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ABSTRACT 
In reengineering technical components, the robust automation of reverse engineering (RE) could 
overcome the need for human supervision in the surface reconstruction process. Therefore, an enhanced 
computer-based geometric reasoning to derive tolerable surface deviations for reconstructing optimal 
surface models would promote a deeper geometric understanding of RE downstream processes. This 
approach integrates advanced surface information into a deep learning-based recognition framework by 
explicitly labeling geometric outliers and subsurface boundaries. For this purpose, a synthetic dataset is 
created that morphs nominal surface models to resemble the macroscopic surface pattern of physical 
components. For the detection of regular geometry primitives, a 3D-CNN is used to analyze the 
voxelized components based on signed distance field data. This explicit labeling approach enables 
surface fitting to derive suitable shape features that fulfill the underlying surface constraints. 
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1 INTRODUCTION 

No common solution has yet emerged to automatize the reverse engineering tasks of technical 
components fully. The current process flow in reverse engineering and parametric surface reconstruction 
still requires cooperative methods with an expert and several additional algorithmic approximation steps 
due to a need for interactive human-machine interactions (Buonamici et al., 2018).  
Therefore, an automatic and contextual surface segmentation would be beneficial to adapt to the 
variations of surface finishes of real-world objects. The improved recognition rates of artificial neural 
networks in computer vision tasks satisfy these needs with convolutional architectures in a deep 
learning (DL) manner (Bici et al., 2020). An enhanced computer-based geometric recognition and 
detection in RE with additional information for subsequent algorithmic processes would promote a 
more coherent assessment of the implicit parametrization by the technical components RE expert 
(Shah et al., 2022). 
Although many geometric detection approaches apply DL to the process step of surface 
reconstruction, other methods that allow a deeper geometric model understanding in the sense of 
inspection techniques for surface defects are yet to be known (Geng et al., 2022). Mostly, DL 
approaches derive the geometric primitives of technical components without providing further insights 
regarding the surface quality and the estimation of surface deviations from the nominal geometry. 
Different conclusions on macroscopic surface patterns for the downstream sub-steps of surface 
reconstruction are thereby limited, which could enable more exact approximations of the model 
parametrization in the future. In addition, adjusting the fitting algorithms to irregular and tolerable 
dimensional deviations and statistical evaluations would need a better classification of which surface 
components can be considered ideal and which should be neglected for fitting. 
Therefore, this research aims to combine advanced surface information about surface deviations into a 
DL recognition process in surface reconstruction that allows computer-based geometry parameterization 
to be less reliant on expert supervision and adaptive interventions in the algorithmic processes.   

2 BACKGROUND AND RELATED WORK  

2.1 Reverse engineering overview 

In general, reverse engineering is employed in various application areas to derive and identify 
components and interactions of a system by transferring the system representation to a higher level of 
abstraction (Chikofsky and Cross II, 1990). From the technical product design and modeling 
perspective, it reverses the forward development process from ideation, requirements definition, 
implementation, and manufacturing, etc., to extract design artifacts and, more specifically, transform 
real-world technical components into technical models and concepts (Várady et al., 1997).  Mostly, 
the reconstruction into a parametrically usable geometry model is the ultimate objective, which is then 
reintroduced into a product development process and, above all, can be used in computer-aided design 
(CAD) (Várady et al., 1997). The baseline process steps can be distinguished into data acquisition 
(digitalization, registration, postprocessing) and surface reconstruction, which consists of the major 
sub-steps of segmentation/classification, surface fitting, constrained fitting, and surface model creation 
(Schöne, 2009).  

