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Abstract
This paper investigates the issue of tracking control for a free-floating space manipulator with prescribed perfor-
mance constraints, considering the inertia uncertainties, internal disturbances and input saturation. An inherently
continuous adaptive controller is proposed by incorporating non-singular fixed-time sliding mode control, pre-
scribed performance control (PPC), and auxiliary compensation. First, a modified non-singular fast fixed-time
terminal sliding surface is constructed, which has a shorten convergence time than the conventional fixed-time slid-
ing surface. Unlike the existing complicated PPCs, a simple structure controller is developed to satisfy prescribed
performance constraints through a unique tangent-type PPC technique. The input saturation is then compensated
adaptively by an auxiliary mechanism. The Lyapunov theory thoroughly validates the stability and fixed-time con-
vergence of the closed-loop tracking system. With the suggested control scheme, the system states can converge
quickly to a small neighbourhood around the origin within a preassigned time, while the position tracking error
can be confined within a prescribed performance bounds even in the presence of input saturation. Compared to the
existing tracking methods, the suggested control approach has the advantages of faster transient convergence, higher
steady-state tracking precision, and stronger robustness. Simulation comparisons demonstrate the effectiveness and
superiority of the proposed controller.

Nomenclature
H(q) positive definite symmetric inertia matrix
C(q, q̇) coriolis and centrifugal matrix
q, q̇, q̈ generalized position, velocity and acceleration vector
u the input control torque
uc the desired torque command
d represent the bounded disturbaces
e1 trajectory tracking error
e2 velocity tracking error
s sliding surface
fdis unknown lumped uncertain term
qd the desired motion trajectory
q̇d the desired motion velocity trajectory
bc, bn, bm, an, b1, b2, b3, b4 positive constants
c1, c2, c3 unknown constants
m1, n1 positive constants
p, q positive odd integers
ρ a positive continuous function
K1, K2, η, ζ positive definite matrices
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εN arbitrary small positive constant
� auxiliary variable

1.0 Introduction
With the increasing number of orbital debris and failed satellites, space manipulator technologies aimed
at active debris removal and on-orbit maintenance have received widespread attention [1, 2]. To conserve
fuel consumption, the space manipulator applied to on-orbit missions normally has a free-floating space-
craft base. As the spacecraft’s thrusters are turned off, there is a strong coupling between the manipulator
and the spacecraft’s base. That is, any movement of the manipulator interferes unfavourably with the
translation and rotation of the spacecraft base. Such a characteristic makes the tracking control of the
space manipulator more challenging than that of the terrestrial manipulator. Besides, the space manipula-
tor is inevitably subject to parametric uncertainties and environmental perturbations, degrading system
control performance and even destabilising the whole system. To address these issues, many control
methodologies have been introduced into the trajectory tracking of space manipulators, for instance,
adaptive control [3, 4], robust control [5, 6], sliding mode control(SMC) [7, 8] and neural network
control [9, 10].

The majority of the aforementioned approaches, however, only guarantee the asymptotic stability of
tracking errors with infinite convergence time. In pursuit of faster response and higher tracking precision,
finite-time control (FTC) schemes have been frequently implemented in the trajectory tracking of manip-
ulators. A terminal sliding mode control (TSMC) was presented for a space rigid manipulator sensitive to
external disturbance to accomplish the finite-time state convergence [11]. Feng et al. [12] constructed a
global non-singular terminal sliding mode control (NTSMC) to overcome the singularity problem exist-
ing in the traditional TSMCs. Based on adaptive NTSMC, a finite-time trajectory controller was also
investigated for a space manipulator considering actuator saturation simultaneously [13]. In Ref. [14], a
continuous singularity-free fast terminal sliding mode control (FTSMC) was put forward to speed up the
convergence rate, especially when the state was far from the equilibrium point. Shao et al. [15] proposed
NTSMC for the finite-time trajectory tracking of free-floating space manipulator with unknown distur-
bances, which enhanced the transient performance of the system and reduced the perturbations to the
spacecraft base. A continuous non-singular integral sliding mode control (NISMC) was also presented
for the finite-time fault-tolerant control of space manipulators to deal with different undesirable actuator
faults [16]. Nevertheless, the settling time required in these FTC schemes is sensitive to the system’s
initial conditions, which makes it difficult to obtain a prior accurate estimation of the convergence time.
Considering this fact, the concept of fixed-time stabilisation was firstly proposed by Polyakov [17]. The
significant property of this method is that the upper bound of the settling time is only determined by
predefined control parameters regardless of initial states. Due to such an excellent feature, fixed-time
control strategies have received a lot of popularity in the field of nonlinear system control [18–21].
In particular, an observer-based fixed-time control scheme was developed for the task-space trajectory
tracking of a space manipulator with external disturbances [22]. In Ref. [23], a non-singular TSMC
was proposed to guarantee the fixed-time tracking stabilisation of a robot manipulator system despite
parameter uncertainties and external disturbances. By combining an adaptive mechanism, a non-singular
fixed-time SMC scheme was then developed for trajectory tracking of an uncertain manipulator under
actuator saturation [24].

Whilst the transient performance, which is crucial to executing the task of trajectory tracking, has
been overlooked in the aforementioned efforts. Due to the absence of prior information about the dis-
tant environment or objects, the system states should be restricted to specific predefined ranges to avoid
accidental collisions between the space manipulator and objects. Therefore, it is necessary to take the
impact of output state constraints on system performance into consideration. An adaptive fuzzy neu-
ral network (NN) control was derived for a constrained robot [25], where a barrier Lyapunov function
was employed for performance improvement. The barrier Lyapunov function technique solely focuses
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on the qualitative treatment of boundary constraints rather than the quantitative evaluation of dynamic
performance constraints. As is well known, the PPC [26] is an appropriate choice for quantitatively
characterising dynamic and steady-state performances in advance. The tracking error is confined in
this approach inside the envelope described by the specified performance function, so as to achieve the
desired transient and steady-state performances. Its primary idea is the use of error transformation to
transform the original constrained dynamics into an equivalent unconstrained one. Thereby, the perfor-
mance metrics, such as convergence time, steady-state error and overshoot, are assured to satisfy the
predefined requirements on the premise of preserving the unconstrained system’s stability. The concept
of prescribed performance was first applied in the funnel control (FC) proposed in Ref. [27]. Compared
with PPC, FC is usually limited to nonlinear systems with a relatively low-degree. Therefore, in recent
years, PPC has been widely utilised in the control of robotic systems [28, 29], space vehicle systems [30,
31] and multi-agent systems [32], for the sake of ensuring the system’s desired transient performance.
And a new finite-time PPC (FPPC) is exploited in Ref. [33], which enables given-time convergence of
tracking errors with small overshoot. Moreover, several studies have been conducted on the issue of track-
ing control for space manipulators considering prescribed performance constraints [34–36]. Although
there are promising advances in the tracking control of space manipulators with specified performance,
the existing methods have the following shortcomings:

(1) There is a sluggish transient response, and large convergence time is necessary when system state
is far from the equilibrium point.

(2) The structure of PPC-based constraint controllers [37–39] is usually extremely sophisticated due
to the full use of transformed error.

