ON DECOMPOSABILITY OF COMPACT PERTURBATIONS OF NORMAL OPERATORS

M. RADJABALIPOUR AND H. RADJAVI

The main purpose of this paper is to show that a bounded Hilbert-space operator whose imaginary part is in the Schatten class $C_{p}(1 \leqq p<\infty)$ is strongly decomposable. This answers affirmatively a question raised by Colojoara and Foias [6, Section 5(e), p. 218].

In case $0 \leqq T^{*}-T \in C_{1}$, it was shown by B. Sz.-Nagy and C. Foias [2, p. 442; 25, p. 337] that T has many properties analogous to those of a decomposable operator and by A. Jafarian [11] that T is strongly decomposable. The authors of $[\mathbf{1 1}]$ and $[\mathbf{2 4}]$ employ the properties of the characteristic function of the contraction operator obtained from the Cayley transform of T; their method is not applicable to the general case where $T^{*}-T$ is merely an operator of class $C_{p}(1 \leqq p<\infty)$.

The techniques of the present paper are mainly inspired from the results of $[12 ; 13 ; 17 ; 20]$. We state our results in a rather more general context. All we need is that the operators under consideration satisfy the following conditions.

Condition (I). Let J be a C^{2} Jordan curve. A Hilbert-space operator T is said to satisfy Condition (I) if
(a) it is the sum of a normal operator with spectrum on J and an operator of the Schatten class $C_{p}(1 \leqq p<\infty)$, and
(b) $\sigma(T)$ does not fill the interior of J.
(The class C_{p} is the ideal of compact operators T such that $\sum\left(\mu_{n}\right)^{p}<\infty$ where μ_{1}, μ_{2}, \ldots are the eigenvalues of $\left(T^{*} T\right)^{1 / 2}$ arranged in decreasing order and repeated according to multiplicity for $1 \leqq p<\infty ; C_{\infty}$ is the ideal of all compact operators.)

Condition (II). We say T satisfies Condition (II) if $T \mid M$ and $\left(T^{*} \mid M^{\perp}\right)^{*}$ satisfy Condition (I) for all (trivial or non-trivial) hyperinvariant subspaces M of T.

We conjecture that Conditions (I) and (II) are equivalent; Lemma 3 below proves this equivalence in some special cases.

1. Main results. We begin with some lemmas.

Lemma 1. If T satisfies Condition (I) then $\sigma(T) \backslash J$ consists of isolated points of $\sigma(T)$. Moreover if $\lambda \in \sigma(T) \backslash J$ and C is a sufficiently small circle around λ,

[^0]
then the projection

$$
E(\lambda)=(2 \pi i)^{-1} \int_{C}(z-T)^{-1} d z
$$

has a finite dimensional range.
Proof. Let $T=A+B$ where A is a normal operator, $\sigma(A) \subseteq J$, and $B \in C_{p}$. Since $(T-z)^{-1}=\left[I+(A-z)^{-1} B\right]^{-1}(A-z)^{-1}$, the first assertion follows from $\left[7\right.$, Lemma VII. 6.13, p. 592]. Since $\left[I+(A-z)^{-1} B\right]^{-1}=$ $I-(A-z)^{-1} B\left[I+(A-z)^{-1} B\right]^{-1}$, we have

$$
E(\lambda)=(2 \pi i)^{-1} \int_{C}(A-z)^{-1} B\left[I+(A-z)^{-1} B\right]^{-1}(A-z)^{-1} d z
$$

where C is a circle excluding λ from $\sigma(T) \backslash\{\lambda\}$. Thus $E(\lambda)$ is compact and hence has a finite dimensional range.

Remark 1. If T satisfies Condition (I) then $\sigma(T)$ is nowhere dense and thus T has the single valued extension property [9, Lemma XVI. 5.1, p. 2149]. (An operator T on a Banach space X is said to have the single valued extension property if there exists no non-zero X-valued analytic function f such that $(z-T) f(z) \equiv 0$.)

Remark 2. Lemma 1 remains true if p is replaced by ∞.
Lemma 2. Let A be a normal operator whose spectrum is a proper subset of a C ${ }^{2}$ Jordan curve J and let B be an operator of the Schatten class $C_{p}(1 \leqq p<\infty)$. Then $T=A+B$ satisfies Condition (I).

Proof. Since $\sigma(T)$ is bounded, there exists a Jordan curve J_{1} such that $\sigma(A) \subseteq J_{1}$ and $\sigma(T)$ does not fill the interior of J_{1}. Thus $\sigma(T) \backslash J_{1}$ is countable and hence $\sigma(T)$ does not fill the interior of J. (See the proof of Lemma 1.)

Lemma 3. (a) If $T^{*}-T \in C_{p}(1 \leqq p<\infty)$ then T satisfies Condition (II).
(b) If $T^{*} T-I \in C_{p}(1 \leqq p<\infty)$ and $\sigma(T)$ does not fill the unit disc then T satisfies Condition (II).

