr{V}\left(r_{0}, n\right)$ takes on each value $w_{0}\left(\left|w_{0}\right|>2 r_{0}\right)$ at most $q(s)$ times in $|z|<s$, where q is a function of s and not of f or w_{0}.

Remark. Of course, q depends on r_{0} and n in addition to s.
Proof. Let $f \in \mathscr{V}$ and let $\left\{C_{j}(r)\right\}$ denote the level curves of $\left.\{z: \mid f(z)\}=r\right\}$. Let $L_{j}(r)$ denote the length of $C_{j}(r)$, let $\hat{C}_{j}(r)=\hat{f}\left(C_{j}(r)\right)$, and let $g=\hat{f}^{-1}$. Let $R=\left\{r: r_{0}<r<2 r_{0}\right.$, and F has no branch points lying over $\left.|w|=r\right\}$. For each $r \in R$,

$$
\begin{aligned}
L_{j}(r)^{2} & =\left(\int_{\hat{c}_{j}(r)}\left|g^{\prime}(w)\right||d w|\right)^{2} \\
& \leqq 4 \pi r_{0} n \int_{\hat{c}_{j}(r)}\left|g^{\prime}(w)\right|^{2}|d w|
\end{aligned}
$$

If we let α denote the area of $\left\{z: r_{0}<|f(z)|<2 r_{0}\right\}$, then it readily follows that for each integer k,

$$
\int_{R} \sum_{j=1}^{k} L_{j}(r)^{2} d r \leqq 4 \pi r_{0} n \alpha .
$$

Thus $\sum_{j=1}^{k} L_{j}\left(r_{1}\right)^{2} \leqq 4 \pi r_{0} \alpha n \leqq 4 \pi^{2} r_{0} n$ for some $r_{1} \in R$ and for each positive integer k.

If a component $D\left(r_{1}\right)$ of the set $\left\{z:|f(z)|>r_{1}\right\}$ meets $|z|<s$ and if all the level curves of $\partial D\left(r_{1}\right)$ that meet $|z|<s$ are relatively compact in $|z|<1$, then $D\left(r_{1}\right)$ must be the only component of $\left\{z:|f(z)|>r_{1}\right\}$ meeting $|z|<s$. Hence, $f(z)$ assumes each value $w\left(|w|>2 r_{0}\right)$ at most n times in $|z|<s$ because $f \in \mathscr{V}$.

Hence, we may as well assume that every component $D_{j}\left(r_{1}\right)$ of $\left\{z:|f(z)|>r_{1}\right\}$ meeting $|z|<s$ has a noncompact level curve C_{j} on its boundary that meets $|z|<s$. Clearly, the length of each C_{j} is bounded below by $2(1-s)$. If k is the number of components $D_{j}\left(r_{1}\right)$ that meet $|z|<s$, then

$$
4 k(1-s)^{2} \leqq \sum_{j=1}^{k} L_{j}\left(r_{1}\right)^{2} \leqq 4 \pi^{2} r_{0} n .
$$

Thus, if $|z|<s$ then $f(z)$ assumes each value $w\left(|w|>2 r_{0}\right)$ at most $n k \leqq \pi^{2} r_{0} n^{2} /(1-s)^{2}$ times. This completes the proof of the lemma.

Lemma 3. Let f be a nonconstant, holomorphic function in $|z|<1$ that is n-valent in a component $D\left(r_{0}\right)$ of $\left\{z:|f(z)|>r_{0}\right\}$. Let $D \subset D\left(r_{0}\right)$ be a component of $\left\{z:|f(z)|>r>r_{0}\right\}$, and let k be the number of zeros of f in D^{*}, the simply connected domain obtained by adding to D those components of $\{z:|f(z)| \leqq r\}$ that punch holes in D. Then $k \leqq n$, and the connectivity of D is bounded above by $k+1$.

Proof. Each component G_{j} of $D^{*}-D$ is bounded by a closed level curve $T_{j} \subset\{z:|f(z)|=r\}$. By the minimum principle f has at least one zero in G_{j}. Thus the connectivity of D is bounded above by $k+1$. If q_{j} denotes the number of zeros of f in G_{j}, then by the argument principle $\Delta_{T_{j}} \arg f(z)=2 \pi q_{j}$. Since f is n-valent in $D\left(r_{0}\right)$, then

$$
2 \pi k=2 \pi \sum_{j} q_{j}=\sum_{j}\left(\Delta_{T i} \arg f(z)\right) \leqq 2 \pi n
$$

Thus, $k \leqq n$.

