FREE PLANES AND COLLINEATIONS

W. O. ALLTOP

1. Introduction. Our aim in this paper is to consolidate and extend some of the notions in $(\mathbf{1} ; \mathbf{2} ; \mathbf{5} ; \mathbf{6})$ concerning free planes in order to facilitate the study of their collineation groups. An upper bound m_{n} for the orders of the finite subroups of G_{n} will be established, where G_{n} is the collineation group of the free plane F_{n} of rank $n+4$. In the process, a result of ($\mathbf{6}$) will be generalized. Indeed, m_{n} will be shown to be the best upper bound for all $n \neq 5$.

In (2), a confined configuration is defined. In (5), this concept is generalized to a confined configuration over A. We shall define a confinement of A which will differ slightly from each of these concepts. After a brief exposition of the set-theoretic concepts of closure function and intersection class, we shall define two closure functions on an arbitrary incidence structure, one of which nearly coincides with the "skeleton" discussed in (5). These closure functions are similar to topological closure operators and will prove useful in obtaining results concerning the finite subgroups of G_{n}.
2. Basic and free subsets of incidence structures. By an incidence structure we mean a quadruple (E, P, L, I) of sets, where P is the set of points, L the set of lines, $E=P \cup L$, and I is a symmetric incidence relation between P and L, i.e., $I \subseteq(P \times L) \cup(L \times P)$. Two distinct points are never incident to two distinct lines. For finite $E, R(E)=2|E|-(|I| / 2)$ is the rank of E.

By a collineation of E is meant a permutation α of E which fixes P and L as sets and preserves incidence. The set of collineations of E is a group $G(E)$ called the collineation group of E.

A subset of P is collinear provided all of its members are incident to a common line. Likewise, a subset of L is concurrent provided its members are all incident to a common point. A plane is an incidence structure in which each pair of points is collinear and each pair of lines is concurrent. A plane is non-degenerate whenever it contains four points, no three of which are collinear, otherwise, a plane is degenerate.

Suppose that E is an incidence structure. Let $E_{0}=E$. For each pair of points of E_{0} which is not collinear, we add a new line incident to each member of that pair. For a pair of lines which is not concurrent, we add a new point incident to each member of that pair. Let E_{1} be the resulting incidence

[^0]structure. For $j \geqq 1$, we add new points and lines to E_{j} in the same fashion to obtain E_{j+1}. Let $F(E)=\bigcup\left\{E_{j}: 0 \leqq j \leqq \infty\right\}$, and call $F(E)$ the free completion of $E . F(E)$ is a plane and is uniquely determined up to isomorphism by E. We call an arbitrary incidence structure E non-degenerate or degenerate depending upon whether $F(E)$ is non-degenerate or degenerate.

For $A \subseteq E$, we associate with A the incidence structure $(A, A \cap P$, $A \cap L,(A \times A) \cap I)$. For $x \in A$, the A-degree of x is the number of elements of A to which x is incident, and we denote this number by $d(x, A)$. We say that A is complete in E whenever $x \in E-A$ implies that x is incident to at most one member of A. Let $A_{0}=A$ and A_{1} denote the union of A with those elements of E which are incident to two or more members of A. Let A_{k+1} denote the union of A_{k} with the members of E which are incident to at least two members of A_{k}. Let

$$
[A]_{E}=\bigcup\left\{A_{k}: 0 \leqq k \leqq \infty\right\}
$$

Now $[A]_{E}$ is the smallest subset of E which contains A and is complete in E. $[A]_{E}$ is called the E-completion of A. Then set function [] () is monotonic in both arguments. If E is a plane, then $[A]_{E}$ is a plane, perhaps degenerate, for all $A \subseteq E$.

Suppose that $x \in E$. If $x \in[A]_{E}$, let

$$
s_{E}(x, A)=\min \left\{k: x \in A_{k}\right\} .
$$

If $x \notin[A]_{E}$, let $s_{E}(x, A)=\infty$. We call $s_{E}(x, A)$ the $[A]_{E}$-step of x.
Let $\operatorname{Fr}(A)$ denote the set of $x \in A$ such that $d(x, A) \leqq 2$. We call $\mathrm{Fr}(A)$ the fringe of A. If \mathfrak{A} is a class of incidence structures, then

$$
\operatorname{Fr}(\cup \mathfrak{N}) \subseteq \cup\{\operatorname{Fr}(A): A \in \mathfrak{A}\}
$$

By a confinement of A we mean a finite incidence structure K such that $\operatorname{Fr}(K) \subseteq A . K$ is a non-trivial confinement of A provided $K \nsubseteq A$. A confined configuration is a non-trivial confinement of \emptyset (see 2). In (5), a confined configuration over A is defined to be an incidence structure K, not necessarily finite, such that $\operatorname{Fr}(K) \subseteq A$. Hence, a confinement of A is simply a finite confined configuration over A.

We call a confinement K of A a B-confinement of A whenever $K \subseteq B$. Suppose that K is a B-confinement of $A, A \subseteq A_{1}$, and $B \subseteq B_{1}$. Then K is clearly a B_{1}-confinement of A_{1}. If $A \subseteq B$ and there exists no non-trivial B-confinement of A, then we say that A is basic in B. We can immediately prove that the relation "basic in" is transitive. For, suppose that A is basic in B, B is basic in C, and K is any C-confinement of A. Then K is a C-confinement of B. Since B is basic in C, we have that $K \subseteq B$. Thus, K is a B-confinement of A. It follows that $K \subseteq A$ since A is basic in B. We see that there exists no non-trivial C-confinement of A; thus, A is basic in C. It is also clear that if A is basic in B, then A is basic in D whenever $A \subseteq D \subseteq B$.

