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Calcium and vitamin D have well-established roles in maintaining calcium balance and bone
health. Decades of research in human subjects and animals have revealed that calcium and
vitamin D also have effects on many other organs including male reproductive organs. The
presence of calcium-sensing receptor, vitamin D receptor, vitamin D activating and inacti-
vating enzymes and calcium channels in the testes, male reproductive tract and human
spermatozoa suggests that vitamin D and calcium may modify male reproductive function.
Functional animal models have shown that vitamin D deficiency in male rodents leads to a
decrease in successful mating and fewer pregnancies, often caused by impaired sperm motil-
ity and poor sperm morphology. Human studies have to a lesser extent validated these
findings; however, newer studies suggest a positive effect of vitamin D supplementation
on semen quality in cases with vitamin D deficiency, which highlights the need for initiatives
to prevent vitamin D deficiency. Calcium channels in male reproductive organs and sperm-
atozoa contribute to the regulation of sperm motility and capacitation, both essential for
successful fertilisation, which supports a need to avoid calcium deficiency. Studies have
demonstrated that vitamin D, as a regulator of calcium homoeostasis, influences calcium
influx in the testis and spermatozoa. Emerging evidence suggests a potential link between
vitamin D deficiency and male infertility, although further investigation is needed to estab-
lish a definitive causal relationship. Understanding the interplay between vitamin D, calcium
and male reproductive health may open new avenues for improving fertility outcomes
in men.
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Male reproduction is of increasing interest and concern
worldwide due to the growing issues with reproductive
health and low fertility rates(1). According to the UN,
the average global fertility rate stood at 2⋅3 births per
woman in 2021, falling from about 5 births per woman
in the mid-twentieth century(2). Male infertility contri-
butes to the problem in almost 50 % of infertile couples,
with up to 30% of all cases being attributed to a male
factor as the sole cause(3–5). Numerous causes can influ-
ence male reproductive function. These include genetic
mutations, environmental aspects, lifestyle choices, med-
ical conditions or medications(6–9). In recent years, the
potential impact of nutritional factors on male reproduct-
ive health has gained significant attention. Both vitamin D
deficiency and low-ionised calcium have been linked with
impaired semen quality(10). While it can be challenging
to directly attribute instances of male infertility to dietary
or lifestyle changes, these factors can contribute to the
problem. Modern dietary habits have seen a shift towards
processed foods(11), which are often low in essential nutri-
ents and can lead to nutrient deficiencies that may have a
negative influence on fertility.

Vitamin D is a steroid hormone essential for various
physiological processes in many different organs beyond
its classical role in maintaining calcium homoeostasis
and bone health(12). In the past 20 years, there has been
a great interest in exploring the beneficial effects of vita-
min D on human health and in various organs during
health and disease(13–15). It has been suggested to be
involved in several aspects of male reproductive function,
such as sperm production, sperm motility and hormonal
regulation(16–18). Generally, vitamin D deficiency is
defined as serum 25-hydroxyvitamin D (25OHD) levels
below 25 or 30 nM/l and vitamin D insufficiency as levels
below 50 nM/l. The active vitamin D metabolite,
1,25-dihydroxyvitamin D3 (1,25(OH)2D3) (calcitriol),
exerts its effects through the vitamin D receptor
(VDR), which is present in various reproductive tissues
including testes, epididymis and prostate(9). The VDR,
upon activation by 1,25(OH)2D3, potentially regulates
the expression of genes involved in steroidogenesis,
spermatogenesis and sperm maturation(8).

Vitamin D regulates serum calcium concentrations by
enhancing intestinal absorption, utilising bone storage,
and increasing renal reabsorption(8). These actions are
involved in the tight regulation of calcium in the body
which is essential for almost all physiological functions.
Calcium is not only crucial for skeletal integrity but is
also involved in intracellular signalling pathways, muscle
contraction and hormonal regulation. In the male repro-
ductive system, calcium is essential for sperm motility,
sperm capacitation and the acrosome reaction, which
are crucial steps for successful fertilisation(10).
Disturbances in calcium homoeostasis can affect sperm
function and contribute to male infertility(10,19).
Therefore, adequate levels of both vitamin D and cal-
cium have been proposed to be important for optimal
male reproductive health.

Understanding the significance of vitamin D and cal-
cium in male reproductive health has the potential to
guide clinical practice, form interventions and improve

reproductive outcomes for men. As such, this review
summarises the current understanding of the effects of
vitamin D and calcium on male reproductive function.

Male reproductive tract

Male reproductive organs ensure the production, storage
and delivery of motile and competent spermatozoa and
the synthesis and secretion of male sex steroids. The tes-
tes are responsible for the production of spermatozoa
through a complicated process known as spermatogen-
esis, which occurs in the seminiferous tubules(8).
Spermatogenesis involves both mitosis and meiosis to
complete the development of mature spermatozoa from
spermatogonial stem cells(20). Spermatogenesis relies on
the interplay between various cell types, including germ
cells, Sertoli cells, peritubular cells and Leydig cells.
Within the seminiferous tubules, the specialised Sertoli
cells, in conjunction with peritubular cells, create the
microenvironment that allows germ cells to develop
from diploid spermatogonia to haploid spermatids(21).
They provide physical support and nutrition, and regu-
late the milieu required for proper sperm development.
Various genetic and endocrine factors tightly regulate
the functions of Sertoli and peritubular cells, with
follicle-stimulating hormone and testosterone being
prominent regulators necessary for optimal spermatogen-
esis(22). Leydig cells, located in the interstitial spaces
between the seminiferous tubules, produce testosterone
in response to luteinising hormone stimulation. This
ensures a high intratesticular testosterone concentration
that can be up to 100 times higher than in serum(23,24).
Testosterone has a significant impact on fetal testis devel-
opment, the descent of the testes into the scrotum and the
maturation of Sertoli cells during puberty. The matur-
ation of Sertoli cells marks the initiation of spermatogen-
esis and coincides with the cessation of their proliferation
during puberty. Mature Sertoli cells cannot proliferate,
thus the quantity of Sertoli cells established during
early life determines the capacity for sperm production
in adulthood(21). Consequently, the number of sperm pre-
sent in a semen sample is, to a certain extent, determined
during fetal and early life.