(3) When considering input saturation, they have difficulty guaranteeing performance constraints
and fixed-time tracking convergence.

Inspired by the above observations, a novel adaptive fixed-time control scheme with prescribed
performance constraints is developed for trajectory tracking of the free-floating space manipulator sub-
ject to input saturation. Parameter uncertainties and unknown disturbances are also considered. More
specifically, the main contributions of this paper are concisely summarised as follows:

(1) A non-singular fast fixed-time terminal sliding surface is constructed to obtain a faster conver-
gence rate than the existing fixed-time terminal sliding surfaces in Refs [40, 41].

(2) To avoid the complexities associated with stabilising transformed error in conventional PPCs,
a unique tan-type PPC technique is directly introduced in the control design. The structural
simplicity of the designed controller allows for greater flexibility in practical applications.

(3) The effect of actuator saturation is mitigated by an input saturation compensator. The result-
ing controller ensures that the fixed-time prescribed performance of the space manipulator
is fulfilled, considering parameter uncertainties, unknown disturbances, and input saturation
simultaneously.

The rest of this work is organised as follows. Section 2 represents the problem description and some
required definitions. In Section 3, the processes of control design and stability analysis are given in
detail. Section 4 discusses the simulation results, and draws conclusions in Section 5.

2.0 Problem description and preliminaries
2.1 Notations and lemmas
For an n-dimensional vector x = [x1, x2, . . . , xn]T with the ith element xi (i = 1,2, . . . , n). The
symbols ‖ · ‖ and ‖ ·‖1 represent the Euclidean norm and 1-norm, respectively. For a constant
γ > 0, define sigγ (x)= [|x1|γ sign (x1) , |x2|γ sign (x2) , . . . , |xn|γ sign (xn)

]T and the vector sgn (x)=
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Figure 1. Space manipulator system model.

[
sign( x1), sign(x2), . . . , sign(xn)]T, where sign( · ) denotes the sign function. In ∈R

n×n is n-dimensional
identity matrix.

Lemma 1. [42] Let Ai ≥ 0(i = 1,2, . . . , n), for 0< p1 ≤ 1 and p2 > 1, the following inequalities hold

n∑
i=1

Ap1
i ≥

(
n∑

i=1

Ai

)p1

,
n∑

i=1

Ap2
i ≥ n1−p2

(
n∑

i=1

Ai

)p2

(1)

Definition 1 (Fixed-time stable). [17] Consider the nonlinear system

ż(t) = g(z(t)), z(0) = z0, g(0) = 0, z ∈R
n (2)

The origin of the system (2) is said to be fixed-time stable if it is finite-time stable and the convergence
time T (z0) is bounded for any initial states, that is, ∃Tmax > 0 such that T (z0)≤ Tmax, ∀z0 ∈R

n.

Lemma 2 (Globally fixed-time stabilisation). [18] Suppose there exist one Lyapunov function V (z),
such that V̇ (z)≤ −α0Vη0 (z)− β0V�0 (z) holds with α0, β0 > 0, η0 > 1, and �0 ∈ (0,1). Then, the equi-
librium of system (2) is globally fixed-time stable, and the settling time T (z0) is bounded by T (z0)≤

1
α0(η0−1)

+ 1
β0(1−�0)

, ∀z0 ∈R
n.

Lemma 3 (Practical fixed-time stabilisation). [43] Suppose there is a Lyapunov function V (z), and real
number 0<ϑ0 <∞, α0, β0 > 0, η0 > 1, and �0 ∈ (0,1), such that V̇ (z)≤ −α0Vη0 (z)− β0V�0 (z)+ ϑ0

holds. Then, the system (2) is practical fixed-time stable and the system can be stabilised within the resid-
ual set containing the equilibrium point in a fixed time. For θ1, θ2 ∈ (0,1], the residual set is presented

as Ds =
{

limt→Tz |V( z) ≤ min

{
α

−1/η0
0

(
ϑ0

1−θ1

) 1
η0 , β−1/�0

0

(
ϑ0

1−θ2

) 1
�0

}}
and the upper bound of convergence

time is given by T (z0)≤ 1
α0(η0−1)

+ 1
β0(1−�0)

, ∀z0 ∈R
n.

2.2 Space manipulator model
In the presence of disturbances, the dynamic equation of the free-floating space manipulator shown in
Fig. 1 can be expressed as [15]:

H (q) q̈ + C (q, q̇) q̇ = u + d(t) (3)

where, H (q) ∈R
n×n is the positive definite symmetric inertia matrix. C(q, q̇) ∈R

n×n denotes the Coriolis
and centrifugal matrix. q, q̇, q̈ ∈R

n represent the generalised position, velocity and acceleration vector,
respectively. u ∈R

n is the input control torque, and d(t) ∈R
n represents the bounded disturbances caused

by internal factors, satisfying ‖ d ‖< d0 with d0 is an unknown positive constant.
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Noticed that matrices H (q) and C(q, q̇) always contain uncertainties, which can be further described
as:

H (q)= H0 (q)+�H (q) , (4)

C (q, q̇)= C0(q, q̇) +�C(q, q̇) (5)

where, H0 (q) and C0(q, q̇) represent the nominal parts, �H (q) and �C(q, q̇) denote the uncertainty
parts.

Assumption 1. [44] The norm of inertia matrix H (q) is upper bounded by a nonegative finite constant
an, i.e. || H (q) ||< an. Besides, there always exist constants bc, b, bn ∈R

+, such that ‖ C(q, q̇)q̇ ‖< bc +
bn ‖ q ‖ +bm ‖ q̇‖2 holds.

Define x1 = q and x2 = q̇, the modified dynamic model can be reformulated as:{
ẋ1 = x2

ẋ2 = F(x1, x2) + B (x1) u + fdis

(6)

where F(x1, x2) = −H−1
0 (x1)C0(x1, x2)x2, B (x1)= H−1

0 (x1), and fdis stands for an unknown lumped
uncertain term including unknown disturbances and model uncertainties, which is expressed as

fdis = H−1
0 (x1) (d(t) −�C(x1, x2)x2 −�H (x1) ẋ2) (7)

Assumption 2. [45] Since both the unknown disturbances and the inertial uncertainties are bounded,
it is reasonable to assume the lumped uncertainty fdis is bounded, satisfying ‖ fdis ‖≤ c1 + c2 ‖ x1 ‖ +c3 ‖
x2‖2 = cT

z θ where θ = [1, ‖ x1 ‖, ‖ x2‖2]T and cz = [c1, c2, c3]T with unknown constants c1, c2, c3 > 0.