We say that A is free in B provided the A_{m}-degree of x is equal to 2 whenever $x \in[A]_{B}$ and $m=s_{B}(x, A) \geqq 1$. Our first theorem will establish an equivalent condition that A be free in B. A later theorem will establish the transitivity of the relation "free in". The following constructive lemma will prove helpful.

Lemma 2.1. Suppose that $A \subseteq B$ and $s_{B}(x, A)=m<\infty$. Then there exists an $[A]_{B}$-confinement K of $A \cup\{x\}$ satisfying

$$
\begin{equation*}
x \in K \subseteq A_{m} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
[A \cap K]_{K}=K \tag{2.2}
\end{equation*}
$$

If $m \geqq 1$, then K also satisfies

$$
\begin{equation*}
d(x, K) \geqq 2 \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
K-A_{m-1}=\{x\} . \tag{2.4}
\end{equation*}
$$

Proof. K is simply an appropriately chosen finite subset of the socle of x over A (see 1 and 4).

Theorem 2.1. A is free in B if and only if A is basic in $[A]_{B}$.
Proof. Suppose first that A is free in B. We must show that there exists no non-trivial $[A]_{B}$-confinement of A. Suppose that K is an $[A]_{B}$-confinement of A. Since K is finite, we may let

$$
m=\max \left\{s_{B}(y, A): y \in K\right\} .
$$

Suppose that $m \geqq 1$. Let x be an element of K of $[A]_{B}$-step equal to m. Since A is free in B and $K \subseteq A_{m}$, it follows that $d(x, K) \leqq 2$. Thus $x \in \operatorname{Fr}(K)$. This is a contradiction since $x \notin A$, but $\operatorname{Fr}(K) \subseteq A$. It follows that $m=0$ and $K \subseteq A$. Thus, K is a trivial confinement of A; therefore, A is basic in $[A]_{B}$.

Suppose, conversely, that A is basic in $[A]_{B}$. If A is not free in B, then there exists $x \in A_{m}$ such that $d\left(x, A_{m}\right) \geqq 3$, where $m=s_{B}(x, A)$. Choosing z_{1}, z_{2}, z_{3} $\in A_{m}, z_{i} I x$, we let K_{i} be the $[A]_{B}$-confinement of $A \cup\left\{z_{i}\right\}$ guaranteed by Lemma 2.1. Then $K_{1} \cup K_{2} \cup K_{3} \cup\{x\}=K$ is a non-trivial $[A]_{B}$-confinement of A, a contradiction. Hence A is free in B.

We need another lemma to establish the transitivity of "free in".
Lemma 2.2. If A is basic in B and B is free in C, then A is free in C.
Proof. Since B is basic in $[B]_{C}$, it follows from the transitivity of "basic in" that A is basic in $[B]_{C} . A$ is basic in $[A]_{C}$ since $A \subseteq[A]_{C} \subseteq[B]_{C}$. Hence A is free in C.

Theorem 2.2. If A is free in B, and B is free in C, then A is free in C.

Proof. Since $[A]_{B}$ is complete in B and B is free in C, we have that $[A]_{B}$ is free in C (see 8). Now A is basic in $[A]_{B}$ and $[A]_{B}$ is free in C; thus, by Lemma 2.2, A is free in C.
3. Closure functions and intersection classes. We now present the definitions and basic properties of two set-theoretic concepts which will be applied to incidence structures in $\S 4$. Let $\mathfrak{P}(S)$ denote the family of subsets of the set S. Following (3), we define a closure function on S to be a function $h: \mathfrak{P}(S) \rightarrow \mathfrak{P}(S)$ satisfying

$$
\begin{gather*}
A \subseteq S \Rightarrow A \subseteq h(A) \tag{3.1}\\
A \subseteq B \Rightarrow h(A) \subseteq h(B) \tag{3.2}
\end{gather*}
$$

and

$$
\begin{equation*}
h^{2}=h . \tag{3.3}
\end{equation*}
$$

Note that a closure function h lacks only the property

$$
h(A \cup B)=h(A) \cup h(B)
$$

of being a closure operator in the usual topological sense. If h is a closure function on S, we let

$$
\mathfrak{F}(h)=\{A \subseteq S: h(A)=A\},
$$

and we call $\mathfrak{F}(h)$ the class of fixed sets of h.
Suppose that $\mathbb{C} \subseteq \mathfrak{P}(S)$. \mathbb{C} is called an intersection class on S provided

$$
\begin{equation*}
S \in \mathbb{E} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{H} \subseteq \mathfrak{C} \Rightarrow \cap \mathfrak{N} \in \mathfrak{C} \tag{3.5}
\end{equation*}
$$

If \mathbb{C} is an intersection class on S, we associate with \mathbb{C} the set function $h(\mathfrak{C}): \mathfrak{P}(S) \rightarrow \mathfrak{P}(S)$ as follows:

$$
h(\mathbb{C}): A \rightarrow \cap\{X: A \subseteq X \in \mathbb{C}\}
$$

for $A \subseteq S$. Here, h is acting as a function with the family of intersection classes as domain. The closure function is not h, but $h(\mathbb{C})$.