After successful spermatogenesis, the spermatozoa are
immotile and undergo passive transportation to the epi-
didymis through the efferent ducts. In the epididymis,
the spermatozoa undergo final maturation and become
motile. The epididymal fluid composition is tightly regu-
lated and differs markedly as the spermatozoa transit
through the caput, corpus and cauda of the epididymis.
During ejaculation, spermatozoa meet secretions from
the prostate and seminal vesicles that may also influence
sperm function.

Vitamin D

Physiology and metabolism

The inactive form of vitamin D, cholecalciferol, is
synthesised in the skin following the conversion of
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7-dehydrocholesterol by UV B radiation from the
sun(25,26). Cholecalciferol can also be absorbed from the
diet or via supplementation. In detail, cholecalciferol
must undergo two hydroxylations to form the active
form of vitamin D, 1,25(OH)2D3 that can bind and acti-
vate the VDR(27–29). These steps involve the microsomal
cytochrome P450 (CYP) enzymes. The first step is
25-hydroxylation by hepatic CYP2R1 which forms the
prohormone 25OHD (calcidiol) followed by
1α-hydroxylation by renal CYP27B1 to form 1,25
(OH)2D3, whereas CYP24A1 inactivates 25OHD and
1,25(OH)2D3

(30). Parathyroid hormone (PTH) is the
main inducer of renal CYP27B1 expression and thus
the main inducer of circulating 1,25(OH)2D3 and a
powerful mobiliser of calcium from the skeleton(31).
1,25(OH)2D3 binds and activates the VDR which forms
a heterodimer with the retinoid X receptor. This complex
recognises vitamin D response elements in the promoter
region of target genes and regulates transcription(30). The
DNA-binding domain of the VDR mediates the tran-
scriptional effects, but VDR also has an alternative
ligand-binding pocket that mediates rapid non-genomic
effects by regulating second messenger systems. In clin-
ical practice, vitamin D status is determined by measur-
ing serum levels of 25OHD and not 1,25(OH)2D3, as
25OHD correlates with bone mass density, serum cal-
cium level and PTH secretion(32,33). However, cellular
responsiveness to circulating vitamin D metabolites
goes beyond VDR expression as the presence of activat-
ing and inactivating enzymes locally in the target organs
influences the availability of substrates for VDR and
thereby influences the effect of vitamin D on the target
tissue(34,35).

Expression of vitamin D regulating enzymes and vitamin
D receptor in the male reproductive system

Studies have consistently found mRNA and protein
expression of the VDR and the vitamin D activating
and inactivating enzymes in various cell types of the
gonads and male reproductive tract(9). In most studies,
VDR is co-expressed with the activating enzyme,
CYP27B1, and the deactivating enzyme, CYP24A1.
This co-expression occurs throughout the reproductive
tract, including in some Sertoli cells, most germ cells,
spermatozoa, Leydig cells and the epithelial cells lining
the tract(36–42). The local presence and activity of the
enzymes play a crucial role in regulating the concentra-
tion of 1,25(OH)2D3 within cells and consequently acti-
vating the VDR.

In adult testes, the VDR and metabolising enzymes
are primarily expressed in human germ cells, with a
marked expression in spermatogonia, spermatocytes
and spermatids in both human subjects and rodents(18,43).
Studies have also found VDR expression in both the
nucleus and cytoplasm of primary cultures of immature
Sertoli cells, in fetal Sertoli cells and in the immature
mouse Sertoli cell line TM4 where 1,25(OH)2D3 is
known to mediate fast non-genomic effects(44–50). The
expression levels of CYP2R1, CYP27B1 and CYP24A1
in the testes indicate that the cells are equipped to

respond to and regulate the effects of vitamin D metabo-
lites(8,18). Furthermore, the effects of cholecalciferol or
calcitriol treatment on gonadal function may vary
depending on the specific expression pattern of these
enzymes. Cholecalciferol can be activated locally, poten-
tially eliciting a response, whereas calcitriol is already
active and immediately triggers responses or undergoes
inactivation. This suggests that the local regulation of
vitamin D is important for spermatogenesis and sperm
function. The expression of VDR in germ cells suggests
that calcitriol may play a role in sperm function(51).
Multiple studies have reported the presence of VDR in
specific regions of mature human spermatozoa, including
the post-acrosomal part of the head, the neck region and
the midpiece(18,52). Additionally, the vitamin D activat-
ing enzymes are also expressed in spermatozoa, and the
inactivating enzyme CYP24A1 exhibits a distinct expres-
sion pattern at the annulus. Notably, the expression
levels of VDR and CYP24A1 are higher in spermatozoa
from healthy men compared with infertile men(53), which
supports that vitamin D may be beneficial for sperm
function.