Proof. The proof of (a) follows from Lemma 2 and the fact that the property $S^{*}-S \in C_{p}$ is inherited by the restrictions of S to arbitrary invariant subspaces. For part (b) assume $T^{*} T-I \in C_{p}(1 \leqq p<\infty)$ and $\sigma(T)$ does not fill the unit disc. Since the image of T in the Calkin algebra is unitary, it follows that $\lambda-T$ is a Fredholm operator for $|\lambda| \neq 1$. Let $g(\lambda)=$ index $(\lambda-T)=\operatorname{dim} N(\lambda-T)-\operatorname{dim} R(\lambda-T)^{\perp}$ for $|\lambda| \neq 1$. Since g is an integer-valued continuous function of λ and $g(\lambda)=0$ for $\lambda \in \rho(T), g(\lambda)=0$ for $|\lambda| \neq 1$. In particular $\operatorname{dim} N(T)=\operatorname{dim} R(T)^{\perp}<\infty$. Let $T=U\left(T^{*} T\right)^{1 / 2}$ where U can be chosen to be a unitary operator, because $\operatorname{dim} N\left(\left(T^{*} T\right)^{1 / 2}\right)=$ $\operatorname{dim} N(T)=\operatorname{dim} R(T)^{\perp}$. Now the relation $\left(T^{*} T\right)^{1 / 2}-I=\left(T^{*} T-I\right)$ $\left[\left(T^{*} T\right)^{1 / 2}+I\right]^{-1}$ implies that $\left(T^{*} T\right)^{1 / 2}-I \in C_{p}$. Thus T (and consequently
T^{*}) satisfies Condition (I) with $J=$ unit circle. It follows that $T T^{*}-I \in C_{p}$; and since the condition $S^{*} S-I \in C_{p}$ is inherited by the restrictions of S to arbitrary invariant subspaces, we conclude that T satisfies Condition (II). (For the material related to index theory we refer the reader to [4, p. 70-71] and the references cited there.)

Notations. Let F be a closed subset of the plane and let T be a (bounded linear) operator defined on a Hilbert space H. We will fix the following notations throughout the paper.
(1) $N_{T}(F)=$ Span $\left\{x \in H:(T-\lambda)^{n} x=0\right.$ for some $\lambda \in F$ and some positive integer $n\}$.
(2) $\sigma_{T}(x)=\mathbf{C} \backslash \rho_{T}(x)=\mathbf{C} \backslash \bigcup\{G \subseteq \mathbf{C}: G$ is open and there exists an analytic function $f: G \rightarrow H$ such that $(z-T) f(z) \equiv x\}$ where $x \in H$ and T has the single valued extension property.
(3) $X_{T}(F)=\left\{x \in H: \sigma_{T}(x) \subseteq F\right\}$.
(4) $\bar{G}=G^{-}=$the closure of a set $G \subseteq \mathbf{C}$.
(5) For two subspaces M and N of H we write $H=M \oplus N$ if for each $x \in H$ there exists a unique pair $\left(x_{1}, x_{2}\right) \in M \times N$ such that $x=x_{1}+x_{2}$.

Definition. A subspace M is called a spectral maximal subspace of an operator T if
(a) M is an invariant subspace of T, and
(b) $N \subseteq M$ for all invariant subspaces N of T such that $\sigma(T \mid N) \subseteq \sigma(T \mid M)$.

It is shown in [6, Theorem 3.8, p. 23] that if T has the single valued extension property and $X_{T}(F)$ is closed, then $X_{T}(F)$ is a spectral maximal subspace of T and $\sigma\left(T \mid X_{T}(F)\right) \subseteq F \cap \sigma(T)$. Moreover every spectral maximal subspace of T is also a hyperinvariant subspace of T [6 , Theorem 3.2, p. 18].

Lemma 4. If T satisfies Condition (I), then $\sigma(V) \cap F \subseteq J$ where V is the operator induced on $H / N_{T}(F)\left(=N_{T}(F)^{\perp}\right)$ by T.

Proof. Since $N_{T}(F)$ is a hyperinvariant subspace of T, it follows from [1, Lemma I.3.1] that $\sigma(V) \subseteq \sigma(T)$. Let $\lambda \in(F \cap \sigma(T)) \backslash J$. Since $N_{T}(F)$ includes the range of the projection $E(\lambda)$ of Lemma 1, we have

$$
\int_{C}(z-V)^{-1} d z=0
$$

Thus $\lambda \notin \sigma(V)$ and hence $\sigma(V) \cap F \subseteq J$.
Lemma 5. Let T satisfy Condition (I). Let J_{1} be a (non-trivial) closed subarc of J such that $J_{1} \cap(\sigma(T) \backslash J)^{-}=\emptyset$. Then

$$
M_{1}=X_{T}\left(J_{1}\right) \text { and } M_{2}=X_{T}\left(\left[\sigma(T) \backslash J_{1}\right]^{-}\right)
$$

are closed and
(a) $\sigma\left(T \mid M_{1}\right) \cup E=\left(\sigma(T) \cap J_{1}\right) \cup E$,
(b) $\sigma\left(T \mid M_{2}\right) \cup E=\left(\sigma(T) \backslash J_{1}\right) \cup E$,
(c) $\sigma(V) \subseteq\left[\sigma(T) \backslash J_{1}\right]^{-}$,
where E is the set of endpoints of J_{1} and V is the operator induced on H / M_{1} by T.
Proof. Let J_{2} be an open subarc of J containing J_{1} such that $J_{2} \cap(\sigma(T) \backslash J)^{-}$ $=\emptyset$. It follows from [19, Lemma 6.11, p. 104] that for each point $a \in J_{2}$ and each closed bounded line segment L with a as endpoint which is not tangent to J and satisfies $L \cap J=\{a\}$, there is a constant M such that
(*) $^{*} \quad\left\|(z-T)^{-1}\right\| \leqq \exp \left\{M|z-a|^{-q}\right\} \quad$ for $z \in L \backslash\{a\}$,
where q is a positive constant independent of a.
We shall show that M_{2} is closed; the proof for M_{1} is similar. Let x_{n} be an arbitrary Cauchy sequence in M_{2} converging to x. Let f_{n} be the analytic function such that $(z-T) f_{n}(z)=x_{n}$ for $z \nexists\left(\sigma(T) \backslash J_{1}\right)^{-}$. Let a and b be two points on J_{1} both distinct from its endpoints, and let $J_{a b}$ denote the open subarc of J_{1} with endpoints a and b. Let D be a Jordan domain with the following properties: (i) D contains $J_{a b}$ and $\bar{D} \cap \sigma(T) \subseteq \bar{J}_{a b}$, and (ii) in a neighbourhood of a (respectively b) the boundary of D consists of two line segments starting from a (respectively b) and making positive angles less than $\pi / 2 q$ with the tangent to J at a (respectively b) which points toward b (respectively $a)$.