The following theorems connect the notions of closure function and intersection class in a natural way.

Theorem 3.1. If h is a closure function on S, then the class of fixed sets $\mathfrak{F}(h)$ is an intersection class on S. Moreover, $h(\mathfrak{F}(h))=h$.

Proof. Since h satisfies (3.1), we have that $h(S)=S$. Thus $S \in \mathfrak{F}(h)$. Now suppose that $\mathfrak{H} \subseteq \mathfrak{F}(h)$. For each $A \in \mathfrak{N}$, we have that $\cap \mathfrak{H} \subseteq A$. Thus, $h(\cap \mathfrak{A}) \subseteq h(A)=A$. It follows that $h(\cap \mathfrak{H}) \subseteq \cap \mathfrak{A}$. But $\cap \mathfrak{A} \subseteq h(\cap \mathfrak{N})$ from
(3.1). Hence, $h(\cap \mathfrak{Y})=\cap \mathfrak{X}$, and therefore, $\cap \mathfrak{H} \in \mathfrak{F}(h)$. $\mathfrak{F}(h)$ satisfies (3.4) and (3.5) ; therefore, $\mathfrak{F}(h)$ is an intersection class on S. It remains to show that $h(\mathfrak{F}(h))=h$. Suppose that $A \subseteq S$. Let

$$
\mathfrak{D}=\{X: A \subseteq X \in \mathfrak{F}(h)\} .
$$

Let

$$
g=h(\mathfrak{F}(h)) .
$$

By definition, $g(A)=\cap \mathfrak{D}$. Since $h(A) \in \mathfrak{D}$, it follows that $g(A) \subseteq h(A)$. On the other hand, if $X \in \mathfrak{D}$, then $h(A) \subseteq h(X)=X$. Hence, $h(A) \subseteq X$, and therefore, $h(A) \subseteq g(A)$. Thus, $h=g$ and the theorem is proved.

Theorem 3.2. If \mathfrak{F} is an intersection class on S, then $h(\mathfrak{F})$ is a closure function on S, and $\mathfrak{F}(h(\mathfrak{F}))=\mathfrak{F}$.

The proof is in the same spirit as that of Theorem 3.1.
We have established a natural 1-1 correspondence $h \rightarrow \mathfrak{F}(h)$ between the closure functions and the intersection classes on a given set S.
4. The basic and free closure functions. We shall show that both the class of basic subsets of an incidence structure E and the class of free subsets are intersection classes on E. Applying the results of $\S 3$ we may define corresponding closure functions on E, the free closure function being a slight generalization of the "skeleton" discussed in (4).

Theorem 4.1. Suppose that E is an incidence structure. The class of basic subsets of E and the class of free subsets of E are intersection classes. Moreover, the basic subsets of E form a subclass of the free subsets.

Proof. Let \mathfrak{B} be the class of basic subsets and \mathfrak{F} the class of free subsets. Clearly, $E \in \mathfrak{B}$ and $E \in \mathfrak{E}$. Suppose that $\mathfrak{A} \subseteq \mathfrak{B}$. Now suppose that K is an E-confinement of $\cap \mathfrak{A}$. Then K is an E-confinement of A for each $A \in \mathfrak{N}$. Since $\mathfrak{A} \subseteq \mathfrak{B}$, it follows that $K \subseteq A$ for every $A \in \mathfrak{N}$. Hence $K \subseteq \cap \mathfrak{N}$. Thus, $\cap \mathfrak{A} \in \mathfrak{B}$ and \mathfrak{B} is an intersection class. Likewise, suppose that $\mathfrak{Z} \subseteq \mathfrak{F}$ and let $V=\cap \mathfrak{N}$. Let K be a [$V]_{E}$-confinement of V. Then for each $A \in \mathfrak{N}, K$ is an $[A]_{E}$-confinement of A, since $V \subseteq A$. It follows that $K \subseteq A$ for every $A \in \mathfrak{H}$; therefore $K \subseteq V$. Thus, $V \in \mathbb{E}$ and \mathbb{E} is an intersection class. For $B \in \mathfrak{B}, B$ is basic in E. Since $[B]_{E} \subseteq E$, we have B basic in $[B]_{E}$. Thus, B is free in E. It follows that $\mathfrak{B} \subseteq \mathfrak{E}$.

For an incidence structure E we let b_{E} and f_{E} be the closure functions on E associated with the intersection classes of basic and free subsets of E, respectively. That is, $b_{E}=h(\mathfrak{B})$ and $f_{E}=h(\mathbb{E})$ in the notation of $\S 3$. If $B \subseteq E$, then the functions b_{B} and f_{B} are defined in the same way for the incidence structure B. If $A \subseteq B$, we call $b_{B}(A)$ the B-basic closure of A and $f_{B}(A)$ the B-free
closure of A. It should be noted that [$]_{B}$ is also a closure function on B. The following relations among the three functions f, b, and [] are not difficult to prove:
(4.1) The $[A]_{B}$-free closure of A is $f_{B}(A)$;
(4.2) The $[A]_{B}$-basic closure of A is $f_{B}(A)$;
(4.3) The B-completion of $f_{B}(A)$ is $[A]_{B}$.