VDR expression has also been demonstrated in Leydig
cells, suggesting a potential direct impact of vitamin D
on steroidogenesis and thereby also an indirect effect
on spermatogenesis and male fertility. Recent studies
have detected VDR at the protein level in fetal
and adult Leydig cells in human subjects, roosters
and mice(18,38,54,55). Moreover, VDR, CYP27B1 and
CYP24A1 are all expressed in the epididymis, prostate
and seminal vesicles(18,37,38), which highlights a potential
direct effect throughout the male reproductive system.

Animal models: vitamin D deficiency and male fertility

Numerous animal models have been utilised to investi-
gate the relationship between vitamin D and male
fertility (defined as successful conception). An overview
of the models is shown in Table 1. The first association
was found in a study exploring vitamin D deficiency in
rats(56). Vitamin D deficiency in male rats led to a 45%
decrease in successful mating, defined as the presence
of sperm in the vaginal tract, compared with rats with
sufficient vitamin D levels. Additionally, rats with vita-
min D deficiency had 71 % fewer pregnancies compared
with vitamin D-sufficient rats(56). When the rats were
supplemented with calcium, the fertility potential was
restored, implying an indirect effect of hypovitaminosis
D leading to hypocalcaemia and secondarily reduced fer-
tility(57). However, after reassessment of the data by
adjusting for the mating period and male:female ratio,
and by determining the time to pregnancy, it was evident
that the rats still had lower pregnancy rates after insem-
ination with sperm from normocalcemic vitamin
D-deficient rats than normocalcemic vitamin D-replete
rats(57). This indicates that vitamin D itself is important
for semen quality and that the impaired fertility caused
by vitamin D deficiency cannot be fully reversed by cor-
recting hypocalcaemia alone(9). Newer animal studies on
vitamin D deficiency have supported the negative effects
of inadequate vitamin D levels on semen quality and
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male fertility. In general, the low fertility rates in vitamin
D-deficient male rodents seem to be caused by impaired
sperm count, motility and occasionally poor sperm
morphology(58,59).

Dietary vitamin D-deficient mice have also been
shown to have lower testicular weight and fewer sperm-
atozoa in the cauda epididymis compared with con-
trols(60). Another study revealed adverse impacts on
semen quality in vitamin D-deficient rats when compared
with control groups. These effects included reductions in
germ cell numbers, sperm count, sperm morphology,
motility and viability. Furthermore, a decrease in
serum testosterone levels was also observed in vitamin
D-deficient rats(61). Duration and severity of the defic-
iency may be an important factor in reproductive func-
tion. Vitamin D deficiency through one spermatogenic
cycle induced a significant increase in sperm DNA frag-
mentation but no significant effect on other semen para-
meters(62). In contrast, prolonged vitamin D deficiency
through two spermatogenic cycles resulted in a modest
but significant decrease in sperm motility. Furthermore,
different degrees of vitamin D deficiency have been
induced in mice, and no effect was observed on sperm
concentration and sperm viability, but sperm morph-
ology was decreased in the severe deficiency group(63).
In another study, DNA fragmentation has also been
shown to increase significantly in spermatozoa of vitamin
D-deficient rats, which could explain the impaired fertil-
ity(64). Combined, these studies indicate that vitamin D is
involved in the regulation of male fertility in rodents,
suggesting a potential link between vitamin D status
and reproductive health.

Human studies

Many of the cross-sectional studies investigating the link
between vitamin D status and testicular function have
been reviewed and discussed before, and the link critic-
ally depends on the fraction of men with low vitamin
D status in the study population(65). Recent years have
seen a surge in human intervention trials with vitamin
D and male fertility outcomes. In this review, we have
evaluated six randomised clinical intervention studies,
with four of them being conducted after 2020. An over-
view of the trials is shown in Table 2. In the first rando-
mised controlled trial from 2014, 86 infertile men with
idiopathic oligoasthenozoospermia were included and

randomised to receive either a 3 month supplementation
of cholecalciferol (5 μg daily) and calcium (600 mg daily),
or placebo(66). This study found a significant increase in
the number of progressive motile sperm and a higher
pregnancy rate in the vitamin D v. placebo-treated
men. These findings are supported by the most recent
randomised clinical trial of 120 men conducted in 2022
on Indian men(67). They found an increased sperm vol-
ume, progressive motility, total motility and sperm
count in men treated with cholecalciferol (100 μg daily
for 10 weeks) when compared with the placebo group.
The study does not report the serum 25OHD levels
before or after treatment, so it is not possible to deter-
mine whether the effect was found in vitamin D insuffi-
cient, deficient or sufficient men.

In 2018, the biggest study to date was conducted and
contradicted these findings(17). In the Copenhagen bone-
gonadal study, 330 Danish infertile men with vitamin D
insufficiency (defined as serum 25OHD <50 nM/l) were
randomised to receive either a high single-dose cholecal-
ciferol supplementation (7 500 μg) followed by daily sup-
plementation of cholecalciferol (35 μg) and calcium
(500mg daily), or placebo. The study showed that sup-
plementation did not affect semen parameters or live
birth rates when comparing the groups. The spontaneous
pregnancy rate tended to be higher in couples in which
the men were treated with vitamin D and calcium com-
pared with couples in which the men were in the placebo
group, but the results were not statistically significant.
However, subgroup analysis of oligospermic men did
demonstrate an increased live birth rate in the treatment
group (36 v. 18%). One criticism of the study is the use of
a high-loading dosage that could lead to high CYP24A1
activity locally in many organs and thus inactivate vita-
min D activity in the gonads. The overall negative
findings of the study are consistent with three other
recent randomised clinical trials conducted on Iranian
men(68–70). One trial with results published in 2020,
investigated the effects of vitamin D supplementation in
sixty-two infertile men with impaired semen quality and
vitamin D insufficiency (defined as serum 25OHD <50
nM/l). The men were randomised to receive either cholecal-
ciferol (1 250 μg once weekly) for 8 weeks, followed by a
maintenance dose (1 250 μg once) lasting the final 4 weeks,
or placebo treatment. The same study design was used by
another Iranian research group from 2021, conducted on
forty-four men with asthenozoospermia(68). Both studies