By [23, Example 2] or [$\mathbf{1 9}$, proof of Theorem 6.3, p. 97$]$ there exists a function g analytic in D and continuous on \bar{D} such that

$$
\sup \left\{\left\|g(z)(z-T)^{-1}\right\|: z \in \partial D \backslash\{a, b\}\right\}<\infty
$$

and $g(z) \neq 0$ for all $z \in D$. (See also the proofs of $[\mathbf{1 7}$, Lemma 3 and Corollary 3] in this direction.) Let $h_{n}(z)=(z-a)(z-b) g(z) f_{n}(z), z \in D$. By a proof similar to the proof of $[8$, Lemma XVI. 5.4, p. 2151] we can show that $h(z)=$ $\lim _{n}(z-a)(z-b) g(z) f_{n}(z)$ is analytic in D and $(z-T)\{(z-a)(z-b) g(z)\}^{-1}$ $h(z)=x, z \in D$. This shows that $\sigma_{T}(x) \subseteq \mathbf{C} \backslash J_{a b}$. Letting $J_{a b}$ converge to J_{1} we deduce that $\sigma_{T}(x) \subseteq \mathbf{C} \backslash J_{1}$. Thus M_{2} is closed and hence $\sigma\left(T \mid M_{2}\right) \subseteq$ $\left[\sigma(T) \backslash J_{1}\right]^{-}$. Now let a and b be the endpoints of J_{1} and let g, D be as described
above. Since $g(z) \neq 0$ for all $z \in D$, it follows from [18, Remark on Theorem 1] that $\left(\sigma(T) \cap J_{1}\right) \cup E=(\sigma(T) \cap D) \cup E \subseteq \sigma\left(T \mid M_{1}\right) \cup E$. Thus $\sigma\left(T \mid M_{1}\right) \cup$ $E=\left(\sigma(T) \cap J_{1}\right) \cup E$ which completes the proof of (a). A similar argument finishes the proof of (b).

For (c) let $S=T \mid M_{1}$ and let

$$
T=\left[\begin{array}{ll}
S & R \\
0 & V
\end{array}\right] \begin{aligned}
& M_{1} \\
& M_{1} \\
& \hline
\end{aligned}
$$

Since M_{1} is a hyperinvariant subspace of $T, \sigma(V) \subseteq \sigma(T)$. Thus $\left\|(z-V)^{-1}\right\| \leq$ $\left\|(z-T)^{-1}\right\|$ for $z \in \rho(T)$ and hence $\left\|(z-V)^{-1}\right\|$ also satisfies the above growth condition $\left(^{*}\right)$ at all points $a \in J_{2}$.

Therefore $X_{V}\left(J_{1}\right)$ is closed and $\sigma\left(V \mid X_{V}\left(J_{1}\right)\right) \cup E=\left(\sigma(V) \cap J_{1}\right) \cup E$. Let $W=T \mid M_{1} \oplus X_{V}\left(J_{1}\right)$. Since $\sigma(W) \subseteq J_{1}$ and M_{1} is a spectral maximal subspace of T, we have $X_{V}\left(J_{1}\right)=\{0\}$ and thus $\sigma(V) \cap J_{1} \subseteq E$. This proves (c) and with it the lemma.

Corollary 1. Lemma 5 remains true if J_{1} is the disjoint union of a finite number of (non-trivial) closed subarcs of J.

Proof. The proof of (a) and (b) follows from the fact that J_{1} and $\left(J \backslash J_{1}\right)^{-}$are the intersection of a finite number of closed subarcs of J together with the Riesz decomposition theorem; the proof of (c) is exactly the same as in Lemma 5.

Lemma 6. If T satisfies Condition (II) then $\sigma\left(T \mid N_{T}(F)\right)=L$ where $L=$ $\left\{\lambda \in F:(T-\lambda)^{n} x=0\right.$ for some $x \neq 0$ and some positive integer $\left.n\right\}$-.

Proof. The inclusion $L \subseteq \sigma\left(T \mid N_{T}(F)\right)$ is obvious. Also if $\lambda \notin L \cup J$ it follows from the Riesz decomposition theorem and Lemma 1 that $H=E(\lambda) H$ $\oplus[I-E(\lambda)] H, \lambda \notin \sigma(T \mid[I-E(\lambda)] H)$, and $N_{T}(F) \subseteq[I-E(\lambda)] H$. Since $\sigma\left(T \mid N_{T}(F)\right) \subseteq \sigma(T)$ is nowhere dense, we have $\lambda \notin \sigma\left(T \mid N_{T}(F)\right)$ and thus $\sigma\left(T \mid N_{T}(F)\right)=L \cup \Delta$, where Δ is a subset of J. Let $S=T \mid N_{T}(F)$. Since $N_{T}(F)$ is a hyperinvariant subspace of T, S satisfies Condition (I). Let J_{1} be an arbitrary closed subarc of J in the complement of L. In view of Lemma 5 , $X_{S}\left(J_{1}\right)$ and $X_{S}\left(\left[\sigma(S) \backslash J_{1}\right]^{-}\right)$are closed. Since $N_{T}(F)=N_{S}(F) \subseteq$ $X_{S}\left(\left[\sigma(S) \backslash J_{1}\right]^{-}\right)$, it follows again from Lemma 5 that $\sigma(S) \subseteq\left[\sigma(S) \backslash J_{1}\right]^{-}$. Thus $\sigma(S) \cap J_{1}$ is a subset of the endpoints of J_{1}. This shows that $\Delta \subseteq L$ which completes the proof of the lemma.