 
Figure 1. Processing pipeline of reverse engineering based on (Schöne, 2009)  
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The current state of research on RE automation is incomplete in deriving usable and consistent 
feature-based CAD models due to data and knowledge limitations for complex acquisition data in the 
area of robust surface reconstruction and geometric feature detection methods (Kaiser et al., 2019). In 
particular, the real-world data fuzziness of manufacturing - and acquisition-related surface artifacts 
and deviations, as well as edge features, hinders generally valid, precise, and significant conclusions in 
the geometry analysis steps (Xie et al., 2020). Thus, different sub-surfaces cannot comprehensively 
distinguish from other surface constituents in computer-based processing. Furthermore, on the one 
hand, static algorithm parameters require manual expert intervention in standard approaches, which 
makes generalizable parameter optimization impossible. On the other hand, current methods usually 
only consider a locally exact geometry representation or indirectly require global unambiguousness of 
the used geometry data to create valid CAD models. For this reason, the issue of surface 
reconstruction still needs to be conclusively resolved. 

2.2 Common approaches for surface reconstruction   

In the reverse engineering of technical components consisting of ruled geometric primitives (plane, 
cylinder, conus, sphere, torus), especially the deduction of the subsurfaces of technical components is 
error-prone since a variable adaptation to tessellation artifacts of the physical component data (noise, 
outliers, non-uniform sampling, misregistration, missing data) is difficult. Thereby, most approaches are 
implemented considering restrictions regarding the cardinality or number of segments, the resolution, 
and the discretization (Agathos et al., 2007), which will be discussed in more detail in the following. 
In practice, two main approaches (segmentation and direct estimation) have been established, which 
either observe local deviations of surface curvatures or directly estimate parametric partial surfaces by 
combining segmentation and surface generation. Other approaches include Hough Transforms 
(Woodford et al., 2014) or Clustering algorithms (Attene et al., 2006), which rely on prior knowledge 
like parameter limits or seed point selection. Recently, a variable output of a different set of segments 
using cluster analysis was investigated (Yan et al., 2021), in which learned point-wise parametric 
properties are assigned to similar groups. 
Methods that use surface curvatures for segment separation decompose the total surface into smooth sub-
regions of equal geometric continuity. These classical region-based or edge-based segmentation methods 
fail due to the inhomogeneities of adjacent triangles because curvature measures as a transition condition 
always require an estimation of when a subregion is considered curvature continuous. Methods for direct 
parametric surface estimation and parameter approximation of a surface segment are primarily based on 
the Random Sample Consensus (RANSAC) algorithm, which allows outliers to be robustly identified 
and eliminated so that least squares methods determine the optimal segment parameters. For direct 
surface generation, EfficentRANSAC (Schnabel et al., 2007) has established itself as a quasi-standard 
that allows decomposition into all major ruled primitives. A disadvantage is the random sampling and 
the threshold values for evaluating the model parameters, which can lead to sub-segmentation or a high 
number of artifacts (Fayolle and Pasko, 2016). Many novel knowledge-based RE approaches are based 
on the EfficentRANSAC, aiming for functional aspects (Qie et al., 2021) and a production-oriented 
modification of technical component models (Ali et al., 2013). 
However, the quality of reconstruction results depends on an expert's careful and labor-intensive 
parameter optimization to overcome the algorithmic sensitivity to noise and outliers of the acquisition 
data. This leads, in practice, when using software tools like DesignX or Polyworks, to a sidestream mode 
of operation in RE where the automatization toolset is mostly neglected (Buonamici et al., 2018).  
Also, approaches that integrate geometric tolerancing (Kaisarlis et al., 2008) have yet to be discovered 
in terms of automation of surface reconstruction. Though, surface deviation methods are applied in 
part inspection to compare manufactured parts (Hong-Seok and Mani, 2014), identified  