Table 1. Six studies investigating the relationship between vitamin D deficiency and fertility in rodents

Subgroup Fertility Sperm count Sperm motility Sperm morphology Reference

Naval Medical Research Institute (NMRI) mice* ↓ N.D. ↓ � Shahreza et al.(62)

Sprague Dawley rats N.D. ↓ ↓ ↓ Zamani et al.(61)

Sprague Dawley rats � N.D. ↓ N.D. Merino et al.(64)

Institute of Cancer Research (ICR) mice � ↓ N.D. N.D. Fu et al.(60)

Sprague Dawley rats ↓ N.D. N.D. N.D. Uhland et al.(57)

Sprague Dawley rats ↓ N.D. N.D. N.D. Kwiecinski et al.(56)

N.D., not determined.
Animal models made vitamin D-deficient either by diet, knockout of the vitamin D receptor or the 1α-hydroxylase (Cyp27b1).
*Phenotype reported for prolonged vitamin D-deficient mice; ↓, negatively associated; �, no association.
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used vitamin D-deficient men (defined as serum levels
<75 nM/l) and found no effect of cholecalciferol supple-
mentation on semen parameters. A third Iranian study
published in 2021 evaluated the effects of cholecalciferol
on both endocrine markers and semen parameters in
eighty-six infertile men with asthenozoospermia(69).
Supplementation with 100 μg cholecalciferol daily for
12 weeks had no significant effects on semen volume,
sperm count or sperm morphology compared with the
placebo group. However, they found a positive effect
on total and progressive sperm motility, to some extent
supporting the results found in the Chinese and Indian
study populations.

Overall, most of the interventional human data avail-
able indicate that vitamin D supplementation does not
affect sperm count, volume, morphology or pregnancies.
However, it must be noted that there are some contradic-
tory reports on the presumed effect on total and
progressive sperm motility, but positive data have only
been generated in a few relatively small studies.
Furthermore, with the diverse study populations of the
mentioned studies (co-morbidities, age and BMI), design,
inclusion criteria and baseline vitamin D status, it is hard
to find consensus on the effect. Observational human
studies and case–control studies investigating the associ-
ation between vitamin D status and reproductive func-
tions have also been conducted. These results are
conflicting; however, most studies find that low vitamin
D status is linked to impaired semen quality and fertil-
ity(20,71–76). Therefore, it seems likely that the possible
effect of vitamin D supplementation on semen quality
and male fertility is present under conditions with vita-
min D deficiency or prolonged vitamin D insufficiency.
These data are in line with animal studies showing
impaired fertility and poor semen quality in males with
vitamin D deficiency, which by combining suggest that
vitamin D deficiency should be avoided to secure optimal
reproductive function.

Calcium

Systemic calcium homoeostasis

Serum calcium is maintained within a narrow physio-
logical range to secure normal function of several organs
as multiple cellular processes are influenced by calcium.
Virtually all cells in the body have a 20 000-fold gradient
of calcium ions (Ca2+) from the extracellular to the intra-
cellular environment (about 100 nM/l-Ca2+ intracellu-
larly), making them capable of using Ca2+ as a second
messenger when entry is permitted into the cell by Ca2+

channels(77). The total calcium concentration in serum
is 2⋅20–2⋅55mM/l and the non-protein-bound ionised cal-
cium level is 1⋅18–1⋅32 mM/l although the exact reference
levels vary among laboratories. A large fraction of cal-
cium is protein-bound or in complex with anions such
as citrate, lactate, phosphate or bicarbonate and the
free and active fraction is therefore dependent on pH
and availability of binding partners(78). To maintain
serum calcium within this narrow range several potent
regulators influence systemic calcium homoeostasis by
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modifying intestinal absorption, renal reabsorption and
excretion and release from the skeletal reservoir. The
calcium-sensing receptor (CaSR) in the parathyroid
cells senses the Ca2+ concentration in serum and trans-
duces an intracellular signal that inhibits the production
and release of PTH into the bloodstream(79). PTH binds
primarily to the PTH receptor 1 and mobilises calcium to
the circulation. In bone, PTH mediates calcium release
by promoting bone resorption, and in the kidney, it
increases calcium reabsorption and up-regulates
CYP27B1 activity which ensures high vitamin D activity.
In mice, the CaSR is indispensable as Casr knockout
mice die shortly after birth and suffer from hypercalcae-
mia and hyperparathyroidism(80). In human subjects,
homozygous loss-of-function mutations in CASR cause
neonatal severe hyperparathyroidism, a potentially life-
threatening condition with severe hypercalcaemia, bone
demineralisation and respiratory distress, whereas a het-
erozygous loss-of-function mutation in CASR causes
familial hypocalciuric hypercalcaemia 1(81), which
shows that full compensation by other factors does not
occur.