Owing to the physical limitations of the actuators, the control torque u is restricted by the saturation
value, which can be expressed as

u = sat (uc) (8)

where uc = [uc1, uc2, . . . , ucn]
T ∈R

n is the desired torque command, and the saturation function
sat( · ) represents saturation nonlinear characteristics of the actuator with sat (uci)= sign (uci) ·
min

{∣∣uci

∣∣ , ucimax

}
, where ucimax is the allowable maximum input torque of the ith actuator. Obviously,

the saturation nonlinear term sat (uc) can be abbreviated as the following form:

sat (uc)= uc+δc (9)

where, δc = [
δc1 , δc2 , . . . , δcn

]T ∈R
n denotes the saturation degree of the actuators, satisfying ||δc| | ≤ lδ

with lδ > 0, and δci is defined as

δci =
{

0,
∣∣uci

∣∣≤ ucimax

sign
(
uci

) · ucimax − uci ,
∣∣uci

∣∣> ucimax

(10)

2.3 Problem formulation
To address the trajectory tracking issue of the space manipulator, the trajectory tracking error e1 and
velocity tracking error e2 are defined as

e1 = x1 − qd, e2 = x2 − q̇d (11)

where qd ∈R
n and q̇d ∈R

n are the desired motion and corresponding time derivative, respectively.
Considering the input saturation, the tracking error equation of the space manipulator can be

derived: {
ė1 = e2

ė2 = F(x1, x2) + B (x1) uc + B(x1) δc + fdis − q̈d

(12)
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The main control objective of this paper is to design a tracking control command uc, such that

1. All signals in the closed-loop system are bounded.
2. Trajectory tracking is fulfilled within a specific time regardless of initial states.
3. The position tracking error is always confined within the prescribed performance bounds despite

the presence of unknown disturbances, parameter uncertainties and input saturation.

3.0 Controller design and stability analysis
In this section, a continuous adaptive fixed-time sliding mode control method is designed for the free-
floating space manipulator system. A novel constraint method based on the prescribed performance
function is presented to handle the tracking error constraint issue. Considering the effects of input
saturation, an auxiliary compensator is constructed to attain fixed-time stability.

3.1 Non-singular fast terminal slide mode surface
To improve the convergence property, the following non-singularity fast terminal sliding surface
(NFTSS) is designed as

s = e2 + N (e1)
(
K1sig1+σ1 (e1)+ K2sρ (e1)

)
(13)

where sliding surface s = [s1, s2, . . . , sn]T ∈R
n. N (e1)= 1 + 2smarctan (sn ‖ e1‖sr) /π with adjustable

positive constants sm, sn and sr. σ1 = m1
2n1

(1 + sgn( || e1 || − 1 ))with positive odd integers m1, n1 satisfying
m1 > n1. K1 = diag(K11, K12, . . . , K1n) and K2 = diag(K21, K22, . . . , K2n) are positive definite matrices.
sρ (e1)= [sρ1 , sρ2 , . . . , sρn ]T ∈R

n with sρi is defined as

sρi =
⎧⎨⎩ sigp/q (e1i) ,

−
si = 0 ∪ −

si �= 0, |e1i| ≥ ε0

l1e1i + l2e2
1isgn (e1i) ,

−
si �= 0, |e1i|< ε0

(14)

where
−
si = e2i + N (e1)

(
K1isig1+σ1 (e1i)+ K2isigp/q (e1i)

)
. p, q are positive odd integers with p< q, and ε0

is a small positive constant. To assure the sliding surface and its time derivative smooth and continuous,
l1 and l2 are selected as ⎧⎨⎩ l1 =

(
2 − p

q

)
ε

p/q−1
0

l2 =
(

p
q
− 1

)
ε

p/q−2
0

(15)

Lemma 4. Consider the space manipulator system (12). Once the NFTSS (13) satisfies s = 0, then the
system states e1 and e2 convergence to zero along the sliding surface in a fixed time for an arbitrary
initial condition. The upper bound of settling time is given by

Ts ≤ max
1≤i≤n

{
q

K1i(q − p)
ln
(

1 + K1i

K2i

)
+ n1

K1im1

}
(16)

Proof. Once the MFTSS is reached, i.e., s = 0, a series of the following differential equations can be
obtained

e2i + N (e1)
(
K1isig1+σ1 (e1i)+ K2isigp/q (e1i)

)= 0, i = 1,2, . . . , n (17)
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Define a new variable as Q = |e1i| q−p
q , and the corresponding time-derivative is given by

Q̇ = q − p

q
sig− p

q (e1i) e2i

= − (q − p)N (e1)

q
sig− p

q (e1i)
(
K1isig1+σ1 (e1i)+ K2isigp/q (e1i)

)
= −q − p

q
N (e1)

(
K1i|e1i|σ1+ q−p

q + K2i

)
(18)

= −q − p

q
N (e1)

(
K1iQ

1+ σ1q
q−p + K2i

)
According to N (e1)≥ 1, the settling time Tsi from si = 0 to e1i = 0 along the sliding surface is

determined by

Tsi = q

(q − p)

∫ Q(0)

0

1

N (e1)
(

K1iQ
1+ σ1q

q−p + K2i

)dQ

= q

(q − p)

∫ 1

0

1

N (e1)
(

K1iQ
1+ σ1q

q−p + K2i

)dQ

+ q

(q − p)

∫ Q(0)

1

1

N (e1)
(

K1iQ
1+ σ1q

q−p + K2i

)dQ

= q

(q − p)

∫ 1

0

1

N (e1) (K1iQ + K2i)
dQ (19)

+ q

(q − p)

∫ Q(0)

1

1

N (e1) (K1iQψ + K2i)
dQ

≤ q

q − p

[
1

K1i

ln
(

1 + K1i

K2i

)
+ 1 − Q(0)1−ψ

K1i(ψ − 1)

]
where ψ = 1 + m1/n1

1−p/q
. Due to ψ > 1 and Q(0)> 1, Tsi is further bounded by

Tsi ≤ q

K1i(q − p)
ln
(

1 + K1i

K2i

)
+ n1

K1im1

(20)

Based on Equation (20), the upper bound of the convergence time Ts can be calculated by

Ts = max
1≤i≤n

{Tsi} ≤ max
1≤i≤n

{
q

K1i(q − p)
ln
(

1 + K1i

K2i

)
+ n1

K1im1

}
(21)

From Equation (21), the upper bound of convergence time is independent of the system state values.
It means that the tracking error e1 and its derivative e2 can converge to the origin within a refined time
along the sliding surface. The proof is completed.

Remark 1. It should be pointed out that the strictly positive function N (e1) in NFTSS (13) is used to
tune the convergence rate, which varies from 1 + sm to 1. As the states are far from the origin, N (e1)

approaches 1 + sm that is greater than 1. Once the states are close to the origin, N (e1) tends to 1. The
convergence rate is thus improved by introducing N (e1). Moreover, a new variable power term σ1 is
also included in the NFTSS, which can be adjusted according to the system states. When the states are
in the vicinity of the origin, the NFTSS employs a linear term e1 instead of nonlinear term sig

m1
n1 (e1),

which results in a significant increase in the convergence rate. Therefore, the proposed NFTSS exhibits
a superior convergence performance whether far from or within a small allowable range of the origin.
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Remark 2. Huang et al. [40] presented a fixed-time sliding surface s = e2 + K1sigm1/n1 (e1)+
K2sρ (e1) with

−
si = e2i + K1isigm1/n1 (e1i)+ K2isigp/q (e1i), and derived the upper bound of conver-

gence time T1 = max1≤i≤n

{
q

K2i(q−p)
+ n1

K1i(m1−n1)

}
. Another fast fixed-time sliding surface s = e2 +

K1e
1
2 + m1

2n1 +( m1
2n1 − 1

2 )sgn(|e1|−1)
1 +K2e

p
q

1 is investigated in Ref. [41] and the settling time upper-bound was given
by T2 = max1≤i≤n

{
q

K1i(q−p)
ln
(

1 + K1i
K2i

)
+ n1

K1i(m1−n1)

}
. Since the relation ln (1 + K1i/K2i) <K1i/K2i holds,

one has Ts < T2 < T1, which implies that under the same design parameters, the proposed NFTSS obtains
the fastest convergence rate.