2.3 Deep learning approaches 

In the future, these expert competencies can be replaced with the help of autonomous and data-based 
decision-making processes. A significant contribution is made by novel DL-based approaches that 
provide advanced geometry analysis methods to support the RE process beneficially (Guo et al., 
2021). The basis for this is formed by geometry-related artificial neural network architectures adapted 
to the respective geometric data representation.  
This is reflected in the wide range of DL applications in the design pipeline that involve similar subtasks 
of RE in a geometry analysis manner. For example, machining feature recognition of chamfers, holes, 
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and pockets are being discussed (Takashima and Kanai, 2021), which is intended to enable more 
integrated computer-aided process planning and manufacturing (Shi et al., 2022; Zhang et al., 2018). 
Particularly in additive manufacturing, DL applications provide advanced geometric information on the 
technical component (Wong et al., 2020). For example, geometric reasoning regarding thermal deviation 
or comprehensive manufacturing parameters such as build time can be applied, allowing for a more 
precise specification of the model geometry. Often 3D convolutional neural networks (3D-CNN) are 
used for this purpose because the spatial structure of the learned kernels can directly map neighbor 
relationships in a voxel field, and the data preprocessing is similar for different use cases. This multi-
stage approach of repeated convolution and pooling layers has enabled recognition accuracies that were 
considered impossible before, especially in computer vision.  
Recently supervised fittings methods, which infer point-wise properties such as segmentation labels of 
ruled primitive types, are on the rise (Li et al., 2019; Ping et al., 2020; Sharma et al., 2020; Yan et al., 
2021). The geometry parameters result automatically, and no further geometry fitting is required. 
However, the maximum number of 24 primitive instances that can be processed (Li et al., 2019) is a 
disadvantage, which makes the realistic processing of technical components difficult. (Sharma et al., 
2020) extends the application to freeform surfaces. Due to the number of vertices of the point cloud 
processed so far, the transfer to a realistic use case, with typically more than 100 thousand vertices or 
more, is still pending.  

3 APPROACH USED AND METHODS  

Because of the advantageous regular grid-like structure, this study focuses on processing voxel fields 
by 3D CNNs. The advantage is the simultaneous processing of global contextual features of the 
geometric model and their local neighborhood relations of an observations volume simultaneously. 
Although captured triangle meshes must be transformed into a voxel field, as the 3D rasterization of 
the captured triangle mesh, the referencing and back-projecting of the predictions onto the triangle 
mesh cannot be bypassed in any DL approach. The voxel field section, which is input to the 3D CNN 
network, is hereafter referred to as the observation tile, having a specific resolution defined by the 
edge length of 32 voxels.  
Also, the common problem of the aliasing effect of rasterized data formats shall be avoided using a 
signed distance field (SDF) representation as the learning input. An SDF is created by computing the 
continuous signed distance function 𝑑𝑖𝑠𝑡(𝑝) for all points 𝑝 of the voxel field, where 𝑞 denotes the 
closest point on the zero-crossing isosurface: 

𝑑𝑖𝑠𝑡(𝑝) = 𝑠𝑖𝑔𝑛(𝑝) ∗ min(|𝑝 − 𝑞|) (1) 

It is explicitly distinguished whether a point p is part of the interior points 𝛺 of the body. 

𝑠𝑖𝑔𝑛(𝑝) = {
−1 𝑖𝑓𝑝 ∈ Ω
1 𝑒𝑙𝑠𝑒

 (2) 