Suppose that $A \subseteq B$. By the total B-confinement of A we mean the union of all of the B-confinements of A, and we denote this by $K_{B}(A)$. Suppose that $x \in K_{B}(A)$, but $x \notin b_{B}(A)$. There exists a B-confinement K of A which contains x. Thus, K is a B-confinement of $b_{B}(A)$, but $K \nsubseteq b_{B}(A)$. This is a contradiction since $b_{B}(A)$ is basic in B. We conclude that $x \in b_{B}(A)$, and $K_{B}(A) \subseteq b_{B}(A)$.

Theorem 4.2. If $A \subseteq B$, then $b_{B}(A)=K_{B}(A)$.
Proof. It suffices to show that $b_{B}(A) \subseteq K_{B}(A)$. For this we need only show that $A \subseteq K_{B}(A)$ and $K_{B}(A)$ is basic in B. Suppose that $a \in A$. Then $\{a\}$ is a B-confinement of A; therefore, $a \in K_{B}(A)$. Thus, $A \subseteq K_{B}(A)$. Now suppose that K is a B-confinement of $K_{B}(A)$. For $x \in \operatorname{Fr}(K) \subseteq K_{B}(A)$ there exists a B-confinement K_{x} of A such that $x \in K_{x} \subseteq K_{B}(A)$, by definition of $K_{B}(A)$. Let

$$
L=K \cup \cup\left\{K_{x}: x \in \operatorname{Fr}(K)\right\}
$$

We have that

$$
\operatorname{Fr}(L) \subseteq \operatorname{Fr}(K) \cup \cup\left\{\operatorname{Fr}\left(K_{x}\right): x \in \operatorname{Fr}(K)\right\}
$$

Since $\operatorname{Fr}\left(K_{x}\right) \subseteq A$, we have that $\operatorname{Fr}(L) \subseteq \operatorname{Fr}(K) \cup A$. For $x \in \operatorname{Fr}(K)$, either $x \in A$ or $d(x, L) \geqq d\left(x, K_{x}\right) \geqq 3$. Thus, $\operatorname{Fr}(L) \subseteq A$, and L is a B confinement of A. Hence, $L \subseteq K_{B}(A)$. Since $K \subseteq L$, it follows that $K \subseteq$ $K_{B}(A)$, and $K_{B}(A)$ is basic in B.
5. Finite subgroups of G_{n}. We shall show that a finite subgroup H of G_{n} fixes, setwise, some finite free generator B of F_{n}. The representation of H in $G(A)$ defined by $\alpha \rightarrow \alpha \mid A, \alpha \in H$, is 1-1 since A generates F_{n}. Thus, H may be considered as a subgroup of $G(A)$. A lemma will enable us to restrict the discussion to a subclass of these generators. Ultimately, an extensive case analysis of a family of finite incidence structures is necessary in order to establish an upper bound for the orders of the finite subgroups.
E is called a free extension of A provided A is free in E, and A generates E. If E is a free extension of A, we call A a free generator of E.

Let P_{n} be the incidence structure consisting of the n points $x_{1}, x_{2}, \ldots, x_{n}$ and the line y with x_{j} incident to y for $1 \leqq j \leqq n-2$. For $n \geqq 4$, we let $F_{n}=F\left(P_{n}\right)$ and call F_{n} the free plane of rank $n+4$. Then $G_{n}=G\left(F_{n}\right)$.

An incidence structure E is open provided \emptyset is basic in E. If A is a free generator of E and A is open, then E is open. For, suppose that K is an E-confinement of \emptyset. Then K is an E-confinement of A. But A is basic in $[A]_{E}$ and $[A]_{E}=E$. Thus, $K \subseteq A$. Now K is an A-confinement of \emptyset. Since A is open, $K \subseteq \emptyset$. Thus, \emptyset is basic in E, and therefore E is open.

The finite free generators of F_{n} are precisely those finite subsets $A \subseteq F_{n}$ such that $R(A)=n+4$ and A generates F_{n} (see $\mathbf{2}$ and $\mathbf{8}$). If A is any finite, open, non-degenerate incidence structure of rank $n+4$, then $F(A)$ is isomorphic to F_{n} (see 2).

Henceforth, we shall simply write $s,[], f$, and b in place of the functions $s_{F_{n}},[]_{F_{n}}, f_{F_{n}}$, and $b_{F_{n}}$. The following lemma gives us some fundamental information regarding the basic and free closure functions on F_{n}.

Lemma 5.1. If A is a finite subset of F_{n}, then $b(A)$ and $f(A)$ are finite.
Proof. Let P be a finite free generator of F_{n}. Since A is finite and $A \subseteq[P]$, we may let

$$
r=\max \{s(a, P): a \in A\}
$$

Since A_{τ} is a free generator of F_{n}, A_{τ} is basic in F_{n}. Since $A \subseteq A_{\tau}$, we have that $b(A) \subseteq A_{r}$. But A_{r} is finite since P is finite. Thus, $b(A)$ is finite. Since $f(A) \subseteq b(A), f(A)$ is also finite.

The next lemma establishes the commutativity between a collineation and the basic and free closure functions.