3.2 Prescribed performance function
Appropriate constraints on the system states are necessary to obtain the desired dynamic performance.
With this in mind, the PPC is investigated to confine the position tracking error within a predefined
permissible range here. First, describe such a constraint via a prescribed performance function, defined
as follows.

Definition 2. [26] if a positive continuous function ρ(t) satisfies 1) ρ(t)> 0 and ρ̇(t) ≤ 0 2)
limt→∞ρ(t) = ρ∞ > 0, then ρ(t) is called a performance function.

Generally, a prescribed performance function is designed as

ρ(t) = (ρ0 − ρ∞) e−l0t + ρ∞ (22)

where ρ0 >ρ∞ > 0 and l0 > 0 are design parameters and should be set appropriately to obtain the desired
time-domain characteristics, such as steady-state offset, overshoot and rising time. As stated in Ref.
[46], the prescribed performance is attained provided that the state is limited to the area bounded by
the decaying function of time. According to the concept, achieving the prescribed error constraints is
equivalent to satisfy the following relationship:

−ρi(t)< e1i(t)<ρi(t) (23)

where ρi denotes the prescribed performance function of si.
Based on the condition (23), one concludes that as long as |e1i(0)|<ρi(0) is satisfied, the tracking

error is always never exceed the predefined boundary.

Remark 3. Define transformed constraint error zi as zi = e1i/ρi. Obviously, when the constraint
(23) is satisfied, zi becomes zi ∈ (−1,1). That is, when |e1i(t)| tends to the boundary ρi(t), zi

approaches 1.

3.3 Fixed-time tracking controller design
Take the time derivative of s in Equation (13) and using Equation (12), one obtains

ṡ = F(x1, x2) + B (x1) uc + B(x1) δc + fdis − q̈d

+ Ṅ (e1)
(
K1sig1+σ1 (e1)+ K2sρ (e1)

)
(24)

+ N (e1)
(
(1 + σ1)K1diag (| e1i|σ1 )e2 + K2ṡρ(e1)

)
where the ith element of ṡρ is given by

ṡi =
⎧⎨⎩

p
q
|e1i|p/q−1e2i,

−
si = 0 ∪ −

si �= 0, |e1i| ≥ ε0

l1e2i + 2l2 |e1i| e2i,
−
si �= 0, |e1i|< ε0

(25)
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Aiming to attain trajectory tracking with high precision, the following adaptive nonsingular fixed-
time sliding mode control with prescribed performance constraints is developed

uc = ueq + ur + us (26)

where,

ueq = −B−1
(x1)

(
F (x1, x2)− q̈d

)
− B−1

(x1)
(
(1 + σ1)K1diag (| e1i|σ1 )e2 + K2ṡρ(e1)

)
(27)

− B−1
(x1) Ṅ (e1)

(
K1sig1+σ1 (e1)+ K2sρ (e1)

)
ur = −B−1

(x1)G (s)
(
γ1sig1+σ2 (s)+ γ2sigβ1 (s)+ γ3s

)
− B−1

(x1) �4diag
{

zitan
(πzi

2

)}
s − B−1

(x1)
ĉT

m�

2ε2
N

s (28)

us = −B−1
(x1) γ5�− 1

2
B−1

(x1) s (29)

G (s)= 1 + χ − χe−v1||s||k (30)

where σ2 = α1
2
(1 + sgn (| |s| | − 1))with α1 > 1, and β1 ∈ (0,1). χ > 0, v1 > 0 and k is a positive integer,

γ1, γ2, γ3, γ5 are positive design parameters, �4 = diag (γ41, γ42, . . . , γ4n) is a positive constant matrix,
which is used as the tuning gain to force the tracking error to remain within the defined boundary. ĉm

is the estimation of cm with cm = [
c2

1, c2
2, c2

3

]T, and � = [
1, ‖ x1‖2, ‖ x2‖4

]T. The adaptive update law is
designed as

˙̂cm = η

(
�||s||2

2ε2
N

− ζ ĉm

)
(31)

where η = diag(η1, η2, η3) and ζ = diag(ζ1, ζ2, ζ3) are two positive matrices, and εN is an arbitrary small
positive constant.

To compensate for input saturation, the auxiliary variable � is given by

�̇ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, ‖ � ‖≤�0

−b1�
1+σ2 − b2�

β1 − b3�−
||sTB(x1) δc||1 + 0.5b4δ

T
c δc

‖ �‖2 � + b4δc, ‖ � ‖>�0

(32)

where b1, b2, b3, b4 and �0 are positive constants.

Remark 4. The auxiliary variable combined with fast terminal sliding mode control enables fixed-time
convergence of tracking control. The parameter b4 is intended to avoid the possible overcompensation
of actuator saturation.

Remark 5. It is worth noting that when |e1i| approaches the constraint boundary ρi, then zi → 1, and
the value of tan

(
πzi
2

)
tends to infinity. The control gain is thus increased to suppress the evolution of

the tracking error. Figure 2 illustrates this constraint control scheme in graphical form. If the required
control law is unreasonable or the evolution of tracking error violates the constraint boundaries, the
values of ρ0, ρ∞, l0 and �4 must be adjusted according to practical application.

Lemma 5. Consider the space manipulator system (12) with the lumped uncertainty satisfying
Assumption 2. If the sliding surface is defined as Equation (13) and the control laws are designed as
Equations (26)–(30) with the adaptive update law Equation (31) and the auxiliary system Equation (32),
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Figure 2. The description of the constraint control scheme.

Figure 3. The structure of the proposed control scheme.

then the system trajectory enables to enforce into the vicinity of the sliding surface s = 0 from any ini-
tial states within a fixed time. Furthermore, system’s tracking errors e1 and e2 converge to a small set
containing the region.

For a deeper understanding of the overall structure of the suggested method, Fig. 3 shows the closed-
loop tracking control system.

3.4 Stability analysis
To prove Lemma 5, the following will analyse and demonstrate in two steps.

Step 1. Fixed time convergence property of the sliding surface s is verified.