The implicit SDF geometry representation allows sub-voxel accuracy so that even fine-grained surface 
structures can be represented, which otherwise would disappear in a typical binary voxel field. 
In contrast to current approaches of instance segmentation creating bounding boxes, region masks, or 
embedded clustering, an explicit per voxel classification is used, where subsurface boundaries are 
imprinted explicitly in the semantic labels. The hypothesis is that, unlike 2D processing, where the 
mutual instance occlusion impedes the belonging of an individual pixel to a semantic instance in 
image space, 3D space occlusion does not exist. Therefore, no further assumptions and processing 
steps of the underlying network structure should be necessary.  
Further, it is assumed that the local surface information of adjacent subsurfaces is sufficient to 
distinguish between instances of the same geometric type. The primitives to be recognized are always 
smooth subsurfaces of geometric continuity (GC). Therefore, even for tangential surface transitions, 
the GC2 discontinuity between different subsurfaces should be sufficient to keep these subsurface 
instances apart. For this reason, the data annotation for the semantic segmentation task imprints each 
potential subsurface region explicitly by wrapping each instance with classified boundary voxels. The 
shape of the boundary classification corresponds to model feature lines and thereby separates 
subsurface instances of the same class and other class types.  
For modeling most technical components, small subsurfaces can be decisive in creating valid and 
watertight boundary representations (B-rep). Therefore, the captured mesh will be analyzed piece by 
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piece, similar to a sliding windows algorithm. As already explained, this is based on continuous sub-
surfaces being defined locally. Even small observation tiles should lead to a correct surface 
classification as long as the learned network is sensitive enough.  The individual window positions in 
the sliding window algorithm are determined by a hierarchical structure of an octree, which is also part 
of the SDF creation. Since the padding mechanism in CNN architectures results in slightly degraded 
inference accuracies, these border effects are circumvented by an additional overlap of the window 
dimensions. 
After the semantic segmentation on the technical component, the individual voxels predictions need to 
be consolidated. For this purpose, a region aggregation will be applied using simple region growing to 
create potential candidates for coherent subsurface regions, which will be called candidate regions.  

 
Figure 2. Overall processing pipeline for subsurface detection and parametrization 

These region candidates should fundamentally correspond to the subsurface instances to be detected.  
Finally, the results have to be back-projected to the actual mesh. A two-stage fitting of the 
segmentation will be performed, wherein a RANSAC is first conducted on the points of the sampled 
SDF triangles to obtain an initial parametrization of the subsurface parameters. In the second step, an 
exact parameter fitting is conducted employing a least-square fitting in the narrowband of the initial 
parameterization on all points of the scanning mesh to obtain the final corresponding triangles 
belonging to the respective sub-surfaces.  

4 METHOD AND IMPLEMENTATION DETAILS 

4.1 Synthetic data generation 

Since no real-world datasets contain sufficient acquisition data from different scanning methods, a 
synthetic dataset is created to label, modify, and generate the training instances automatically. For this 
reason, an adapted data generation pipeline is set up, starting from the B-rep models of the ABC 
dataset as nominal geometries to create the labeled training instances as SDF voxel tiles (see Figure 3). 
Seven different types of ruled geometric primitives (plane, sphere, cylinder, conus, and torus) are 
included in the training dataset. Each selected component must contain all primitive classes at least 
once, so no further data balancing is required. Even if the models are categorized in the ABC dataset, 
it is observed that some components in the dataset are similar in their characteristics or represent the 
same geometry. Therefore, to ensure a wide diversity of variation and to avoid repetitive processing of 
the same design features that do not provide additional information for the learning process, all but 
one component with the same file size is deleted from the dataset. The primitive class of the 
subsurface and its instance label is obtained directly from the B-rep and transferred to a triangular 
mesh representation.  Nevertheless, some sub-surfaces must be merged by checking the equality of the 
B-rep parameterization since they correspond to the same instance.  
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In contrast to other approaches like (Li et al., 2019) and (Sharma et al., 2020), which modify the 
nominal mesh exclusively via white noise to overcome the domain gap between synthetic and real-
world geometry data, a more sophisticated approach of geometry deformation is followed here, which 
imprints patterns, surface structures and defects on the components nominal surface. For this purpose, 
various runs of a mesh deformation are applied, where the mesh vertices are translated at their area-
weighted normal direction. To simulate real-world surface deviation and to account for a broad scope 
of geometric patterns, 3D fractal, cubic and cellular noise are overlayed to morphe a refined mesh. The 
deformed surface requirements are controlled by the mesh refinement, in which the geometry 
resolution and resulting discretization error are controlled through a defined deviation tolerance. The 
deviation tolerance is adaptively controlled to avoid aliasing effects by choosing the resulting point 
density smaller than the voxel size used later in the observation tile to prevent undersampling. Like the 
Nyquist frequency, this deviation tolerance in the meshing step is adjusted to be at least two times 
smaller than the smallest voxel size on a per-model basis. Furthermore, the maximum allowed 
deviation in mesh deformation is determined based on tolerance class A for surface profiles of (DIN 

2769), which defines standardized tolerance values for geometric products.  All triangles containing at 
least one vertex outside the tolerance class A are annotated with the outlier class.    