Lemma 7. Let T satisfy Condition (II). Let G be an open subset of the plane such that $J \cap \partial G$ is a finite set. Then $X_{T}(\bar{G})$ is closed and $\sigma(V) \subseteq(\sigma(T) \backslash \bar{G})^{-}$ where V is the operator induced on $H / X_{T}(\bar{G})$ by T.

Proof. The case $\bar{G} \cap J=\emptyset$ follows from the Riesz decomposition theorem and Lemma 4. Assume $\bar{G} \cap J \neq \emptyset$. Let G_{n} be a decreasing sequence of open sets converging to \bar{G} such that $\bar{G}_{n} \cap J$ is the disjoint union of a finite number
of closed arcs, and $G_{n} \supseteq \bar{G}_{n+1}$. Let $S_{n}=T \mid N_{T}\left(\bar{G}_{n}\right)$ and let

$$
T=\left[\begin{array}{cc}
S_{n} & R_{n} \\
0 & V_{n}
\end{array}\right] \begin{aligned}
& N_{T}\left(\bar{G}_{n}\right) \\
& N_{T}\left(\bar{G}_{n}\right)^{\perp} .
\end{aligned}
$$

The operator V_{n} satisfies Condition (I) and, by Lemma 4, $\sigma\left(V_{n}\right) \cap \bar{G}_{n} \subseteq J$. Thus, by Corollary $1, X_{V_{n}}\left(\bar{G}_{n+1}\right)$ is closed and $\sigma\left(V_{n} \mid X_{V_{n}}\left(\bar{G}_{n+1}\right)\right) \subseteq \bar{G}_{n+1}$. We claim that $X_{T}(\bar{G})=\cap H_{n}$, where $H_{n}=N_{T}\left(\bar{G}_{n}\right) \oplus X_{V_{n}}\left(\bar{G}_{n+1}\right)(n=1,2, \ldots)$. Let $x \in X_{T}(\bar{G})$. For each n let

$$
T=\left[\begin{array}{ccc}
S_{n} & R_{1 n} & R_{2 n} \\
0 & V_{1 n} & V_{2 n} \\
0 & 0 & V_{3 n}
\end{array}\right] \begin{aligned}
& N_{T}\left(\bar{G}_{n}\right) \\
& X_{V_{n}}\left(\bar{G}_{n+1}\right) . \\
& H_{n}{ }^{\perp}
\end{aligned}
$$

Let y_{n} be the orthogonal projection of x on H_{n}^{\perp}. Obviously $\left(\lambda-V_{3 n}\right)^{-1} y_{n}$ has an analytic extension to $\mathbf{C} \backslash \bar{G}$. But Corollary 1 implies that $\sigma\left(V_{3 n}\right) \subseteq \mathbf{C} \backslash G_{n+1}$. Therefore $\left(\lambda-V_{3 n}\right)^{-1} y_{n}$ has an analytic extension everywhere. Since $V_{3 n}$ has the single valued extension property, it follows that $y_{n}=0$ and thus $x \in H_{n}$ for all n. Hence $X_{T}(\bar{G}) \subseteq \cap H_{n}$. Conversely if $x \in \cap H_{n}$ and $W_{n}=T \mid H_{n}$, then $(\lambda-T)^{-1} x$ has an analytic extension $\left(\lambda-W_{n}\right)^{-1} x$ to $\mathbf{C} \backslash \bar{G}_{n}$ and thus $x \in X_{T}\left(\bar{G}_{n}\right)$ for all n.
$\left(\right.$ By Lemma 5, $\left.\sigma\left(W_{n}\right)=\sigma\left(T \mid N_{T}\left(\bar{G}_{n}\right)\right) \cup \sigma\left(V_{n} \mid X_{V_{n}}\left(\bar{G}_{n+1}\right)\right) \subseteq \bar{G}_{n}.\right)$
Hence $x \in \cap X_{T}\left(\bar{G}_{n}\right)=X_{T}(\bar{G})$ which proves the equality of $X_{T}(\bar{G})$ and $\cap H_{n}$. This shows that $X_{T}(\bar{G})$ is closed.

Now let g_{n} be an increasing sequence of open sets converging to G such that $\bar{g}_{n} \cap J$ is the disjoint union of a finite number of closed arcs, and $\bar{g}_{n} \subseteq g_{n+1}$. Let $s_{n}=T \mid N_{T}\left(\bar{g}_{n+1}\right)$ and let

$$
T=\left[\begin{array}{cc}
s_{n} & r_{n} \\
0 & v_{n}
\end{array}\right] \begin{aligned}
& N_{T}\left(\bar{g}_{n+1}\right) \\
& N_{T}\left(\bar{g}_{n+1}\right)^{\perp} .
\end{aligned}
$$