Substituting Equations (26)–(29) into Equation (24), one obtains

ṡ = −G (s)
(
γ1sig1+σ2 (s)+ γ2sigβ1 (s)+ γ3s

)+ B(x1) δc

− �4diag
{

zitan
(πzi

2

)}
s −

(
ĉT

m�

2ε2
N

+ 1

2

)
s − γ5�+ fdis (33)

To validate the stability of the closed-loop system, define the following Lyapunov function:

V2 = 1

2
sTs + 1

2
c̃T

mη−1c̃m + 1

2
�T� (34)

where c̃m = cm − ĉm denotes the estimate error of cm.
The derivative of V2 with respect to time yields

V̇2 = sTṡ − c̃T
mη−1 ˙̂cm + �T�̇ (35)
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Then, one can derive

V̇2 = − sT {G (s) (γ1sig1+σ2 (s) + γ2sigβ1 (s) + γ3s
)− B (x1) δc

+�4diag
{

zi tan
(πzi

2

)}
s +

(
ĉT

m�

2ε2
N

+ 1

2

)
s + γ5� − fdis

}

− c̃T
m

(
� ‖s‖2

2ε2
N

− ζĉm

)
+ �T�̇

= − G (s)
(
γ1‖s‖σ2+2 + γ2‖s‖β1+1 + γ3‖s‖2

)
(36)

− sT�4diag
{

zi tan
(πzi

2

)}
s − ĉT

m�

2ε2
N

‖s‖2 + sTfdis − c̃T
m�

2ε2
N

‖s‖2

+ c̃T
mζĉm − 1

2
sTs − γ5sT� + sTB (x1) δc + �T�̇

Considering the auxiliary system Equation (32), the above equation leads to

V̇2 = − G (s)
(
γ1‖s‖σ2+2 + γ2‖s‖β1+1 + γ3‖s‖2

)
− sT�4diag

{
zi tan

(πzi

2

)}
s − ĉT

m�

2ε2
N

‖s‖2 + sTfdis − c̃T
m�

2ε2
N

‖s‖2

+ c̃T
mζĉm − 1

2
sTs − γ5sT� + sTB (x1) δc − b1�

T�1+σ2

− b2�
T�β1 − b3�

T� − ∥∥sTB (x1) δc

∥∥
1
− 1

2
b4δ

T
c δc + b4�

T
δc

≤ − G (s)
(
γ1‖s‖σ2+2 + γ2‖s‖β1+1 + γ3‖s‖2

)
(37)

− �4diag
{

zi tan
(πzi

2

)}
‖s‖2 − cT

m�

2ε2
N

‖s‖2 + cT
z θ‖s‖ + c̃T

mζĉm

− 1

2
sTs − γ5sT� − b1�

T�1+σ2 − b2�
T�β1 − b3�

T�

− 1

2
b4δ

T
c δc + b4�

T
δc

According to Young’s inequality, for ∀λj >
1
2
, j = (1,2, 3), the following inequality relations

hold:

cT
z θ‖s‖ = c1‖s‖ + c2‖x1‖‖s‖ + c3‖x2‖2‖s‖ ≤ cT

m�

2ε2
N

‖s‖2 + 3

2
ε2

N (38)

c̃T
mζĉm =

3∑
j=1

ζjc̃mj ĉmj =
3∑

j=1

ζjc̃mj

(
cmj − c̃mj

)
≤

3∑
j=1

ζj

(
λj

2
c2

mj
− 2λj − 1

2λj

c̃2
mj

)
(39)

−γ5sT� ≤ 1

2
sTs + 1

2
γ 2

5 �T� (40)

�T
δc ≤ 1

2
�T� + 1

2
δ

T
c δc (41)

Remark 6. For zi = e1i/ρi, when e1i < 0, zi < 0 holds and then tan
(
πzi
2

)
< 0, resulting in zitan

(
πzi
2

)
>

0. Similarly, when e1i ≥ 0, zi ≥ 0 holds and then tan
(
πzi
2

)≥ 0, leading to zitan
(
πzi
2

)≥ 0. In summary,
zitan

(
πzi
2

)
is consistently non-negative.
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Using the above inequalities, Equation (37) can be written as

V̇2 ≤ − G (s)
(
γ1‖s‖σ2+2 + γ2‖s‖β1+1 + γ3‖s‖2

)
+ 3

2
ε2

N +
3∑

j=1

ζj

(
λj

2
c2

mj

)
−

3∑
j=1

ζj

(
2λj − 1

2λj

c̃2
mj

)
(42)

− b1�
T�1+σ2 − b2�

T�β1 −
(

b3 − 1

2
γ 2

5 − 1

2
b4

)
�T�

Choose parameters b3, b4 and γ5, such that b3 − 1
2
γ 2

5 − 1
2
b4 > 0. Thus, one has

V̇2 ≤ − γ1G (s) 2
σ2+2

2

(
1

2
sTs
) σ2+2

2

− γ2G (s) 2
β1+1

2

(
1

2
sTs
) β1+1

2

−
3∑

j=1

(
yj

2ηj

c̃2
mj

) σ2+2
2

−
3∑

j=1

(
yj

2ηj

c̃2
mj

) β1+1
2

− 2
σ2+2

2 b2

(
1

2
�T�

) σ2+2
2

(43)

− 2
β1+1

2 b3

(
1

2
�T�

) β1+1
2

+�

where yj = ηjζj
2λj−1

2λj
, and �=∑3

j=1

(
yj

2ηj
c̃2

mj

) σ2+2
2 +∑3

j=1

(
yj

2ηj
c̃2

mj

) β1+1
2 +∑3

j=1

(
ζjλj

2
c2

mj

)
−∑3

j=1

(
yj

ηj
c̃2

mj

)
+

3
2
ε2

N .
If j

2ηj
c̃2

mj
≥ 1, the following inequality holds

(
yj

2ηj

c̃2
mj

) σ2+2
2

+
(

yj

2ηj

c̃2
mj

) β1+1
2

−
(

yj

ηj

c̃2
mj

)
≤
(

yj

2ηj

c̃2
mj

) σ2+2
2

−
(

yj

2ηj

c̃2
mj

)

≤
(

yj

2ηj

c̃2
mj

) σ2+2
2

− 1 (44)

On the other hand, for the case yj

2ηj
c̃2

mj
< 1, it yields

(
yj

2ηj

c̃2
mj

) σ2+2
2

+
(

yj

2ηj

c̃2
mj

) β1+1
2

−
(

yj

ηj

c̃2
mj

)
≤
(

yj

2ηj

c̃2
mj

) β1+1
2

−
(

yj

2ηj

c̃2
mj

)
≤ 1 (45)

According to the theory of uniform boundedness, s and c̃m are uniformly bounded. Therefore, there
are always some positive constants ϑj(j = 1,2, 3) such that

∣∣c̃mj

∣∣<ϑj. Then,

�=
3∑

j=1

{(
yj

2ηj

c̃2
mj

) σ2+2
2

+
(

yj

2ηj

c̃2
mj

) β1+1
2

−
(

yj

ηj

c̃2
mj

)}

+
3∑

j=1

(
ζjλj

2
c2

mj

)
+ 3

2
ε2

N (46)

≤
3∑

j=1

max

{(
yj

2ηj

ϑ 2
j

) σ2+2
2

− 1,1

}
+

3∑
j=1

(
ζjλj

2
c2

mj

)
+ 3

2
ε2

N <∞
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Using Lemma 1, the previous inequality Equation (43) is further simplified as

V̇2 ≤ − γ1G (s) 2
σ2+2

2

(
1

2
sTs
) σ2+2

2

− ym

(
1

2
c̃T

mη−1c̃m

) σ2+2
2

− 2
σ2+2

2 b2

(
1

2
�T�

) σ2+2
2

− γ2G (s) 2
β1+1

2

(
1

2
sTs
) β1+1

2

(47)

− ym

(
1

2
c̃T

mη−1c̃m

) β1+1
2

− 2
β1+1

2 b3

(
1

2
�T�

) β1+1
2

+�

≤ − aV
σ2+2

2
2 − bV

β1+1
2

2 +�

where ym = min

{
y
σ2+2

2
1 , y

σ2+2
2

2 , y
σ2+2

2
3

}
, a = 3− σ2

2 min
{

2
σ2+2

2 γ1G (s) , ym, 2
σ2+2

2 b2

}
, b = min{2 β1+1

2 γ2G (s) ,

ym, 2
β1+1

2 b3}.
Therefore, according to Lemma 3, it can be concluded that the NFTSS (13) is practically fixed-time

stable and converges to the following residual set � after a bounded time Tr.