 
Figure 3. Synthetic data generation and augmentation pipeline 

Before sampling the mesh to the SDF representation, all components are rotated at random Euler 
angles to increase the transformation invariance. In voxelization, the sampling rates range from 80 to 
240 voxels in the most extensive space direction per model with an increment of 20 voxels, resulting 
in an overall dataset size of 105.556 observation and label tiles. When creating the observation tile and 
the related label tile, the SDF values of the observation tile are normalized by dividing by the used 
voxel size to ensure that the values are independent of the chosen voxel resolution. The mesh labels 
are linked to the voxels by transferring the nearest triangle label to the respective voxel represented as 
the one hot representation.  This only accounts for the voxels in the narrowband of the isosurface. All 
other voxels with values <-1 are labeled as the interior class, and >1 are labeled as the exterior class.   
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Figure 4. a) Random colored nominal mesh. b) Morphed mesh with colored primitives and 

outliers. c) Label tile with boundary labels 

Unlike the other label classes, boundary classification between subsurface instances is not introduced 
until the label tile is created. For this purpose, it is checked whether there is a change of instance state 
in the 16-space of the respective voxel. If there is a change of instance state, the voxel is labeled with 
the boundary label, not the original primitive class label. Only outlier class voxels remain constant 
because these are usually minor regions in the voxelized representation and would vanish completely. 
This annotation ensures that the instance boundaries are always mapped in the exact dimensioning in 
the voxel tile. For comparability of the SDF approach, the whole training dataset observation tile is 
converted to the binary case, so it can be investigated whether the implicit SDF representation 
significantly increases the prediction performance.  

4.2 Network architecture 

For the supervised deep learning phase, the VoxSegNet architecture (Wang and Lu, 2018) is applied, 
which satisfies various requirements for the given semantic segmentation task. It is based on the atrous 
convolutional operation to address the problematic spatial downsampling of pooling layers in CNN 
models by employing a spacing between the processed values of the convolutional kernel at different 
rates. In VoxSegNet, the input features are encoded at the dual so-called spatial dense extraction stage, 
consisting of stacked atrous residual blocks (ARB). These ARB layers yield a multi-scale extraction of 
high-level semantics, thus reducing the computing complexity and generating specific activation 
maps. The so-called attention feature aggregation block (AFA) converts the activation dimension to a 
relevant feature representation in a semantic segmentation manner. Only the softmax layer is modified 
to the needed class count. Further details of the detailed architecture VoxSegNet can be found in 
(Wang and Lu, 2018). 

4.3 Evaluation metrics and network training 

In the learning phase, different evaluation metrics are utilized to benchmark the detection rates of the 
network architectures in terms of ground truth similarity based on true/false positives (TP/FP) and 
true/false negatives (TN/FN). The intersection over union (IoU) accounts for an insensitive variation 
metric, while the dice score (DS) applies a more outlier robust metric. The average Hausdorff distance 
(AHD) provides an outlier-sensitive metric (Aydin et al., 2021), where 0.0 is the optimum as the 
prediction matches the ground truth.  
To accelerate the supervised learning process and stabilize the gradient descent, a cross-entropy loss 
function was applied with a batch size of 4 with a decayed learning rate of 0.0001 and the adaptive 
moment estimates (ADAM), with a learning rate decay per epoch of e0.03 and sparse categorical cross-
entropy loss. 
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Figure 5. Per-class confusion matrix after 200 epochs on the test set. 