Theorem 1. The family \mathscr{V} is a quasi-normal family of order n in $|z|<1$.
Proof. That \mathscr{V} is a quasi-normal family in $|z|<1$ follows immediately from Lemma 1 and Lemma 2.

Let

$$
g_{k}(z)=k \prod_{j=0}^{n-1}\left(z-\frac{j}{k}\right)
$$

Clearly, $\left\{g_{k}\right\} \subset \mathscr{V}$ and $\left\{g_{k}\right\}$ is a strong sequence of order n. Hence, the order of \mathscr{V} is at least n.

To obtain an upper bound on the order of \mathscr{V}, let $\left\{f_{k}\right\}$ be a strong sequence converging to infinity subuniformly in $|z|<1$ minus a sparse set. Choose $s(0<s<1)$ such that $|z|=s$ contains no irregular points for $\left\{f_{k}\right\}$. For k sufficiently large, $|z|=s$ lies in a component G_{k} of $\left\{z:\left|f_{k}(z)\right|>2 r_{0}\right\}$. If q irregular points for $\left\{f_{k}\right\}$ lie inside $|z|<s$, then the connectivity of G_{k} is at least $q+1$. By Lemma $3, n+1$ is an upper bound on the connectivity of G_{k}. Hence, $q \leqq n$, and, since s can be chosen arbitrarily near 1 , the order of $\left\{f_{k}\right\}$ cannot exceed n. Thus, \mathscr{V} is a quasi-normal family of order precisely n.

Theorem 2. Each function $f \in \mathscr{V}$ is a quasi-normal function of order at most $n-1$.

Proof. The family $\{f \circ \psi\}$ where ψ runs through all of the Möbius transformations of $|z|<1$ onto itself is a subfamily of \mathscr{V} and hence is quasi-normal of order at most n.

Suppose $\left\{f_{k}=f \circ \psi_{k}\right\}$ is a strong sequence with n irregular points. Choose $s(0<s<1)$ so that the n irregular points for $\left\{f_{k}\right\}$ lie inside $|z|<s$. Thus, we can choose k_{0} so that the circle $|z|=s$ lies in a component G_{k} of $\left\{z:\left|f_{k}(z)\right|>2 r_{0}\right\}$ for each $k>k_{0}$. Let $k>k_{0}$. By Lemma $3, f_{k}$ has at most n zeros in $|z|<s$. Hence, it follows from the argument principle that $m_{F}\left[f_{k}\left(\partial G_{k} \bigcap\{|z|<s\}\right)\right] \geqq 4 \pi n r_{0}$. On the other hand, since $f \in \mathscr{V}$, $m_{F}\left[f_{k}\left(\partial G_{k} \cap\{|z|<1\}\right)\right] \leqq 4 \pi n r_{0}$. Hence, all the level curves of ∂G_{k} lie inside $|z|<s$, and so $\left|f_{k}(z)\right|>2 r_{0}$ for z in the annulus $A=\{z: s<|z|<1\}$. Thus, $\psi_{k}(A)$ contains an annulus $B=\{\zeta: t<|\zeta|<1\}$ in which $|f(z)|>2 r_{0}$. If $M=\max _{|\zeta| \leqq t}|f(\zeta)|$, then for k sufficiently large, $\min _{|z|=s}\left|f\left(\psi_{k}(z)\right)\right|>M$ since the irregular points for $\left\{f_{k}\right\}$ lie inside $|z|<s$. Thus for k sufficiently large $\psi_{k}(|z|=s) \subset B$, which implies $\psi_{k}(|z| \leqq s) \subset B$. Hence, $\left|f\left(\psi_{k}(z)\right)\right|>2 r_{0}$ for $|z| \leqq s$ and k sufficiently large. This is inconsistent with the fact that the n irregular points for $\left\{f_{k}\right\}$ lie inside $|z|<s$. Therefore, the order of each sequence $\left\{f \circ \psi_{k}\right\}$ is bounded above by $n-1$, and consequently f is a quasi-normal function of order at most $n-1$.

Theorem 3. If a function $f \in \mathscr{V}$ has asymptotic value c at $e^{i \theta}$ then f has angular limit c at $e^{i \theta}$.

Proof. If c is finite, Lehto and Virtanen's argument [3, pp. 52-53] shows that f has angular limit c at $e^{i \theta}$ whenever f has asymptotic value c at $e^{i \theta}$.