�: =
{

lim
t→Tr

s(t)| ‖ s(t) ‖≤�
}

(48)

where for 0< o1, o2 ≤ 1,

�= min

{(
�

a (1 − o1)

) 2
σ2+2

,

(
�

b (1 − o2)

) 2
β1+1

}
(49)

Tr = 2

aσ2

+ 2

b (1 − β1)
(50)

Step 2. Once s reaches the region �, the fixed-time convergence property of the system states should
be demonstrated by the following analysis.

Case 1. If s = 0 is reached, then si = 0. Based on Lemma 4, the fixed-time convergence of tracking error
e1 and velocity error e2 can be guaranteed during the sliding phase.

Case 2. In the case of si �= 0 and |e1i| ≥ ε0, let si = φi ∈� and one has

si = e2i + N (e1)
(

K1isig1+σ1 (e1i) + K2isig
p
q (e1i)

)
= φi (51)

it follows that

e2i + N (e1)

(
K1i − φi

N (e1) sig1+σ1 (e1i)

)
sig1+σ1 (e1i)

+ N (e1)K2isig
p
q (e1i)= 0 (52)

e2i + N (e1)K1isig1+σ1 (e1i)

+ N (e1)

(
K2i − φi

N (e1) sig
p
q (e1i)

)
sig

p
q (e1i)= 0 (53)

Choosing K1i such that K1i − φi

N (e1) sig1+σ1 (e1i)
> 0 or K2i − φi

N (e1) sig

p

q (e1i)

> 0, then the fixed-

time stability of the system can still be guaranteed. Therefore, the tracking error e1i ultimately converges
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Figure 4. D-H model of the studied space manipulator system.

to the region |e1i| ≤�e1 after a fixed time. At this time, it is easy to derive that the tracking velocity e2i

converges to the region |e2i| ≤�e2 after a fixed time.

Case 3. For the case s̄i �= 0 and |e1i|< ε0. Since the tracking error e1i has entered the region �e1,
according to the NFTSS (13), one obtains

si = e2i + N (e1)
(
K1isig1+σ1 (e1i)+ K2i

(
l1e1i + l2e

2
1isgn (e1i)

))= φi (54)

It follows that

|e2i| ≤ φi + N (e1)
(
K1i

∣∣e1|1+σ1 + K2i

∣∣ l1e1i + l2e
2
1isgn (e1i) |

)≤�e2 (55)

The above analysis shows that the system states e1i and e2i will converge to the sets |e1i| ≤�e1 and
|e2i| ≤�e2 after a fixed time, respectively. It is concluded that the closed-loop tracking control system is
practically fixed-time stable. The proof is completed.

Remark 7. Appropriate control parameters are crucial for achieving improved control accuracy when
adopting the suggested control scheme into practice. Therefore, here are some suggestions for parameter
selection:

(a) According to Equation (14), the selection of ε0 will have a direct impact on the effectiveness of
the singularity problem solution, directly affecting the convergence accuracy of the system state.

(b) Larger K1i and K2i will result in a faster convergence rate at the cost of more control energy
consumption in the initial response, especially when the initial state is far from the equilibrium
point.

(c) For the purpose of tracking control with high precision, εN should be selected small enough,
which leads to a greater control input. Therefore, a trade-off between the control effort and the
system performance is required.

(d) Unexpected changes in the control inputs may have a negative effect on the actuator. The influence
of the actuator saturation on the auxiliary system can be mitigated by adjusting the value of the
parameter b4, particularly in cases when the actuator saturation is significant.

(e) The settling time expression Equation (21) indicates that the parameters q, p, n1 and m1 are also
crucial in dominating the convergence rate and accuracy.

4.0 Numerical simulations
In this section, numerical simulations of a seven-degrees-of-freedom free-floating space manipulator
system are conducted in two parts to evaluate the performance of the proposed adaptive fixed-time
control strategy. The D-H model and physical parameters of the studied system are shown in Fig. 4
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Table 1. Physical parameters of the studied space manipulator

Parameter B0 B1 B2 B3 B4 B5 B6 B7

mass (kg) 100 4.25 7 7 4.25 4.25 4.25 4.25
bi (m) 0.6 0.3 0.25 0.25 -0.25 0.25 0.25 0.3

0 0 0 0 0 0 0 0
0 0 0.25 0.25 0 0 0 0

ai (m) 0 0.3 0.25 0.25 -0.25 0.25 0.25 0.3
0 0 0 0 0 0 0 0
0 0 0.25 0.25 0 0 0 0

Ii

(
kg · m2

)
Ixx 2,000 0.05 0.09 0.09 0.05 0.05 0.05 1.28
Iyy 2,000 1.28 1.46 1.46 0.89 0.89 0.89 1.28
Izz 2,000 1.28 1.46 1.46 0.89 0.89 0.89 0.05
Ixy 0 0 0 0 0 0 0 0
Ixz 0 0 0 0 0 0 0 0
Iyz 0 0 0 0 0 0 0 0

and Table 1, respectively. In this simulation, considering the system uncertainties, the nominal mass
values of the system are set as mB0 = 90 kg, mB1 = 3.825kg, mB2 = 6.3kg, mB3 = 6.3kg, mB4 = 3.825kg,
mB5 = 3.825kg, mB6 = 3.825kg and mB7 = 3.825kg. And the time-varying disturbances acted on the sys-
tem are given by d(t) = [0.03sin(t) + 0.005sin (200π t) , 0.03sin (2t)+ 0.005sin (200π t) , 0.01sin(t)+
0.002sin (200π t) , 0.01sin (2t) + 0.001sin (200π t) , 0.02sin(t) + 0.002sin (200π t) , 0.01sin (3t)+
0.001sin (200π t) , 0.02sin (3t)+ 0.003sin (200π t) ]TN · m. The initial state of the spacecraft
base is chosen as [0, 0, 0, 1, 0, 0, 0]T. The joint initial and desired configurations are assigned
as [0, π/3, 0, π/4, π/4, 0, π/6]T rad and [0.15 − 0.14e−t + 0.07e−2t, 1.05 + 0.1e− − 0.05e−2t,
s0.17 + 0.1e−2t − 0.2e−t, 0.48 − 0.1e−3t + 0.3e−t, 0.8 − 0.05e−2t+0.1e−t, −0.2 + 0.2e−t − 0.1e−2t, 0.7 +
0.25e−2t − 0.5e−t]Trad. The parameters of the prescribed performance boundary are set as ρ0 = 0.15,
ρ∞ = 5 × 10−6, and l0 = 2.5. The controller parameters are listed in Table 2.