In the epithelia lining the intestine and kidney, calcium
is transported from the lumen to the blood through the
cell cytoplasm by the transcellular pathway or between
intercellular spaces by the paracellular pathway.
Expression of transcellular calcium transporters in the
kidney and intestine is regulated mainly by 1,25
(OH)2D3

(82). Transcellular calcium transport involves
three steps: first, Ca2+ is transported into the cytosol by
transient receptor potential vanilloid −5 or −6 (TRPV
−5/−6) Ca2+ channels. Secondly, Ca2+ binds intracellu-
larly to calbindin-D9k (or -D28k) to maintain a low intra-
cellular Ca2+ concentration. Thirdly, Ca2+ is removed
from the cytosol by the plasma-membrane calcium
ATPase (PMCA) proteins or the Na+/Ca2+ exchanger
1(83). CaSR is expressed in the thick ascending limb of
Henle in the kidney, and acute inhibition of CaSR
increases the permeability of the paracellular Ca2+ path-
way(84). More recently, it has been shown that CaSR
inhibits the paracellular Ca2+ transport by increasing
the expression of renal claudin-14 responsible for the
inhibition of reabsorption in a PTH-independent man-
ner(85). In addition, PTH directly increases renal Ca2+

reabsorption by inhibiting claudin-14(86).

Calcium balance in the male reproductive tract

Calcium and phosphate concentrations are very different
in the proximal and the distal parts of the epididymis.
The concentration of calcium decreases, whereas the con-
centration of phosphate increases(87). These variations in
calcium and phosphate levels are believed to play a cru-
cial role in sperm maturation and the initiation of sperm
motility and in keeping the sperm quiescent during stor-
age in the distal epididymis. The high calcium concentra-
tion in the seminal fluid may be of great importance as
spermatozoa are transcriptionally silent and heavily
rely on intracellular calcium as a signalling system(88).
A list of observational studies exploring total and ionised
calcium levels in the human seminal fluid/plasma is

summarised in Table 3. Based on the weighted average
of the studies included in Table 3, the concentration of
total calcium in the seminal fluid is about 7⋅48 mM/l,
and the concentration of ionised calcium is about 0⋅23
mM/l. Citrate and phosphate concentrations are also
high in the seminal fluid, ensuring competent buffer sys-
tems and making the ionised calcium concentration
lower than the corresponding serum level(89–93). Studies
exploring the potential impact of the total calcium con-
centration in seminal fluid on sperm parameters are
inconclusive – some suggest it is associated with
increased motility(94,95), another study found an inverse
relationship with sperm morphology(96) and other studies
found no impact on sperm function(97–99). One study
showed that low total calcium content in the seminal
fluid (<5 mM/l) was associated with fewer progressive
and total motile sperm and fewer morphologically nor-
mal sperm compared with men with calcium levels
between 5 and 10 mM/l(19). Regarding studies that inves-
tigated the link between ionised calcium and semen qual-
ity variables, two studies found a positive association
with motility(95,97), one showed a negative association(100)

and one study found no effect(91). The possible link
between total calcium/Ca2+ levels and sperm motility/
morphology/concentration is interesting because these
semen variables are predictors of male fertility potential.
However, the spermatozoa are only briefly exposed to the
seminal fluid before it is mixed with female fluids, which
questions a direct effect of calcium content on the fertility
potential. The total calcium concentration in seminal
fluid is more than 2-fold higher than the level found in
serum, and the levels are not associated
(Fig. 1A)(19,100), hence there must be an active transport
of calcium from serum into the seminal fluid. The cal-
cium concentration in the different epididymal compart-
ments (studies have only been conducted in rodents)
varies largely from low to several-fold higher than the
corresponding serum concentration (Fig. 1B)(101–103).
To maintain this steep gradient the mechanism and pro-
teins underlying calcium homoeostasis must be tightly
regulated. Seminal fluid comprises fluid from the epididy-
mis (about 10 %), prostate (about 20 %) and seminal vesi-
cles (about 70 %), which indicates that the calcium
content in the ejaculate is highly dependent on secretions
occurring after the transit and storage of the spermato-
zoa in the epididymis. At the time of ejaculation, sperm-
atozoa escape the millimolar concentrations of citrate
and phosphate in seminal fluid and encounter about
2⋅2mM/l-total calcium and about 1⋅23 mM/l-Ca2+ in the
follicular fluid in the female reproductive tract(91,104).
This influences sperm function and facilitates sperm cap-
acitation and hyperactivation that help the sperm swim
up in the vicinity of the oocyte.

Gene expression is silenced during spermatogenesis as
histones are replaced by protamines that further con-
dense DNA and prevent transcription within the small
spermatozoa (about 4⋅4 × 2⋅8 μM)(105,106). Protein synthe-
sis and processing are also hampered and therefore,
spermatozoa critically depend on second messenger sys-
tems to transmit extracellular signals, and they mainly
rely on changes in the intracellular calcium concentration
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([Ca2+]i). An increase in [Ca2+]i occurs by opening Ca2+

channels across the cell membrane or from intracellular
stores – constituting a Ca2+ signal. [Ca2+]i regulates cap-
acitation, hyperactivation and the acrosome reaction(107).
Regulation of the [Ca2+]i ensures the activation of sperm-
atozoa at the appropriate time. The importance is

indicated by studies showing that loss-of-function muta-
tions in the gene coding for the main Ca2+ channel in
sperm, CatSper, lead to infertility, and spermatozoa
from men in fertility treatment have lower Ca2+ influx
in response to progesterone compared with spermatozoa
from healthy men(108,109). Studies have shown that men

Table 3. Studies investigating ionised and total calcium levels in human seminal fluid/plasma