Suppose f has asymptotic value infinity at $e^{i \theta}$ but does not have angular limit infinity at $e^{i \theta}$. Then by [3, Theorem 1], there is an asymptotic path T ending at $e^{i \theta}$ on which $f(z)$ tends to infinity and a sequence of points z_{k} converging to $e^{i \theta}$ at which $f\left(z_{k}\right)=a \neq \infty(k=1,2, \ldots)$ such that the hyperbolic distance $\sigma\left(T, z_{k}\right)$ from T to z_{k} is bounded by a constant b for all k. By Lemma 3 we can choose $r>\max \left(|a|, r_{0}\right)$ so that F has no branch points over $|w|=r$ and so that the component $D=D(r)$ of $\{z:|f(z)|>r\}$ containing a terminal subarc of T is simply connected.

Let $H(b)=\{z: \sigma(z, T)<b\}$, where $\sigma(z, T)$ denotes the hyperbolic distance from z to T. Every neighborhood of $e^{i \theta}$ contains a subsequence of $\left\{z_{k}\right\}$ in $H(b)-D$ and a subarc of T in $H(b) \cap D$. Thus we can find a sequence of distinct points $t_{k} \in \partial D \cap H(b)$ that converges to $e^{i \theta}$.

Since D is simply connected, ∂D contains no compact level curves. It follows from [2, Corollary 1 and Theorem 2] that each level curve of ∂D is a crosscut of $|z|<1$ ending at points other than $e^{i \theta}$. Hence only finitely many t_{k} can belong to the same level curve. Thus we may assume that $t_{k} \in L_{k}$, a level curve of ∂D ending at points of $|z|=1$ other than $e^{i \theta}$ and that $L_{k} \cap L_{j}=\emptyset$ for $j \neq k$. Since $t_{k} \in H(b)$ and since $H(2 b)$ meets $|z|=1$ only at the point $e^{i \theta}$, each curve L_{k} contains a subarc lying in $H(2 b)$ with initial point t_{k} and terminal point on $\partial H(2 b)$.

Let $\zeta=\psi_{k}(z)$ be a Möbius transformation of $|z|<1$ onto $|\zeta|<1$ such that $\psi_{k}\left(t_{k}\right)=0$. Since f is a quasi-normal function (Theorem 2), the sequence $\left\{f \circ \psi_{k}^{-1}\right\}$ contains a subsequence $\left\{f \circ \psi_{\alpha}^{-1}\right\}$ which converges either to a holomorphic function g subuniformly in $|\zeta|<1$ or to $g \equiv \infty$ subuniformly in $|\zeta|<1$ minus at most $n-1$ points.

Let $K(b)$ be the hyperbolic disc with center $\zeta=0$ and radius b. Since $\inf _{z \in T} \sigma\left(z, t_{\alpha}\right)<b$ and $\sup _{z \in T} \sigma\left(z, t_{\alpha}\right)=\infty$ for each α and since the hyperbolic metric is invariant under one-to-one conformal mappings, each $\psi_{\alpha}(T)$ contains a subarc with one end point on $\partial K(b)$, the other on $\partial K(2 b)$. Furthermore, each $\psi_{\alpha}\left(L_{\alpha}\right)$ contains a subarc lying in $K(b)$ with one end point at $\zeta=0$, the other on $\partial K(b)$. Hence, each of the sequences $\left\{\psi_{\alpha}\left(L_{\alpha}\right)\right\}$ and $\left\{\psi_{\alpha}(T)\right\}$ has at least one accumulation continuum J and S lying in $|\zeta|<1$. Since $|g(\zeta)|=r$ for $\zeta \in J$, then g must be holomorphic in all of $|\zeta|<1$. On the other hand, $g(\zeta)=\infty$ for $\zeta \in S$ since f has asymptotic value ∞ along T. This contradiction completes the proof of the theorem.

The following corollary follows immediately from Theorem 3 and [2, Theorem 2].

Corollary 1. If $f \in \mathscr{V}$ then f has angular limits at a dense subset of $|z|=1$.
Example 1. We shall construct a function $w=f(z)$ holomorphic in $|z|<1$ such that f is quasi-normal of order n and $f \in \mathscr{V}\left(r_{0}, n+1\right)$ for each $r_{0}>1$. This example shows that Theorem 3 cannot be improved.