4.1 Performance evaluation with healthy actuators
In this part, the input saturation is ignored, and the main purpose is to investigate the effect of the PPC
constraint on the tracking performance. The proposed control scheme is compared with an adaptive
fixed-time sliding mode controller (AFSMTC) that does not take into account performance constraints.
The AFSMTC has the same form as the proposed scheme, except for the tan-type PPC term. For a
fair comparison, the control parameters chosen for the AFSMTC are identical to those of the proposed
scheme. The simulation results are given in Figs 5–8.

Figures 5–7 illustrate the time responses of the position and velocity tracking errors. These results
validate the stability analysis in Section 3 comfortably. Although both controllers enable fixed-time
convergence, the proposed controller possesses a faster transient response with higher steady-state accu-
racy. Furthermore, with the help of tan-type PPC, the position tracking errors are always strictly limited
to the predefined boundary in both transient and steady-state phases, whereas those of the AFSMTC
violate the constraint. As can be seen, since the constraint boundary is decaying with time, the norm of
tracking error is decreasing, which increases the tracking precision. It is the effect of the prescribed per-
formance function in the proposed control scheme. Control torques are depicted in Fig. 8, from which the
maximum torque required by the proposed controller is slightly larger than that of the AFSMTC. This is
because the control gain is increased to counteract the evolution of the tracking error when it approaches
the constraint boundary. It is worth noting that to obtain fast trajectory tracking, both controllers have a
large transient response at the beginning of the movement, which can make them impossible for practical
applications. Therefore, the influence of actuator saturation needs to be considered during the controller
design process.
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Table 2. Parameters of the proposed controller

Parameter Values
Positive integer m1 9
Positive integer n1 7
Positive odd integer p 11
Positive odd integer q 13
Positive constant ε0 0.001
Positive constant εN 0.4
Positive definite matrix K1 diag (1.5, 1.8, 1.5, 1.6, 1.8, 1.8, 1.2)
Positive definite matrix K2 diag (0.8, 1.2, 1.2, 1.0, 0.8, 1.0, 1.2)
Positive constant sm 5
Positive constant sn 2
Positive constant sr 3

Positive constant α1

9

7

Positive constant β1

9

13
Control gain γ1 0.8
Control gain γ2 0.5
Control gain γ3 0.5
Control gain γ5 0.1
Gain parameter χ 0.3
Gain parameter v1 5
Gain parameter k 3
Control gain matrix �4 diag(1.2,2.5,3,2.2,2,1.8,2.2)
Adaptive gain matrix diag (0.8, 0.8, 2)
Adaptive gain matrix diag (0.01, 0.01, 0.01)
Auxiliary system constant b1 1
Auxiliary system constant b2 0.5
Auxiliary system constant b3 2.2
Auxiliary system constant b4 0.15
Auxiliary system constant �0 0.0001

(a) (b)

Figure 5. Time response of position tracking error under the AFSMTC.

https://doi.org/10.1017/aer.2023.99 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.99


The Aeronautical Journal 1235

(a) (b)

Figure 6. Time response of position tracking error under the proposed controller.

(a) (b)

Figure 7. Time response of velocity tracking error.

(a) (b)

Figure 8. Time response of control torques.
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(a) (b)

(c)

Figure 9. Simulation results without the saturation compensator.

4.2 Performance evaluation with input saturation
In this part, the problem of input saturation is investigated and the capability of the proposed controller
is evaluated in the following two simulation sections. To this end, the allowable maximum input control
torques are selected as [60, 50, 35, 25, 25, 20, 30]TN · m.

4.2.1 Performance validation of the saturation compensator
In this simulation, the main objective is to illustrate the effectiveness of the proposed saturation compen-
sator in the proposed control method, two cases are discussed for comparison. One is the tracking control
with saturation compensation, and the other is the tracking control without saturation compensation.

The simulation results without and with saturation compensation are presented in Figs 9 and 10,
respectively. As shown in Fig. 9, the convergence time of tracking error and tracking speed error is finite,
but the error constraint boundary is no longer satisfied. It indicates that input saturation has greatly atten-
uated the convergence performance of trajectory tracking. From Fig. 10, the predicted compensation
parameter � converges quickly to a constant, which means a strong compensation role when starting to
track the desired trajectory. Under the action of the saturation compensator, the tracking error is not only
always strictly remained within the predefined constraint bounds, but also a superior control performance
is obtained with shorter settling time and faster convergence speed. By comparison, the actual control
torques for both controllers are guaranteed to be within their maximum allowable limits. It should be
noted that due to the influence of input saturation, the torque produces a strong chattering phenomenon.
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(a) (b)

(c) (d)

Figure 10. Simulation results with the saturation compensator.

Whereas with the help of the saturation compensator, the control torque obtained is smoother with sig-
nificantly less chattering. To sum up, conclusions can be drawn the proposed saturation compensator
can eliminate the effect of input saturation to a certain extent and accelerate the convergence rate of
trajectory tracking in the proposed control scheme.

4.2.2 Performance comparison with existing mehtods
To further assess the proposed controller’s performance, comparisons are performed with the existing
fixed-time control strategies proposed in Refs [18, 47]. To ensure the rationality of the comparison, all
simulation experiments are conducted under the same initial conditions. The FTSMC can be described
as follows [18]:

u = u1 + u2 + u3

u1 = −B−1
(x1) (F( x1, x2) − q̈d)

− B−1
(x1) σ

−1�e2 − p1

q1

(σB( x1

)
)−1diag

( ∣∣σe2|1−q1/p1
)

e2

u2 = −p1

q1

(σB( x1

)
)−1diag

(
sig2−q1/p1 (σe2) )μτ(

α2sigm2/n2 (s)+ β2sigp2/q2 (s)
)

(56)

u3 = −B−1
(x1) (c1 + c2| |x1| | + c3| |x2| |2)

s
|| s ||

s = e1 + sigq1/p1 (σe2)
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Table 3. Controller parameters for FTSMC and ANFTSMC

Controllers Parameters
FTSMC α1 = [0.5, 0.6, 0.5, 0.6, 1.2, 0.8, 0.8] ,

β1 = [0.8, 1.2, 1.2, 1.0, 0.8, 1.0, 1.2],
m1 = 9, n1 = 5, p1 = 7, q1 = 9, m2 = 5,
n2 = 3, p2 = 5, q2 = 9, α2 = 2, β2 = 2,
c1 = 0.2, c2 = 0.1, c3 = 0.1

ANFTSMC Ka = diag (0.6, 0.8, 1.0, 0.8, 1.6, 0.8, 1.2),
Kb = diag (0.6, 0.8, 0.8, 0.6, 1.0, 0.8, 1.2)
m1 = 9, n1 = 7, p1 = 11, q1 = 13, m2 = 9
n2 = 7, p2 = 9, q2 = 13, α2 = 0.8, β2 = 0.5
η11 = 1.8, η12 = 1.5, η13 = 5, η21 = 0.01,
η22 = 0.01, η23 = 0.01, ε= 0.01

where α2 > 0, β2 > 0,c1, c2, c3 are three positive constants, σ = diag (σ1, σ2, . . . , σn) with σi =
1