Seminal plasma/fluid (mM/l)

Subgroup Conclusions ReferenceIonised calcium Total calcium

0⋅19(SD 0⋅03) 5⋅13(SD 2⋅50) Healthy young men (n 9) CaSR is important for sensing Ca2+ in
spermatozoa

Boisen et al.(104)

Men recruited from a fertility clinic Men with the lowest sperm motility had
significantly lower Ca2+ levels in seminal fluid

Kılıç et al.(97)

0⋅16(SD 0⋅04) 5⋅60(SD 1⋅43) Sperm motility <60% (n 45)
0⋅37(SD 0⋅28) 5⋅48(SD 1⋅37) Sperm motility >60% (n 30)
0⋅18(SD 0⋅01) 3⋅30(SD 0⋅12) Men referred to a fertility clinic Men with the lowest sperm motility had

significantly lower Ca2+ and total calcium levels
in seminal fluid

Prien et al.(95)

0⋅23(SD 0⋅01) 3⋅42(SD 0⋅13) Sperm motility <60% (n 15)
Sperm motility >60% (n 21)

0⋅25(SD 0⋅07) Men referred to an andrology unit
for different reasons (n 27)

No association between ionised calcium
concentrations and motility

Magnus et al.(91)

0⋅24(SD 0⋅02) 11⋅07(SD 0⋅41) Healthy men (n 45) N.A. Ford and
Harrison(90)

0⋅17(SD 0⋅05) 5⋅70(SD 2⋅50) Men referred to a reproductive unit
for different andrological reasons
(n 32–37)

Spermatozoa from semen samples with Ca2+

levels below average had higher motility than
spermatozoa in semen samples with higher
levels. Ca2+ was not correlated with total
calcium

Arver et al.(100)

7⋅8(SD 3⋅90) Subfertile men (n 165) Men with a seminal fluid calcium concentration
between 5 and 10mM had higher sperm motility
compared with men with a calcium
concentration between 1 and 5mM

Boisen et al.(19)

6⋅79(SD 0⋅43) Healthy men (n 24) N.A. Valsa et al.(133)

4⋅86(SD 1⋅93) Normozoospermic (n 30) No difference in the calcium concentrations
between normospermic and azoospermic
semen samples

N’Guessan et al.(93)

5⋅32(SD 1⋅23) Azoospermic (n 30)
9⋅61(SD 3⋅76) Healthy men, 18–55 years old (n

515)
Calcium was positively associated with sperm
concentration

Liang et al.(134)

Men referred to a fertility clinic In the neurologically intact group, seminal
calcium was negatively correlated with sperm
morphology

Salsabili et al.(96)

4⋅55(SD 4⋅28) Spinal cord-injured (n 93)
5⋅39(SD 4⋅94) Neurologically intact (n 145)
11⋅88 Healthy men (n 50) Low calcium was associated with better CASA

parameters (average path velocity, straight-line
velocity and linearity)

Sørensen et al.(94)

6⋅11(SD 29⋅19) Healthy men (n 6) Semen samples from spinal cord injured patients
were obtained by electroejaculation

Hirsch et al.(135)

2⋅35(SD 1⋅65) Spinal cord injured (n 6)
4⋅17(SD 1⋅10) Normozoospermic (n 19) The total calcium concentration does not

discriminate between fertile and infertile patients
Abou-Shakra
et al.(99)5⋅04(SD 1⋅45) Oligozoospermic (n 19)

4⋅47(SD 1⋅25) Severely oligozoospermic (n 17)
4⋅87(SD 1⋅57) Azoospermic (n 19)
6⋅11(SD 1⋅97) Healthy men (n 22) The total calcium concentration does not

discriminate between fertile and infertile patients
Umeyama et al.(98)

6⋅59(SD 3⋅12) Infertile men (n 69)
7⋅50(SD 2⋅00) Men at fertility clinical with normal

semen parameters (n 17)
N.A. Kavanagh(136)

6⋅21(SD 1⋅55) Normozoospermic (n 40) N.A. Adamopoulos and
Deliyiannis(92)7⋅11(SD 0⋅37) Azoospermic (n 12)

Weighted average
0⋅23 7⋅48

CASA, computer-assisted semen analysis; CaSR, calcium-sensing receptor; n, cohort size; N.A., not applicable (the studies did not contain a conclusion on
calcium levels and sperm function).
The ionised calcium and/or total calcium concentration measured in the seminal fluid or seminal plasma. The conclusions drawn by the authors of the papers
regarding the calcium content and semen parameters are mentioned in the third column. All studies are mean(SD) except for Sørensen et al.(94), which is given as
the median. The weighted averages are calculated based on the study sizes.
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with severely impaired semen quality and men who had
unsuccessful fertility treatment have significantly lower
Ca2+ influx upon stimulation with female secreted factors
compared with spermatozoa from healthy men indicating
that these Ca2+ signals are clinically relevant(108,110).