Here again $\sigma\left(v_{n}\right) \cap \bar{g}_{n+1} \subseteq J$ and v_{n} satisfies Condition (I). Thus, by Corollary 1, $X_{v_{n}}\left(\bar{g}_{n}\right)$ is closed and $\sigma\left(v_{n} \mid X_{v_{n}}\left(\bar{g}_{n}\right)\right) \subseteq \bar{g}_{n}$. Hence, by Lemma $6, X_{T}(\bar{G}) \supseteq$ $N_{T}\left(\bar{g}_{n+1}\right) \oplus X_{v_{n}}\left(\bar{g}_{n}\right)=K_{n}$, say. Let L_{n} be the orthogonal complement of K_{n} in $X_{T}(\bar{G})$ and let

$$
v_{n}=\left[\begin{array}{ccc}
v_{1 n} & v_{2 n} & v_{3 n} \\
0 & v_{4 n} & v_{5 n} \\
0 & 0 & V
\end{array}\right] \begin{aligned}
& X_{v_{n}}\left(\bar{g}_{n}\right) \\
& L_{n} \\
& X_{T}(\bar{G})^{\perp} .
\end{aligned}
$$

By Corollary 1, the spectrum of the operator

$$
\left[\begin{array}{cc}
v_{4 n} & v_{5 n} \\
0 & V
\end{array}\right] \begin{aligned}
& L_{n} \\
& X_{T}(\bar{G})^{\perp}
\end{aligned}
$$

is a subset of $\left(\sigma\left(v_{n}\right) \backslash \bar{g}_{n}\right)^{-}$. Since $\left(\sigma\left(v_{n}\right) \backslash \bar{g}_{n}\right)^{-}$encloses no holes, it follows that $\sigma(V) \subseteq\left(\sigma\left(v_{n}\right) \backslash \bar{g}_{n}\right)-$ for all n and thus $\sigma(V) \subseteq \sigma(T) \backslash G$. Finally, if possible, let $\lambda \in \sigma(V)$ and $\lambda \notin(\sigma(T) \backslash \bar{G})^{-}$. Since $J \cap \partial G$ is a finite set, it follows that
$\sigma(V)$ has an isolated point on ∂G which is impossible (because by applying the Riesz decomposition theorem to V we can find an invariant subspace M of T such that $M \supseteq X_{T}(\bar{G}), M \neq X_{T}(\bar{G})$, and $\left.\sigma(T \mid M) \subseteq \bar{G}\right)$.

Lemma 8. Let T satisfy Condition (II). Let $D_{1}, D_{2}, \ldots, D_{n}$ be n open discs such that ∂D_{i} is not tangent to $\partial D_{j},\left(\partial D_{i}\right) \cap\left(\partial D_{j}\right) \cap J=\emptyset$ for all $i \neq j$, and $\left(\partial D_{i}\right) \cap J$ is a finite set for all i. Then

$$
X_{T}\left(\bar{D}_{1} \cup \bar{D}_{2} \cup \ldots \cup \bar{D}_{n}\right)=X_{T}\left(\bar{D}_{1}\right)+X_{T}\left(\bar{D}_{2}\right)+\ldots+X_{T}\left(\bar{D}_{n}\right)
$$

Proof. We proceed by induction on n. The proof for $n=1$ is trivial. Assume the lemma is true for $n=k$, we show that it is also true for $n=k+1$. Since $D_{1} \cup D_{2} \cup \ldots \cup D_{k}$ and $D_{1} \cup D_{2} \cup \ldots \cup D_{k+1}$ satisfy the conditions of Lemma 7, the manifold $H_{i}=X_{T}\left(\bar{D}_{1} \cup \ldots \cup \bar{D}_{i}\right)$ is closed and $\sigma\left(T \mid H_{i}\right) \subseteq$ $\bar{D}_{1} \cup \ldots \cup \bar{D}_{i}(i=1,2, \ldots, k+1)$. Also since $T \mid H_{k+1}$ satisfies Condition (I) and $D_{k+1} \cap\left(D_{1} \cup \ldots \cup D_{k}\right)$ satisfies the conditions of Lemma 7, it follows that the manifold $K=X_{T}\left(\bar{D}_{k+1} \cap\left[\bar{D}_{1} \cup \ldots \cup \bar{D}_{k}\right]\right)$ is closed, $\sigma(T \mid K) \subseteq \bar{D}_{k+1} \cap\left(\bar{D}_{1} \cup \ldots \cup \bar{D}_{k}\right)$, and

$$
\sigma(V) \subseteq\left\{\mathbf{C} \backslash\left[\bar{D}_{k+1} \cap\left(\bar{D}_{1} \cup \ldots \cup \bar{D}_{k}\right)\right]\right\}^{-}
$$

where V is the operator induced on H_{k+1} / K (the orthogonal complement of K in H_{k+1}) by $T \mid H_{k+1}$. Thus $\sigma(V)$ is the disjoint union of two closed sets E_{1} and E_{2} such that $E_{1} \subseteq \bar{D}_{k+1}$ and $E_{2} \subseteq \bar{D}_{1} \cup \bar{D}_{2} \cup \ldots \cup \bar{D}_{k}$ (see also Lemma 4 for points off J). Hence by the Riesz decomposition theorem $H_{k+1} / K=$ $X_{V}\left(E_{1}\right) \oplus X_{V}\left(E_{2}\right)$. This shows that every $x \in H_{k+1}$ can be written in a (not necessarily unique) form $x=x_{1}+x_{2}$ with $x_{j} \in K \oplus X_{V}\left(E_{j}\right), j=1,2$. Since $K \oplus X_{v}\left(E_{1}\right) \subseteq X_{T}\left(\bar{D}_{k+1}\right)$ and $K \oplus X_{V}\left(E_{2}\right) \subseteq H_{k}$, it follows that $H_{k+1}=$ $H_{k}+X_{T}\left(\bar{D}_{k+1}\right)$ and thus by the induction hypotheses $H_{k+1}=X_{T}\left(\bar{D}_{1}\right)+$ $X_{T}\left(\bar{D}_{2}\right)+\ldots+X_{T}\left(\bar{D}_{k+1}\right)$. The proof of the lemma is complete.