Lemma 5.2. If $\alpha \in G_{n}$ and $A \subseteq F_{n}$, then $b(A) \alpha=b(A \alpha)$ and $f(A) \alpha=f(A \alpha)$.
Proof. Suppose that $x \in b(A) \alpha$. Then $x=y \alpha$ for some $y \in b(A)$. Thus, there exists an F_{n}-confinement K of A such that $y \in K$, by Theorem 4.2. Hence, $y \alpha \in K \alpha$, thus $x \in K \alpha$. But $K \alpha$ is an F_{n}-confinement of $A \alpha$; thus, $x \in b(A \alpha)$. Hence $b(A) \alpha \subseteq b(A \alpha)$. Conversely, suppose that $x \in b(A \alpha)$. There exists an F_{n}-confinement K of $A \alpha$ such that $x \in K$. Thus, $x \alpha^{-1} \in K \alpha^{-1}$. But $K \alpha^{-1}$ is an F_{n}-confinement of $(A \alpha) \alpha^{-1}=A$. Thus, $x \alpha^{-1} \in b(A)$, and therefore, $x \in b(A) \alpha$. It follows that $b(A \alpha) \subseteq b(A) \alpha$, and therefore $b(A) \alpha=$ $b(A \alpha)$. The proof of the analogous result for f is similar.

The following theorem lays the groundwork for our discussion of the finite subgroups of G_{n}. This theorem is a generalization of a result of Lippi in (6) concerning a single finite collineation.

Theorem 5.1. If H is a finite subgroup of G_{n}, then there exists a finite free generator A of F_{n} such that $A H=A$.

Proof. Let P be a finite free generator of F_{n}. Let $A_{0}=P H$. We claim that $A=b\left(A_{0}\right)$ satisfies the requirements of the theorem. Clearly, A is finite since P and H are finite. From Lemma 5.1, it follows that A is finite. Since $A_{0} \subseteq A$ and A_{0} generates F_{n}, we know that A generates F_{n}. Thus, from Theorem 2.1, A is a finite free generator of F_{n}. For $\alpha \in H$, we have that $A \alpha=b\left(A_{0}\right) \alpha$.

Applying Lemma 5.2 we obtain $b\left(A_{0}\right) \alpha=b\left(A_{0} \alpha\right)=b((P H) \alpha)=b(P(H \alpha))=$ $b(P H)=b\left(A_{0}\right)=A$. Thus, $A \alpha=A$ for each $\alpha \in H$, and therefore, $A H=A$.

We see that every finite subgroup of G_{n} occurs as a subgroup of some $G(A)$, where A is a finite, open, non-degenerate incidence structure of rank $n+4$. We now look for a smaller class of incidence structures whose collineation groups represent all finite subgroups of G_{n} in the same manner.

Lemma 5.3. Suppose that A is a finite incidence structure. Let S be the set of points (lines) of A of degree 2. Then $D G(A)=D$, where $D=A-S$.

Proof. Since collineations preserve degree, $S \alpha=S$ for all $\alpha \in G(A)$. Thus, $D \alpha=D$ for all $\alpha \in G(A)$.

Theorem 5.2. If A is a finite incidence structure, then there exists a finite free generator D of A such that $D G(A)=D$ and D contains no elements of degree 2 .

Proof. Let D_{1} be the result of removing from A its points of degree 2. Let D_{2} be the result of removing from D_{1} its lines of degree 2 . We repeat this procedure obtaining a decreasing sequence of incidence structures A, D_{1}, D_{2}, . . . Since A is finite, there exists an integer r such that $D_{r}=D_{r+1}=\ldots$ Let $D=D_{r}$. Clearly, D contains no elements of degree 2 . Repeated application of Lemma 5.3 proves the remaining condition required of D by the theorem.

Suppose that H is a finite subgroup of G_{n}. Let A be the finite free generator of F_{n} guaranteed by Theorem 5.1. Let D be the free generator of A guaranteed by Theorem 5.2. Then D is a finite free generator of F_{n}; thus, the representation $H \rightarrow G(D)$ defined by $\alpha \rightarrow \alpha \mid D$ is 1-1. Thus, we have the group H embedded in the collineation group of a finite free generator of F_{n} which contains no elements of degree 2. Next we consider the result of removing elements of degree 1.

Lemma 5.4. Suppose that A is a finite incidence structure. Let T be the set of points (lines) of A of degree 1. Let $t=|T|$. Then $D G(A)=D$, where $D=B$ - T, and $|G(A)| \leqq t!|G(D)|$.

Proof. As in the proof of Lemma 5.3, T $=T$ for all $\alpha \in G(A)$ since collineations preserve degree. Thus, $D \alpha=D$ for all $\alpha \in G(A)$. Let $S(T)$ denote the group of all permutations of T. Now consider the representation $G(A) \rightarrow S(T) \times G(D)$ defined by $\alpha \rightarrow(\alpha|T, \alpha| D)$. Since this representation is $1-1$, we have that $|G(A)| \leqq|S(T) \times G(D)|=|S(T)||G(D)|=t!|G(D)|$, and the lemma is proved.

A finite, non-degenerate, open incidence structure A is said to be of type U provided: either A consists only of elements of degree 0 , or A contains no elements of degree 2 , and A becomes degenerate upon removal of its points of degree 1 . The following theorem relates the order of a finite subgroup of G_{n} to that of a collineation group of a type U incidence structure.

Theorem 5.3. If H is a finite subgroup of G_{n}, then there exists an incidence structure A of type U such that $|H| \leqq t!|G(A)|$, where $R(A)=n-t+4$ and $0 \leqq t \leqq n-4$.