Animal models with ablation of genes related to calcium
homoeostasis in the testes or epididymis

Calcium homoeostasis in the male reproductive tract and
its impact on male fertility has been studied in various
animal models. Table 4 presents rodent models where a
gene ablation has led to changes in local calcium hom-
oeostasis in the testes or epididymis. The Cyp27b1−/−

mice exhibit hypocalcaemia, decreased sperm count
and motility resulting in impaired fertility. Cyp27b1−/−

mice also have lower expression of calcium transport pro-
teins including CaSR, CaV3⋅1 and TRPV5 in testes com-
pared with wild-type mice(63). Interestingly, a rescue diet
(containing high calcium, phosphate and lactose) rees-
tablished both the fertility and the expression of CaSR,
CaV3⋅1 and TRPV5 in the testes of Cyp27b1−/−

mice(63). A study in Vdr−/− mice also found reduced
Casr expression in the testes compared with wild-type
mice(19), which is in accordance with the role of VDR
as a regulator of calcium transporters in various organs.
Previous studies have shown CaSR expression in the tes-
tes and spermatozoa from different species(63,111–117), and
a proteomic study in bulls showed that the CaSR was the
most differentially expressed protein when comparing

good v. bad quality spermatozoa(118). Moreover, treat-
ment with different CaSR agonists increased sperm
motility in rodents(111). However, a germ cell-specific
Casr knockdown model in male mice had no major
reproductive phenotype compared with tamoxifen-
treated controls irrespectively of the timing of Casr
knockdown as conducted both pre- and post-pubertally
(70 and 84 % reduction, respectively)(19), which questions
the importance of CaSR in spermatozoa, at least in mice.
In a recent paper investigating CaSR function in human
sperm, three patients with loss-of-function mutations in
CASR, and one patient with a gain-of-function mutation
were included. Spermatozoa from all patients had aber-
rant Ca2+ signalling. Moreover, two of the patients
with loss-of-function mutations in CASR had either
low sperm motility and few morphologically normal
spermatozoa, or calcifications in the efferent ducts(104).

Myotubularin-related protein 14 (MTMR14) is a
phosphoinositide phosphatase and knockout of the
gene results in impaired male fertility. In the Mtmr14−/

− mice, the mRNA expression of the calcium channels
inositol 1,4,5-trisphosphate receptor type 1 and 2 (Itpr
−1/−2), and ryanodine receptor 3 (Ryr3) was decreased
and [Ca2+]i in spermatozoa derived from epididymis was
lower compared with spermatozoa from wild-type
mice(119). Additionally, Tmem203-deficient male mice
are sterile and exhibit a profound defect in spermatogen-
esis. mRNA expression profiling revealed down-
regulation of the calcium channels Trpv6 and transient
receptor potential cation channel subfamily M members

Fig. 1. Calcium and vitamin D in the male reproductive tract. (A) Seminal fluid concentration relative to
serum concentration of calcium, 25-hydroxyvitamin D (25OHD), 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)
and 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) in men. Dotted lines represent the detection limit in seminal
fluid, solid lines represent the constant concentration in seminal fluid and grey solid lines represent the
undetectable levels in seminal fluid. The figure is based on data presented in(19,138). (B) The concentration
of calcium and vitamin D in the intraluminal fluid of rodent epididymis relative to the serum concentration.
In caput, the 25OHD concentration is 15× lower and 11× lower in cauda compared with serum levels. The
calcium concentration is 2× higher in caput and 4× lower in cauda. The figure is based on data presented
in(76,101,102).
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5 and 8 (Trpm −5/−8), and an increase in Pmca1 and
intracellular ion channel inositol 1,4,5-triphosphate
receptor (Ip3r1) in testes. Testicular cells from
Tmem203 mice also exhibited altered calcium mobilisa-
tion(120). Signal peptide peptidase-like 2C (Sppl2c) defic-
iency in male mice leads to dysregulation of the calcium
pump sarcoendoplasmic reticulum calcium ATPase
(SERCA2) involved in intracellular Ca2+ handling in
male germ cells. The disturbed calcium homoeostasis
resulted in impaired motility of spermatozoa but pre-
served fertility(121). Efflux of intracellular Ca2+ can be
mediated by the PMCA pump, which is essential for
spermatozoa as Pmca4−/− mice are infertile due to Ca2
+ overload and inability of spermatozoa to undergo
capacitation(122,123).

The epididymis requires active calcium transport to
maintain the calcium concentration gradient (Fig. 1B),
which is necessary to ensure normal sperm function. In
cauda epididymis in global Trpv6 knockout mice a
10-fold higher calcium concentration impaired sperm
motility(124). Ma et al.(125) found an excessive calcium
accumulation in the epididymis of vitamin K2-deficiency
rats due to dysregulation of γ-glutamyl carboxylase
(GGCX) and matrix gla protein (MGP). The vitamin
K2-deficiency rats had lower sperm count and sperm
motility. In agreement with the results in rats, the study
also identified an SNP mutation in GGCX in an infertile
man with asthenozoospermia, indicating that the influence

of GGCX and MGP on fertility is conserved between
species.

Human relevance of calcium in male fertility

The link between calcium, vitamin D, bone and gonadal
function(126–129) complicates interpretations of human
and animal studies as many of the effects of calcium
may be indirect. In most human studies on vitamin D
and male fertility, potential calcium-mediated effects
have been neglected. In a study of infertile men, serum
Ca2+ levels were negatively associated with sperm motil-
ity indicating that Ca2+ may influence semen quality in
infertile men(10). This association suggests that systemic
regulators of calcium homoeostasis may also influence
local calcium transport in the male reproductive
tract, as calcium levels in serum and calcium levels in
the epididymis and seminal fluid are not associated
(Fig. 1A).