For convenience we accept the following definition of a decomposable operator [9].

Definition. An operator T defined on a Banach space X is called decomposable if for every finite open covering $G_{i}(i=1,2, \ldots, n)$ of $\sigma(T)$ there exists a set of spectral maximal subspaces $Y_{i}(i=1,2, \ldots, n)$ of T such that
(a) $\sigma\left(T \mid Y_{i}\right) \subseteq \bar{G}_{i},(i=1,2, \ldots, n)$,
(b) $X=Y_{1}+Y_{2}+\ldots+Y_{n}$.

Moreover, T is called strongly decomposable if its restriction to an arbitrary spectral maximal subspace is again decomposable.

Theorem 1. If T satisfies Condition (II), then T is strongly decomposable.
Proof. Let $G_{1}, G_{2}, \ldots, G_{n}$ be an arbitrary finite open covering of $\sigma(T)$. For each point $\lambda \in \sigma(T)$ there exists an open disc D_{λ} with center λ such that $\bar{D}_{\lambda} \subseteq G_{i}$ for some i. Moreover, since $\sigma(T) \backslash J$ consists of isolated points of $\sigma(T)$ (Lemma 1), we can assume $\bar{D}_{\lambda} \cap \sigma(T)=\{\lambda\}$ if $\lambda \in \sigma(T) \backslash J$ and $J \cap \partial D_{\lambda}$
has two points if $\lambda \in J$. Now since $\sigma(T)$ is compact and $\sigma(T) \subseteq \cup D_{\lambda}$, there exists a finite collection $\left\{D_{i j}: j=1,2, \ldots, n_{i}, i=1,2, \ldots, n\right\}$ of the discs D_{λ} such that $\sigma(T) \subseteq \cup_{i, j} D_{i j}$ and $G_{i} \supseteq \bigcup_{j} D_{i j}, i=1,2, \ldots, n$. Moreover, if necessary, by a slight expansion of the discs we can assume the discs $D_{i j}$, $j=1,2, \ldots, n_{i}, i=1,2, \ldots, n$ satisfy the conditions of Lemma 8. Thus, by Lemma $8, H=\sum_{i, j} X_{T}\left(\bar{D}_{i j}\right)=\sum_{i} Y_{i}$ where $Y_{i}=\sum_{j} X_{T}\left(\bar{D}_{i j}\right)=X_{T}\left(\cup_{j} \bar{D}_{i j}\right)$ and $\sigma\left(T \mid Y_{i}\right) \subseteq \bar{G}_{i}$. This shows that T is decomposable. Since $\sigma(T)$ is nowhere dense, it follows from [3] that T is strongly decomposable. The theorem is proved.

In view of Lemma 3 we have the following corollary.
Corollary 2. (a) If $T^{*}-T \in C_{p}(1 \leqq p<\infty)$ then T is strongly decomposable.
(b) If $T^{*} T-I \in C_{p}(1 \leqq p<\infty)$ and $\sigma(T)$ does not fill the unit disc then T is strongly decomposable.
2. Examples and open problems. The following example shows that if $T^{*} T-I \in C_{p}$ and $\sigma(T)$ fills the unit disc then T may not be decomposable.

Example 1. Let $\left\{e_{n}: n=0, \pm 1, \pm 2, \ldots\right\}$ be an orthonormal basis for a Hilbert space H, A be the bilateral shift $A e_{n}=e_{n+1}$, and let B be the rank one operator defined by $B x=-\left(x \mid e_{0}\right) e_{1}, x \in H$. Let $T=A+B$. Obviously $T^{*} T-I \in C_{p}$ for all $p \geqq 1$. However T is not decomposable because the restriction of T to the invariant subspace: span $\left\{e_{n}: n=0,-1,-2, \ldots\right\}$ does not have the single-valued extension property [6, p. 10, 31]. (Note that if an operator has the single valued extension property, then so does its restriction to any invariant subspace.)

The next example shows that Corollary $2(a)$ is not true if $p=\infty$.
A closed set Δ is called a spectral set for a Hilbert space operator T if $\|u(T)\| \leqq \sup \{|u(z)|: z \in \Delta\}$ for all rational functions u with poles off Δ. If Δ is a convex spectral set for T, then $(T x \mid x) \in \Delta$ for, $\|x\|=1$ [21, Lemma 4 , p. 5].