Proof. Our proof is based upon alternate applications of Theorem 5.2 and Lemma 5.4 to the incidence structure guaranteed by Theorem 5.1. Let B be the generator of F_{n} guaranteed by Theorem 5.1. Then $|H| \leqq|G(B)|$. Let A_{1} be the subset of B guaranteed by Theorem 5.2. Then $|G(B)| \leqq G\left(A_{1}\right) \mid$. Applying Lemma 5.4 to A_{1} we obtain T_{1}. Letting t_{1} be the associated integer of Lemma 5.4, we have that $R\left(T_{1}\right)=R\left(A_{1}\right)-t_{1}=n-t_{1}+4$, and $\left|G\left(A_{1}\right)\right| \leqq t!\left|G\left(T_{1}\right)\right|$. Now we apply Theorem 5.2 to T_{1} to obtain A_{2}. We then apply Lemma 5.4 to A_{2} to obtain T_{2}. Continuing in this fashion we obtain a sequence A_{1}, T_{1}, A_{2}, $T_{2}, \ldots . R\left(A_{k+1}\right)=R\left(T_{k}\right)=R\left(A_{k}\right)-t_{k}=n-\left(t_{1}+t_{2}+\ldots+t_{k}\right)+4$, and $|H| \leqq\left|G\left(A_{1}\right)\right| \leqq t_{1}!\left|G\left(A_{2}\right)\right| \leqq \ldots \leqq t_{1}!t_{2}!\ldots t_{k}!\left|G\left(A_{k+1}\right)\right|$. This process terminates when A_{k} contains no elements of degree 1 . Suppose that this occurs at $k=s$. We let $C=A_{r}$, where A_{r} is the last non-degenerate incidence structure in the sequence, and we let $t=t_{1}+\ldots+t_{r-1}$. Then

$$
|H| \leqq t_{1}!\ldots t_{r-1}!\left|G\left(A_{r}\right)\right| \leqq t!\left|G\left(A_{r}\right)\right| .
$$

Likewise, $R\left(A_{r}\right)=n-\left(t_{1}+\ldots+t_{r-1}\right)+4=n-t-4$. Clearly, $0 \leqq t \leqq n-4$ since $R(C) \geqq 8$. If $r=s$, then C consists only of elements of degree 0 , and we let $A=C$. If not, then C contains no elements of degree 2 and becomes degenerate upon removal either of points of degree 1 or of lines of degree 1 . If C becomes degenerate upon removal of its points of degree 1 , then we again let $A=C$. If not, then we let A be the dual of C. In any case, A is of type U and satisfies the requirements of the theorem.

Let \mathfrak{U} be the class of type U incidence structures, and let

$$
\mathfrak{U}_{r}=\{A \in \mathfrak{U}: R(A)=r\}
$$

Now let

$$
u_{r}=\max \left\{|G(A)|: A \in \mathfrak{U}_{r}\right\} .
$$

Suppose that H is a finite subgroup of G_{n}. From Theorem 5.3 we have that $|H| \leqq t!u_{n-t+4}$ for some integer $t, 0 \leqq t \leqq n-4$. Letting

$$
m_{n}=\max \left\{t!u_{n-t+4}: 0 \leqq t \leqq n-4\right\},
$$

we see that m_{n} is an upper bound for the orders of the finite subgroups of G_{n}. We shall discover that for $n \neq 5, m_{n}$ is in fact the best such upper bound.

After calculating u_{r} we shall see that $m_{5}=u_{8}$, and $m_{n}=u_{n+4}$ for $n \neq 5$. Our major task is the calculation of u_{r}. Let Z be the subclass of \mathfrak{U} consisting of those members of \mathfrak{U} which contain only elements of degree 0 . Let $\mathfrak{W}=\mathfrak{U}-\mathfrak{B}$. If $A \in \mathfrak{W}$, then A contains no elements of degree 2 , and A^{*} is degenerate, where A^{*} is the result of removing from A its points of degree 1 . Let \mathfrak{B} be the class of V such that $V=A^{*}$, for some $A \in \mathfrak{W}$. An incidence structure $V \in \mathfrak{B}$ has the following properties: V is degenerate, V contains neither points of degree 1 nor points of degree 2 , and a non-degenerate incidence structure,
namely some $A \in \mathfrak{W}$, may be obtained from V by adding some new points each of which is incident to exactly one line of V.

Let z_{r} and w_{r} denote the maxima of the orders of the collineation groups of rank r members of 3 and \mathfrak{W}, respectively. Then $u_{r}=\max \left\{z_{r}, w_{r}\right\}$.

First, we shall compute z_{r}. If $A \in \mathcal{B}$, then A consists of a points and b lines with no incidences. $R(A)=2(a+b)$, and we see that

$$
z_{r}=\max \{a!b!: 2(a+b)=r\}
$$

Hence,

$$
z_{r}=\left\{\begin{array}{cl}
\left(\frac{1}{2} r\right)! & \text { for } r \text { even, } \\
0 & \text { for } r \text { odd }
\end{array}\right.
$$

In order to compute w_{r} we need a survey of the members of the class \mathfrak{W}. This, in turn, requires a survey of the class \mathfrak{B}. We shall decompose \mathfrak{B} into nine disjoint classes $\mathfrak{B}(1), \ldots, \mathfrak{B}(9)$. This decomposition of \mathfrak{B} induces a decomposition of \mathfrak{W} as follows. Let $\mathfrak{W}(i)$ be the subclass of \mathfrak{W} consisting of those $A \in \mathfrak{W}$ for which $A^{*} \in \mathfrak{B}(i)$. Now \mathfrak{W} is decomposed into the classes $\mathfrak{W}(1), \ldots, \mathfrak{W}(9)$. Clearly,

$$
w_{r}=\max \left\{w_{r}(i): 1 \leqq i \leqq 9\right\},
$$

where $w_{r}(i)$ is the maximum of the orders of the collineation groups of rank r members of $\mathfrak{V}(i)$.