Significant interspecies differences exist in fertility and
sperm function. Hence, extrapolating results from mice
to human subjects in the fertility field is problematic
and should be performed with caution(130). Depending
on the species, fertilisation occurs under entirely different
aqueous conditions with different calcium and vitamin D
levels, which remains to be thoroughly studied in vivo.
Most data have been generated by in vitro studies and the
true levels of calcium surrounding the spermatozoa as it

Table 4. Mouse knockout models that impact local calcium homoeostasis in the male reproductive tract

Approach Subgroup Fertility
Sperm
count

Sperm
motility

Sperm
morphology

Impact on local calcium
homoeostasis Reference

Vdr KO Black Swiss N.D. N.D. N.D. N.D. Lower Casr expression in testes Boisen et al.(19)

Cyp27b1 KO BALB/c ↓ ↓ ↓ ↓ Low expression of CaSR, CaV3⋅1 and
TRPV5 in testes. Rescued by
calcium-containing diet

Sun et al.(63)

Mtmr14 KO C57BL/6 ↓ ↓ ↓ ↓ Decreased expression of the calcium
channels Itpr1, Itpr2 and Ryr3 in
spermatozoa. Spermatozoa had
lower [Ca2+]i

Wen et al.(119)

Tmem203 KO C57BL/6J ↓ ↓ N.A. ↓ Trpv6, Trpm5 and Trpm8 were
down-regulated in testes. Pmca1
and Ip3r1were up-regulated. Altered
calcium entry kinetics in testicular
cells

Shambharkar
et al.(120)

Sppl2c KO C57BL/6N � N.D. ↓ � SPPL2c cleaves phospholamban,
which interacts with SERCA2
thereby regulating intracellular
calcium concentration in germ cells

Niemeyer
et al.(121)

Trpv6 KO Mixed (129/C57BL) ↓ ↓* ↓ N.D. Calcium level in cauda epididymis
was 10-fold higher resulting in low
sperm motility

Weissgerber
et al.(124)

Pmca4 KO Mixed (129/black
Swiss)

↓ N.D. ↓ � PMCA4 is important in the regulation
of basal calcium levels and calcium
clearance in sperm

Schuh et al.(137)

CaSR, calcium-sensing receptor; Ip3r1, intracellular ion channel inositol 1,4,5-triphosphate receptor 1; Itpr1/2, inositol 1,4,5-trisphosphate receptor type 1/2; KO,
knockout; Mtmr14, myotubularin related protein 14; N.A., not applicable; N.D., not determined; Pmca1/4, plasma membrane Ca2+ ATPase 1/4; Ryr, ryanodine
receptor; SERCA2, sarcoplasmic/endoplasmic reticulum Ca2+-ATPase; Sppl2c, signal peptide peptidase-like 2C; Trpm5/8, transient receptor potential cation
channel subfamily M 5/8; Trpv5/6, transient receptor potential vanilloid sub-type 5/6; Vdr, vitamin D receptor.
↓, negatively associated; �, no association; *the low caudal sperm count after swim-out may be explained by impaired motility rather than impaired sperm
production or storage.
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moves through the female reproductive tract to the oocyte
and in the moment of fertilisation are largely unknown.

Conclusions and perspectives

In conclusion, vitamin D and calcium are implicated in
various facets of male fertility. Preliminary findings
from intervention studies suggest that vitamin D supple-
mentation may be beneficial for men with low vitamin D
status, especially those with a serum 25OHD level below
25 nM/l. However, further investigation through larger
clinical studies is required to enhance our understanding
and address whether vitamin D supplementation can
improve semen quality mostly in men with insufficient
vitamin D levels. It seems that many of the observed
effects of vitamin D are mediated indirectly through
changes in local levels of factors such as calcium or phos-
phate, not only in the testes but also in epididymis, pros-
tate and seminal vesicles. The crucial role of calcium in
male reproductive function extends beyond sperm motil-
ity and fertilisation, as calcium signalling is involved in
various processes, such as spermatogenesis, sperm matur-
ation, capacitation, acrosome reaction and imbalances in
calcium levels may disrupt these events and impair fertil-
ity. The exact mechanisms underlying the impact of cal-
cium on male reproduction are not fully understood,
although studies have suggested that maintaining opti-
mal calcium homoeostasis is essential for overall repro-
ductive health.

More research on the specific role of vitamin D and
other regulators of local calcium and phosphate signal-
ling in the male reproductive organs is warranted.
Recently, we identified the receptor activator of NFκB
ligand as a novel regulator of the production and matur-
ation of spermatozoa(128). Inhibition of receptor activator
of NFκB ligand increased sperm motility and sperm
count in a subgroup of men with preserved Sertoli cell
capacity, and identification of predictive biomarkers for
positive treatment outcomes is crucial and requires fur-
ther investigation. Moreover, it is crucial to shift focus
towards investigating more definitive outcomes such as
conception rates and live births. Currently, there is a con-
cerning lack of evidence-based treatments available for
men with idiopathic infertility, despite the high preva-
lence of male infertility(7,131). Rather than tailoring treat-
ments to the specific causes of infertility(17,24,129,132), most
infertile couples are commonly subjected to inseminations
or assisted reproductive techniques. Assisted reproductive
techniques have demonstrated high success rates, but
they come with substantial financial costs and impose a
significant burden on the female partner. The invasive pro-
cedures and prolonged hormonal treatments often lasting
several months contribute to the treatment burden faced
by women undergoing assisted reproductive techniques.
In this regard, supplementation of vitamin D presents a
promising avenue for improving semen quality in certain
cases of idiopathic male infertility and supports screening
of vitamin D and mineral status in cases of idiopathic
male infertility. It offers a safe and non-invasive treatment
option that could potentially benefit some infertile couples.

Moreover, the devastating effect of vitamin D deficiency
on semen quality in animal models and human subjects
indicates that society should continue to focus on prevent-
ing people from having vitamin D deficiency.
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