Example 2. Let $V: L^{2}(0,1) \rightarrow L^{2}(0,1)$ be the Volterra operator

$$
V f(x)=\int_{0}^{x} f(t)
$$

Let $W=(I+V)^{-1}, \phi$ be the conformal mapping from the unit disc onto the set $\Delta_{1}=\left\{r e^{i \theta}: 0 \leqq r \leqq 1,0 \leqq \theta \leqq \pi / 4\right\}, \phi(1)=0$, and let $A=\phi(W)$ [22, proof of Theorem 8, p. 143]. (Note that W is a non-unitary contraction with $\sigma(W)=\{1\}[\mathbf{1 0}$, Problem 150] and thus A is a quasinilpotent operator.) Let $T=A_{1} \oplus A_{2} \oplus \ldots$ on $H=L^{2}(0,1) \oplus L^{2}(0,1) \oplus \ldots$ where $A_{n}=g_{n}(A)$ and $g_{n}\left(r e^{i \theta}\right)=r^{1 / n} e^{i \theta / n}$ for $r e^{i \theta} \in \Delta_{1}, n=1,2, \ldots$ It follows from [18, proof of Proposition 1] that the set $\Delta_{n}=\left\{r e^{i \theta}: 0 \leqq r \leqq 1,0 \leqq \theta \leqq \pi / 4 n\right\}$ is a spectral
set for $A_{n}, \sigma(T)=[0,1]$, and $X_{T}(\{0\})$ is not closed. (Actually we showed in [18] that $0 \in \sigma(T) \subseteq[0,1]$; but since $X_{T}(\{0\})$ is dense in H and T has spectral radius 1, it follows from the Riesz decomposition theorem that $\sigma(T)$ cannot be disconnected.) In particular T cannot be a decomposable operator. We show that $\operatorname{Im}(T)$ is compact. Let π be the canonical mapping from the algebra $B(H)$ of bounded operators on H onto the Calkin algebra $B(H) / C_{\infty}$. Let p_{n} be a sequence of polynomials converging to ϕ uniformly on the (closed) unit disc. We have $\pi(W)=(\pi(I)+\pi(V))^{-1}=\pi(I)$ and $\pi(A)=\pi(\phi(W))=\pi(\mathrm{lim}$ $\left.p_{n}(W)\right)=\lim \pi\left(p_{n}(W)\right)=\lim p_{n}(\pi(W))=\lim p_{n}(\pi(I))=\lim p_{n}(1) \pi(I)=0$ because the unit disc is a spectral set for the contraction W. Therefore A, and by a similar argument $A_{n}(n=2,3, \ldots)$, are compact. Since $\operatorname{Im}(T)=$ $\operatorname{Im}\left(A_{1}\right) \oplus \operatorname{Im}\left(A_{2}\right) \oplus \ldots$ and $\left\|\operatorname{Im}\left(A_{n}\right)\right\| \leqq \tan (\pi / 4 n)$, it follows that $\operatorname{Im}(T)$ is a compact operator. Thus T is a non-decomposable operator with $\sigma(T)=$ $[0,1]$ and $T^{*}-T \in C_{\infty}$.

It is stated (without proof) in a paper of Macaev [14, p. 975] that there are operators T with compact imaginary parts such that $\sigma(T \mid M)=\Delta$ for all invariant subspaces $M \neq\{0\}$ of T where Δ is a closed set having more than one point. This is another way to show that Theorem 1 is not true if $p=\infty$. (Example 2 is completely different and shows that $X_{T}(\{0\})$ may not be closed.)

Next we discuss some open problems.
Problem 1. If T satisfies Condition (I), then must T be decomposable?
In the following we suggest two methods to attack this problem.
(a) To show that Conditions (I) and (II) are equivalent.
(b) To show that $\left\|(z-T \mid M)^{-1}\right\|$ satisfies the growth condition $\left(^{*}\right)$ of the proof of Lemma 5 along J_{1} whenever T satisfies Condition (I), M is a hyperinvariant subspace of T, and J_{1} is a subarc of J such that $J_{1} \cap(\sigma(T) \backslash J)^{-}=\emptyset$.

As for (a) the following theorem may prove useful.
Theorem 2. Conditions (I) and (II) are equivalent if p is replaced by ∞.
Proof. Let T satisfy Condition (I) for $p=\infty$ and let M be an arbitrary hyperinvariant subspace of T. Let K be the space of all sequences $\left(x_{n}\right)$ in H such that $x_{n} \rightarrow 0$ weakly, where H is the underlying Hilbert space. Let glim be a Banach generalized limit function defined on the space of all bounded sequences of complex numbers. Let $N=\left\{\left(x_{n}\right) \in K: g \lim \left\|x_{n}\right\|=0\right\}$ and let H^{\wedge} be the complement of the pre-Hilbert space [5] K / N. Every operator S on H has a unique well-defined representation S^{\wedge} on H^{\wedge} determined by $S^{\wedge}\left(x_{n}\right)=$ $\left(S x_{n}\right)$ for $\left(x_{n}\right) \in K / N$. The collection of all operators S^{\wedge} is a C^{*}-algebra isomorphic to the Calkin algebra $B(H) / C_{\infty}$ and $A^{\wedge}=B^{\wedge}$ if and only if $A-B$ is compact [5]. It is easy to see that M^{\wedge} is an invariant subspace of T^{\wedge} and $T^{\wedge} \mid M^{\wedge}=(T \mid M)^{\wedge}$. Since $\left.\sigma(T \mid M)^{\wedge}\right) \subseteq \sigma(T \mid N)$ and T^{\wedge} is normal, it follows from the Putnam's inequality for hyponormal operators [16] that $\| V^{*} V-$ $V V^{*} \| \leqq(1 / \pi)$ area $(\sigma(V))=0$ where $V=T^{\wedge} \mid M \vee$. Thus $(T \mid M)^{\wedge}=$
$T^{\wedge} \mid M^{\wedge}$ is normal and $\sigma\left((T \mid M)^{\wedge}\right) \subseteq \sigma\left(T^{\wedge}\right) \subseteq J$. Since $\sigma(T \mid M)$ is nowhere dense, index $(\lambda-T \mid M)=0$ for all $\lambda \notin J$. Thus by [4, Theorem 11.1, p. 118] $T \mid M$ is the sum of a normal operator with spectrum on J and a compact operator. A similar verification for $T^{*} \mid M^{\perp}$ completes the proof of the theorem.

Theorem 2 remains true if J is replaced by an arbitrary closed set of zero area. Lemma 3 above gives some special cases where Conditions (I) and (II) are equivalent for all $1 \leqq p \leqq \infty$.