Our method is to construct a hyperbolic Riemann surface F lying over the
w-plane and then to let \hat{f} be the conformal map of $|z|<1$ onto F; then $f=p \circ \hat{f}$ where p is the projection of F onto the w-plane.

Let $D_{1}{ }^{1}, D_{1}{ }^{2}, \ldots, D_{1}{ }^{n}$ be n copies of the unit disc $|w|<1$. Join $D_{1}{ }^{k}$ to $D_{1}{ }^{k+1}(k=1,2, \ldots, n-1)$ by a snake-like strip lying in $|w|>1$ (see Figure $1)$. The resulting surface F_{1} is a simply connected smooth covering of the w-plane.

For each positive integer j let F_{j} be the surface obtained by stretching F_{1} by a factor of j, that is, $F_{j}=j F_{1}$. We join F_{j} to F_{j+1} as follows: joint $D_{j}{ }^{n}$ to $D_{j+1}{ }^{1}$ by a snake-like strip S_{j} passing through $|w|<1$ so that $S_{j} \cap S_{j+1}=\emptyset$ (see Figure 2). The resulting surface F consisting of $F_{1}, S_{1}, F_{2}, S_{2}, \ldots, F_{j}, S_{j}, \ldots$ is a smooth simply connected covering surface of the w-plane such that each component of F lying over $|w|>r_{0}>1$ has at most $n+1$ points lying over any given point in the w-plane.

Let \hat{f} be a one-to-one conformal map of $|z|<1$ onto F. Clearly, $f \in \mathscr{V}\left(r_{0}\right.$, $n+1$) for each $r_{0}>1$.

To show that f is a quasi-normal function of order n we need to produce a sequence $\left\{\psi_{\beta}\right\}$ of Möbius transformations of $|s|<1$ onto $|z|<1$ and a set of points $s_{1}, s_{2}, \ldots, s_{n}$ that are strongly irregular for the sequence $\left\{f \circ \psi_{\beta}\right\}$.

Let $\theta_{j}{ }^{1}, \theta_{j}{ }^{2}, \ldots, \theta_{j}{ }^{n}$ be the n points of F_{j} lying over the point $w=0$. Let h_{1} be a one-to-one conformal map of F_{1} onto $|\zeta|<1$ such that $h_{1}\left(\theta_{1}{ }^{1}\right)=0$; denote by ζ_{j} the point $h_{1}\left(\theta_{1}{ }^{j}\right)(j=1,2, \ldots, n)$. Let h_{j} be the one-to-one

Figure 1

Figure 2
conformal map of F_{j} onto $|\zeta|<1$ defined by $h_{j}(t)=h_{1}(t / j)$. Let ψ_{j} be a Möbius transformation of $|s|<1$ onto $|z|<1$ such that $\psi_{j}(0)=\hat{f}^{-1}\left(\theta_{j}{ }^{1}\right)$. Denote by χ_{j} the map $\psi_{j}^{-1} \circ \hat{f}^{-1} \circ h_{j}^{-1}$ of $|\zeta|<1$ into $|s|<1$.

We shall show that the sequence $\left\{\chi_{j}\right\}$ has a subsequence $\left\{\chi_{\alpha}\right\}$ that converges to a one-to-one holomorphic function from $|\zeta|<1$ into $|s|<1$ such that $|\chi(\zeta)| \leqq|\zeta|$. Let us accept this for now and proceed to show that $f \circ \psi_{\alpha}$ has a strong subsequence with n irregular points.

Let $s_{j}=\chi\left(\zeta_{j}\right)(j=1,2, \ldots, n)$. Since χ is one-to-one and $|\chi(\zeta)| \leqq|\zeta|$, it follows that $s_{j} \neq s_{k}$ for $j \neq k$ and $\left|s_{j}\right|<1$. Each s_{j} will be a strongly irregular point for any subsequence of $\left\{f \circ \psi_{\alpha}\right\}$ converging to infinity because $\chi_{\alpha}\left(\zeta_{j}\right)$ is a zero of $f \circ \psi_{\alpha}$ and $\chi_{\alpha}\left(\zeta_{j}\right) \rightarrow s_{j}$ as $\alpha \rightarrow \infty$.