α1(i)e
m1/n1−p1/q1
1i +β1(i)

, α1 = [α11, α12, . . . , α1n] and β1 = [β11, β12, . . . , β1n] with α1i > 0 and β1i > 0, �=
diag (�1,�2, . . . ,�n) with �i = −α1i

(
m1
n1

− p1
q1

)
em1/n1−p1/q1−1

1i σ 2
i e2i, m1, m2, n1, n2, p1, p2, q1, q2 are

positive odd integers satisfying m1 > n1, m2 > n2, p1 < q1 < 2p1, p2 < q2 and m1/n1 − p1/q1 > 1. μτ =
diag (μτ1,μτ2, . . . ,μτn) with μτ i given by:

μτ i =
⎧⎨⎩ sin

(
π

2
· e

q1/p1−1
2i
τi

)
ife

q1
p1

−1

2i ≤ τi

1 otherwise
(57)

The value of μτ i is 1 as the initial tracking speed e2 (0)= 0.
The adaptive nonsingular fast terminal sliding mode control (ANFTSMC) scheme proposed by Ref.

[47] is written as

u = u1 + u2 + u3

u1 = −B−1
(x1)

(
F (x1, x2)− q̈d

)
− B−1

(x1)
(
k1Kadiag( | e1i |k1−1 )e2 + Kbṡρ(e1)

)
u2 = −B−1

(x1)
(
α2sigk2 (s) + β2sigp2/q2 (s)

)
u3 = −B−1

(x1)
(
ĉ1 + ĉ2‖x1‖ + ĉ3‖x2‖2

)
tanh (s/ε) (58)

˙̂c1 = η11

(
sT tanh (s/ε) − η21ĉ1

)
˙̂c2 = η12

(‖x1‖sT tanh (s/ε) − η22ĉ2

)
˙̂c3 = η13

(
‖x2‖2sT tanh (s/ε) − η23b̂3

)
s = e2 + Kasigk1 (e1) + Kbsρ(e1)

where Ka, Kb are positive definite matrices, α2 > 0, β2 > 0, k1 = 1
2
+ m1

2n1
+
(

m1
2n1

− 1
2

)
sign (||e1 − 1||),

k2 = 1
2
+ m2

2n2
+
(

m2
2n2

− 1
2

)
sign (||s − 1||), m1, m2, p1 and p2 are positive odd integers satisfying m1 >

n1, m2 > n2 and p2 < q2, tanh
(

s
ε

)= [tanh
(

s1
ε

)
, tanh

(
s2
ε

)
, . . . , tanh

(
sn
ε

)
]T with ε is a arbitrary small

positive constant, η1j and η2j are positive constants.
Generally, the faster the system responses, the larger control torques generates, resulting in more

energy consumption. Therefore, the selection of control parameters requires a trade-off between con-
trol performances and input torques. The control parameters for FTSMC and ANFTSMC are listed in
Table 3. Figures 11–12 give the response curves of the position and speed tracking errors under these dif-
ferent controllers. The convergence time of all controllers is observed to be bounded, and the suggested

https://doi.org/10.1017/aer.2023.99 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.99


The Aeronautical Journal 1239
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(g)

(f)

Figure 11. Position tracking error performance.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 12. Velocity tracking error performance.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 13. Control torque.
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Table 4. IAE index comparison of different controllers

IAE Proposed controller FTSMC ANFTSMC
IAEe11 44.6329 59.8012 61.2166
IAEe12 18.7291 27.4211 28.3564
IAEe13 35.7641 39.0169 39.6325
IAEe14 46.7035 72.8579 73.2816
IAEe15 20.7131 45.1611 35.2228
IAEe16 46.0976 66.0547 65.6735
IAEe17 23.8957 40.8324 33.5227

Table 5. ITAE index comparison of different controllers

ITAE Proposed controller FTSMC ANFTSMC
ITAEe11 17.3168 32.2647 36.1364
ITAEe12 4.6532 9.6328 11.9463
ITAEe13 12.6477 14.6702 16.5088
ITAEe14 15.6069 34.4396 39.6196
ITAEe15 5.6454 23.233 12.2935
ITAEe16 15.5378 30.2576 31.1518
ITAEe17 5.5794 15.2854 10.6605

Table 6. EC index comparison of different controllers

ITAE Proposed controller FTSMC ANFTSMC
ITAEe11 845,770 4,153,800 901,320
ITAEe12 211,200 1,400,400 283,810
ITAEe13 82,180 713,900 127,840
ITAEe14 17,180 302,300 37,020
ITAEe15 48,370 291,900 59,980
ITAEe16 11,290 66,700 13,730
ITAEe17 660 4,500 800

controller takes less time to track the desired trajectory than the other two controllers. Meanwhile, the
transient performance requirement is consistently guaranteed only under the proposed control, imply-
ing that a quicker convergence performance is realised. Figure 13 clearly depicts the comparison of
joint torques. In the presence of input saturation, the proposed controller provides a smoother, more
continuous and less chattering control input.

To quantitatively evaluate the performance of the various controllers, for the total number of sam-
pling times N, three metrics including the integrated absolute error (IAE) IAEe1i = 1

N

∑N
j=1 |e1i (j)|, the

integrated time absolute error (ITAE) ITAEe1i = 1
N

∑N
j=1 t (j) |e1i (j)|, and the energy consumption (EC)

ECui = 1
N

∑N
j=1 |τi (j)| are introduced, as shown in Tables 4–6.

The lower the values of the above three indicators, the better the control performance of the closed-
loop tracking system. According to the comparison, the proposed control method can achieve faster
tracking convergence and higher tracking precision with less energy consumption than the other two
referenced methods. The simulation results demonstrate the noticeable superiority of the proposed
controller in terms of tracking performance, energy consumption and chattering suppression.

In summary, it can be concluded that the proposed controller realises fast and accurate trajectory
tracking of the space manipulator in a bounded time, while satisfying the transient and steady-state
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performance constraints of tracking error, even in the presence of unknown disturbances, inertial
uncertainty and input saturation.

5.0 Conclusion
The tracking control issue for a free-floating space manipulator with prescribed performance constraints
was addressed in this study, along with an efficient solution taking into account model uncertainties,
internal disturbances and input saturation. A novel tangent-type PPC integrated fast fixed-time termi-
nal sliding mode control was developed to prevent any violations of the tracking error constraint. To
offset the negative effects of excessive actuator torque, an input compensator was introduced. The sug-
gested controller is not only straightforward structurally, but also capable of guaranteeing fixed-time
prescribed performance fulfillment even in the presence of input saturation. Compared with the existing
fixed-time controllers, the designed control has the advantages of faster convergence rate, higher track-
ing precision and less control torque chattering. It is important to note that measurement noise, which
deteriorates system tracking performance, is not taken into account in this research. More research needs
to be undertaken with measurement noise explicitly considered in future work for tracking control of a
space manipulator.
Competing interests. The authors declare that they have no Competing of known competing financial interests or personal
relationships.
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