To see that (b) works, note that the conclusion of (b) is all we need in proving Lemmas 6-8 and Theorem 1. Also it can be seen that if J is a C^{2}-Jordan curve, A is an operator satisfying

$$
\sup \left\{[\operatorname{dist}(z, J)]^{n}\left\|(z-A)^{-1}\right\|: z \notin J\right\}<\infty
$$

for some positive integer n, and if B is an operator in $C_{p}(1 \leqq p<\infty)$ such that $(\sigma(A+B) \backslash J)^{-} \cap J$ is nowhere dense in J, then $T=A+B$ is decomposable. The proof follows from the fact that (i) $\left\|(z-T)^{-1}\right\|$ satisfies the growth condition $\left(^{*}\right)$ of the proof of Lemma 5 at each point a of J which is not an accumulation point of $\sigma(T) \backslash J$ [2, proof of Theorem 3.5; 17, proof of Corollary 3], and (ii) the discs D_{λ} in the proof of Theorem 1 can be chosen such that $(\sigma(T) \backslash J)-\cap J \cap \partial D_{\lambda}=\emptyset$. The second assertion allows us to assume in Lemmas $6,7,8$ and their proofs that $(\sigma(T) \backslash J)^{-} \cap J \cap \partial \Gamma=\emptyset$ where Γ stands for J_{1} (Lemma 6), $G, G_{1}, \ldots, g_{1}, g_{2}, \ldots\left(\right.$ Lemma 7) and D_{1}, D_{2}, \ldots, D_{n} (Lemma 8). For the proof in case $\sigma(T)=\sigma(A+B) \subseteq J$ see [17, Corollary 3].

Corollary 2 gives a new class of concrete examples of decomposable operators which are like other known ones strongly decomposable [6, p. 217]. It seems that this new class of decomposable operators is the only one in which the question of \mathfrak{N}-spectrality is not answered [6, p. 78, 217]. We mention that if T satisfies the conditions of part (a) (respectively (b)) of Corollary 2 and $\sigma(T)$ is on the real line (respectively unit circle) then T is an \mathfrak{V}-selfadjoint (respectively \mathfrak{A}-unitary) operator [6, Theorem 5.2, p. 166]. The following problem is a special case of [6, Problem 5 (c), p. 217].

Problem 2. If T satisfies Condition (II), then must T be an \mathfrak{N}-spectral operator?

Let us mention that if T satisfies the part (a) of Condition (I) and T is reductive, then T is a normal operator [15, Theorem 3.2].

References

1. C. Apostol, Spectral decomposition and functional calculus, Rev. Roumaine Math. Pures Appl. 13 (1968), 1481-1528.
2. -On the growth of resolvent, perturbation and invariant subspaces, Rev. Roumaine Math. Pures Appl. 16 (1971), 161-172.
3. I. Bacalu, On restrictions and quotients of decomposable operators, Rev. Roumaine Math. Pures Appl. 18 (1973), 809-813.
4. L. G. Brown, R. G. Douglas, and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of C^{*}-algebras, Lecture notes in mathematics \#345, (SpringerVerlag, 1973), 58-128.
5. J. W. Calkin, Two sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. 42 (1941), 839-873.
6. I. Colojoara and C. Foias, The theory of generalized spectral operators (Gordon Breach, Science Publ., New York, 1968).
7. N. Dunford and J. Schwartz, Linear operators, I (Interscience, New York, 1958).
8. - Linear operators, III (Interscience, New York, 1971).
9. C. Foias, Spectral maximal spaces and decomposable operators in Banach spaces, Arch. Math. (Basel) 14 (1963), 341-349.
10. P. R. Halmos, A Hilbert space problem book (D. Van Nostrand Co., Princeton, 1967).
11. A. A. Jafarian, Weak contractions of Sz.-Nagy and Foias are decomposable, Rev. Roumaine Math. Pures Appl. (to appear).
12. A. A. Jafarian and F. H. Vasilescu, A characterization of 2-decomposable operators, Rev. Roumaine Math. Pures Appl. 19 (1974), 769-771.
13. K. Kitano, Invariant subspaces of some non-selfadjoint operators, Tôhoku Math. J. 20 (1968), 313-322.
14. V. I. Macaev, A class of completely continuous operators, Soviet Math. Dokl. 2 (1961), 972-975.
15. E. Nordgren, H. Radjavi, and P. Rosenthal, On operators with reducing invariant subspaces, Amer. J. Math. (to appear).
16. C. R. Putnam, An inequality for the area of hyponormal spectra, Math.Z. 116 (1970), 323-330.
17. M. Radjabalipour, Growth conditions and decomposable operators, Can. J. Math. 26 (1974), 1372-1379.
18. - On decomposition of operators, Michigan Math. J. 21 (1974), 265-275.
19. H. Radjavi and P. Rosenthal, Invariant subspaces (Springer Verlag, Berlin, 1973).
20. J. Schwartz, Subdiagonalization of operators in Hilbert space with compact imaginary part, Comm. Pure Appl. Math. 15 (1962), 159-172.
21. J. G. Stampfli, A local spectral theory for operators, J. Functional Analysis 4 (1969), 1-10.
22. - A local spectral theory for operators, III; Resolvents, spectral sets and similarity, Trans. Amer. Math. Soc. 168 (1972), 133-151.
23. - A local spectral theory for operators, IV; Invariant subspaces, Indiana Univ. Math. J. 22 (1972), 159-167.
24. B. Sz.-Nagy and C. Foias, Décomposition spectrale des contractions presque unitaires, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), 440-442.
25. - Harmonic analysis of operators on Hilbert space (North Holland, Amsterdam, 1970).

Dalhousie University, Halifax, Nova Scotia

[^0]: Received February 12, 1974 and in revised form, November 4, 1974.