If $V \in \mathfrak{B}$, then $F(V)$ is a degenerate plane. Hence, all members of \mathfrak{B} may be found among the free generators of degenerate planes. A discussion of degenerate planes will prove helpful.

Let \mathfrak{D} denote the class of degenerate planes. Let $\mathfrak{D}(1)=\{D P\}$, where $D P$ denotes the plane consisting of a single point x. Let $\mathfrak{D}(2)=\{D L\}$, where $D L$ denotes the planes consisting of a single line y. In (5) it has been shown that every other degenerate plane contains a point x and a line y such that every line except perhaps y is incident to x, and every point except perhaps x is incident to $y ; x$ and y may or may not be incident to one another. Let $\mathfrak{D}(3)$ be the class of such planes in which x and y are incident, and let $\mathfrak{D}(4)$ be the class of such planes in which x and y are not incident. Let $D_{3}(a, b)$ be the plane containing the $a+1$ points $x, x_{1}, x_{2}, \ldots, x_{a}$ and the $b+1$ lines y, y_{1}, y_{2}, \ldots, y_{i} with x incident to y, x_{i} incident to y for $1 \leqq i \leqq a$, and x incident to y_{j} for $1 \leqq j \leqq b$. Then

$$
\mathfrak{D}(3)=\left\{D_{3}(a, b): a, b \geqq 0\right\} .
$$

Let $D_{4}(c)$ be the plane containing the $c+1$ points $x, x_{1}, x_{2}, \ldots, x_{c}$ and the $c+1$ lines $y, y_{1}, y_{2}, \ldots, y_{c}$ with x incident to y_{i}, y incident to x_{i}, and x_{i} incident to y_{i}, for $1 \leqq i \leqq c$. Then

$$
\mathfrak{D}(4)=\left\{D_{4}(c): c \geqq 0\right\},
$$

and therefore

$$
\mathfrak{D}=\bigcup\{\mathfrak{D}(i): 1 \leqq i \leqq 4\} .
$$

Since $F(V) \in \mathfrak{D}$ for all $V \in \mathfrak{B}$, we may obtain any member of \mathfrak{B} by successively deleting elements of degree 2 from some member of \mathfrak{D}. We shall
exhaust the class \mathfrak{B} by considering all such possible successions of deletions from members of \mathfrak{D}. We recall that a member V of \mathfrak{B} contains neither points of degree 1 nor degree 2 , and that a member of \mathfrak{W} may be obtained by adding points incident to a single line of V. In particular, V must contain at least one line.

First consider $D(1)$. No deletions may be made from $D P$; thus, $D P$ itself is the only candidate for membership in \mathfrak{B}. But $D P$ contains no lines; thus, $D P \notin \mathfrak{B}$. Considering $\mathfrak{D}(2)$, we see that although $D L$ contains the line y, no matter how many points are added incident to y, the resulting incidence structure is degenerate. Hence, $D L \notin \mathfrak{B}$.

Now consider $\mathfrak{D}(3)$. No deletions may be made from $D_{3}(0,0) . D_{3}(0,0)$ contains a point of degree 1 ; thus, it is not a member of \mathfrak{B}. From $D_{3}(0,1)$ we may delete the point x obtaining the plane V_{1} consisting of the two lines y, y_{1}. By adding three points incident to y and three points incident to y_{1} we obtain a member of \mathfrak{B}. Thus, $V_{1} \in \mathfrak{B}$ and we let $\mathfrak{B}(1)=\left\{V_{1}\right\}$.

Consider $D_{3}(0, b), b \geqq 2$. Since the degree of x is $b+1 \geqq 3$, no deletions may be made. Again we may obtain a member of \mathfrak{W} by adding sufficiently many points to y and y_{1}; thus, $D_{3}(0, b) \in \mathfrak{B}$. Let

$$
\mathfrak{B}(2)=\left\{D_{3}(0, b): b \geqq 2\right\} .
$$

From $D_{3}(1,1)$ we may delete either x or y, but not both. If we delete y, then x still has degree 1 ; thus $D_{3}(1,1)-\{y\} \notin \mathfrak{B}$. If we delete x, then x_{1} still has degree 1 . We conclude that $D_{3}(1,1)-\{x\} \notin \mathfrak{B}$.
$D_{3}(1,2)$ contains the point x_{1} of degree 1 ; thus, we must delete y. Now x has degree 2 and therefore we must delete x. Let

$$
V_{3}=D_{3}(1,2)-\{x, y\} .
$$

By adding sufficiently many points to y in V_{3} we obtain a member of \mathfrak{M}. Thus, we let $\mathfrak{B}(3)=\left\{V_{3}\right\}$.

Now consider $D_{3}(1, b), b \geqq 3$. Since x has degree 1 in $D_{3}(1, b)$, we must delete y. Let

$$
V_{4}(b)=D_{3}(1, b)-\{y\}
$$

By adding at least two points to y_{1} we obtain a member of \mathfrak{W}. Thus, $V_{4}(b) \in \mathfrak{B}$. Let

$$
\mathfrak{B}(4)=\left\{V_{4}(b): b \geqq 2\right\} .
$$

Now consider $D_{3}(1,0)$. The only element which may be deleted is y. But deletion of y leaves no lines. Thus $D_{3}(1,0)-\{y\} \notin \mathfrak{B}$. No deletions may be made from $D_{3}(a, 0), a \geqq 2$. Moreover, $D_{3}(a, 0)$ contains points of degree 1 ; thus, $D_{3}(a, 0) \notin \mathfrak{B}$.