After 200 epochs of learning on the synthetic dataset and reaching an mIOU of 74.2% and a DS of 
88.73% on the test set, it can be concluded that the network model generalizes to extend the geometric 
classification scheme with the outlier and boundary classes. In multi-class adjacent areas, distinct fine-
grained features and accurate region boundaries at instance transitions can be observed. Also, the 
observed AHD of 1.83 resembles an outlier robust segmentation. By comparing the results with a 
confusion matrix, the prediction rates and inter-class dependencies of all different class types become 
evident.  
A particular correlation can be observed between cylindrical and conical predictions, where there is an 
accumulation of FN of incorrectly predicted coni types. The similarity of both classes can explain this 
if the conical frustums minor and major radius are nearly the same. Nevertheless, the results of all 
ruled primitive types achieve a TP rate higher than 68% for the worst case. Especially for the planar 
type, the highest mIOU of 93.2% is achieved. An adverse misclassification exists for the additionally 
introduced outlier and boundary class, which leads to incorrect prediction errors. The outlier voxels 
are often assigned as boundary voxels with an FN of 0.34% at the class transition to the boundary 
case. This is not considered disadvantageous concerning the overall process since primitive-type 
classifications are not affected.  

5 RESULTS AND DISCUSSION 

After the learning phase has been conducted, the overall defined process for subsurface detection and 
parametrization is demonstrated in a use case (Figure 6). For this purpose, an additive manufactured 
component is 3D-scanned and digitized. Afterwards, the process steps of semantic segmentation by 
the trained 3D-CNN, the incremental fitting on the aggregated candidate regions is carried out to 
parametrize the individual primitive instances without additional human supervision. 

 
Figure 6. a) Inferenced semantic segmentation. b) Fitted primitives, colored by type.           

c) Primitive instances, randomly colored. 

a) b) c)
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As a result, valid and robust surface detections of all relevant primitive classes could be achieved, so 
that accurate surface parameterizations are derived despite the manufacturing inaccuracies of the 
additive manufactured component. The introduced boundary labels allow the separation of individual 
subsurface instances. However, it remains to be examined whether the detection rate is reduced in the 
case of smooth subsurface transitions because sharp labels are often the more distinguishable feature. 
Currently, the intended inference of defect regions with the outlier class has been limited to rounded 
subsurface border regions. It is assumed that the boundary labels have often obscured the outlier 
voxels, so an improvement labeling strategy needs to be established in the future.  
Nevertheless, with the introduction of the additional label classes into the learning phase, a distinct 
segmentation result was obtained. This could lead to more accurate parametrization results in the 
future since identified outlier regions are not part of the fitted surface regions. In particular, it can be 
emphasized that despite the additional outlier category, the other geometry knowledge available does 
not produce any degradation of the primitive detection accuracy compared to other approaches.  

6 CONCLUSION AND OUTLOOK 

In the context of a more robust surface reconstruction to outlier and noisy acquisition data, the 
increasingly common deep learning approaches offer the possibility to integrate a deeper geometry 
model understanding into the RE process pipeline. Therefore, in this research paper, an enhanced 
method was proposed that combines tolerable surface deviations and surface defects directly into the 
process step of geometry detection, deriving subsurface instances of ruled geometries by an explicit 
data labeling of instance boundaries. For this purpose, a 3D-CNN-based geometry recognition is 
applied for semantic segmentation to detect surface outliers and the subsurface boundaries to separate 
primitive instances. Using a sophisticatedly created training synthetic dataset, the explicit labeling 
strategy enables for the separation of adjacent subsurfaces. The utilized SDF representation improves 
resolution and recognition accuracy and mitigates aliasing effects. In contrast to other network 
structures with sophisticated network architecture, the approach presented here does not require any 
architecture adaptation due to the use of a relatively simple network architecture. 
A benchmark dataset should be established in the future, providing a more accurate evaluation and 
comparability baseline with other RE approaches. Further predictions regarding the surface quality 
need to be integrated into the dataset labeling, directly providing algorithmic parameters required for 
fitting.  
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