Each surface F_{j} has a crosscut lying over $|w|=j$ that separates $\theta_{j}{ }^{1}$ and $\theta_{j}{ }^{2}$. Hence, for each j there is a crosscut of $|s|<1$ by an arc of $\left\{s: \mid f\left(\psi_{j}(s) \mid=j\right\}\right.$ that separates $s=0$ from $\chi_{j}\left(\zeta_{2}\right)$. These crosscuts have at least one accumulation continuum G in $|s|<1$ because $\chi_{\alpha}\left(\zeta_{2}\right) \rightarrow s_{2}$ as $\alpha \rightarrow \infty$ and $\left|s_{2}\right| \neq 1$. Since $f \in \mathscr{V}\left(r_{0}, n+1\right)$, then by Theorem $3, f$ is a quasi-normal function of order at most n. Thus the sequence $\left\{f \circ \psi_{\alpha}\right\}$ has a subsequence which converges to a function g subuniformly in $|s|<1$ minus at most n points. Since $g(s)=\infty$ on G, it follows that $g \equiv \infty$ and s_{1}, \ldots, s_{n} are strongly irregular points for a subsequence of $\left\{f \circ \psi_{\alpha}\right\}$. Hence, we will have shown f is a quasi-normal function of order precisely n once we show that a subsequence of $\left\{\chi_{j}\right\}$ converges to a one-to-one holomorphic function χ on $|\zeta|<1$ such that $|\chi(\zeta)| \leqq|\zeta|$.

Each χ_{j} is a one-to-one holomorphic map of $|\zeta|<1$ into $|s|<1$ satisfying
$\chi_{j}(0)=0$. Thus the sequence $\left\{\chi_{j}\right\}$ is a normal family and hence has a subsequence $\left\{\chi_{\alpha}\right\}$ that converges subuniformly on $|\zeta|<1$ to a holomorphic function χ with $\chi(0)=0$. By Schwarz's lemma, $|\chi(\zeta) \leqq|\zeta|$. Either χ is one-to-one or $\chi \equiv 0$ by Hurwitz's theorem. We shall show $\chi \not \equiv 0$.

Since $\left|\chi_{j}(\zeta)\right|=1$ on an $\operatorname{arc} L \subset\{|\xi|=1\}$, we can extend χ_{j} to be holomorphic and one-to-one in $K=L \cup\{\zeta:|\zeta| \neq 1\}$. Let q be a conformal mapping of K onto $|s|<1$ such that $q(0)=0$ and $q^{\prime}(0)>0$. Then

$$
\left[\left|\frac{d}{d s} \chi_{j}\left(q^{-1}(s)\right)\right|\right]_{s=0} \leqq \frac{1}{q^{\prime}(0)}
$$

since $\left|\chi_{j}{ }^{\prime}(0)\right| \leqq 1$ by Schwarz's lemma. Thus

$$
\left|\chi_{j}\left(q^{-1}(s)\right)\right| \leqq \frac{|s|}{(1-|s|)^{2} q^{\prime}(0)} \quad(|s|<1)
$$

by a distortion theorem of Koebe. Thus $\left\{\chi_{j}\left(q^{-1}(s)\right)\right\}$ is uniformly bounded on compact subsets of $|s|<1$ and consequently $\left\{\chi_{j}(\zeta)\right\}$ is uniformly bounded on compact subsets of K. Hence χ_{j} is a normal family in K, and therefore a subsequence of the sequence $\left\{\chi_{\alpha}\right\}$ converges subuniformly in K to a function $\tilde{\chi}$ holomorphic in K. Thus, $\chi \not \equiv 0$ because $|\tilde{\chi}(\zeta)| \geqq 1$ for $|\zeta|>1$ and $\tilde{\chi}(\zeta)=\chi(\zeta)$ for $|\zeta|<1$.

References

1. F. Bagemihl and W. Seidel, Koebe arcs and Fatou points of normal functions, Comment. Math. Helv. 36 (1962), 9-18.
2. D. C. Haddad, Asymptotic values of finitely valent functions, Duke Math. J. 39 (1972), 362-367.
3. O. Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta. Math. 97 (1957), 46-65.
4. G. R. MacLane, Asymptotic values of holomorphic functions, Rice University Studies 49, No. 1 (1963).
5. P. Montel, Leģons sur les familles normales de fonctions analytiques et leurs applications (Gauthier-Villars, Paris, 1927).

West Virginia College of Graduate Studies, Institute, West Virginia

[^0]: Received April 6, 1972. The author is indebted to Professor G. R. MacLane for his considerable assistance. The results of this paper constitute a part of the author's doctoral dissertation at Purdue University.