Consider $D_{3}(2,1)$. Since x has degree 2 , it must be deleted. This leaves y of degree 2 and x, x_{1} of degree 1 . Hence, we delete y to obtain $V_{5}=D_{3}(2,1)$ $-\{x, y\}$. By adding three or more points to y_{1} we obtain a member of \mathfrak{W}. Thus, $V_{5} \in \mathfrak{B}$. Let $\mathfrak{B}(5)=\left\{V_{5}\right\}$.
$D_{3}(a, 1), a \geqq 3$, contains the points x_{1}, \ldots, x_{a} of degree 1 , which cannot be deleted. Neither can y be deleted, since $a \geqq 3$. Even if we delete x, y still has degree $a \geqq 3$. We conclude that $D_{3}(a, 1)$ yields no new members of \mathfrak{B}. From $D_{3}(a, b), a \geqq 2, b \geqq 2$, no deletions are possible. Since $D_{3}(a, b)$ contains points of degree $1, D_{3}(a, b) \notin \mathfrak{B}$. We have now exhausted the class $\mathfrak{D}(3)$.

Turning to $\mathfrak{D}(4)$, consider $D_{4}(0)$. No deletions are possible. Any new points must be added incident to y, yielding a degenerate incidence structure. $D_{4}(1)$ is isomorphic to $D_{3}(1,1)$ which has already been considered. Now consider $D_{4}(2)$. In order to obtain a candidate for membership in \mathfrak{B}, each point of $D_{4}(2)$ must either be deleted, or its degree reduced to 0 by the deletion of lines. We may remove all three points x, x_{1}, x_{2} to obtain V_{6}. By adding one point to each of the lines y_{1} and y_{2}, we obtain a member \mathfrak{B}. Let $\mathfrak{B}(6)=\left\{V_{6}\right\}$. Now suppose that the degree of x is to be reduced to 0 . Then y_{1} and y_{2} must be deleted. Now x_{1} and x_{2} have degree 1 ; thus, y must be deleted. Since there are no remaining lines, the resulting incidence structure is not in \mathfrak{B}.

Now consider $D_{4}(c), c \geqq 3$. If any line y_{i} is deleted, then the degree of x_{i} is reduced to 1 . In order to obtain a member of \mathfrak{B}, the degree of x_{i} must be further reduced to 0 . This entails deleting the line y. Hence, the degree of y must be reduced to 2 . This can be done only by removing all but two of the points x_{i}. Hence, we may assume that either all x_{i} are removed or all but two of the x_{i} are removed. We may delete the c points x_{1}, \ldots, x_{c} to obtain $V_{7}(c)$. By adding a point to y, we obtain a member of \mathfrak{W}. Let

$$
\mathfrak{B}(7)=\left\{V_{7}(c): c \geqq 3\right\} .
$$

On the other hand, we may start by deleting from $D_{4}(c)$ the $c-2$ points x_{1}, \ldots, x_{c-2}, and then delete y. Then we delete the two lines y_{c-1} and y_{c}. In the case $c=3$, the point x is now of degree 1 ; thus, we do not have a member of \mathfrak{B}. If $c=4, x$ now has degree 2 , and we delete x to obtain $V_{8} . V_{8}$ consists of the points x_{3}, x_{4} and the lines y_{1}, y_{2} with no incidences. By adding a point to y_{1} in V_{8} we obtain a member of \mathfrak{B}; thus $V_{8} \in \mathfrak{B}$. We let $\mathfrak{B}(8)=\left\{V_{8}\right\}$. If $c \geqq 5$, we let

$$
V_{9}(c-2)=\left\{x, x_{c-1}, x_{c}, y_{1}, y_{2}, \ldots, y_{c-2}\right\} .
$$

By adding a point to y_{1} in $V_{9}(c-2)$ we obtain a member of \mathfrak{B}. Thus, $V_{9}(c-2) \in \mathfrak{B}$, and we let

$$
\mathfrak{B}(9)=\left\{V_{9}(c): c \geqq 3\right\} .
$$

We now give two examples of the calculation of the $w_{r}(i)$. A member of $\mathfrak{W}(1)$ is obtained by adding points incident to lines of a member of $\mathfrak{B}(1) . \mathfrak{B}(1)$ contains only V_{1}, where V_{1} consists of the two lines y and y_{1}. Suppose that we add k points to y and k_{1} points to y_{1} to obtain $W_{1}\left(k, k_{1}\right)$. Then $R\left(W\left(k, k_{1}\right)\right)=$ $4+k+k_{1}$. In order that $W_{1}\left(k, k_{1}\right)$ be non-degenerate, we must have $k>1, k_{1}>1$. A member of \mathfrak{W} is a type U incidence structure and has no
elements of degree 2 . Since $d\left(y, W_{1}\left(k, k_{1}\right)\right)=k$ and $d\left(y_{1}, W_{1}\left(k, k_{1}\right)\right)=k_{1}$, we must have $k \geqq 3$ and $k_{1} \geqq 3$. If $k=k_{1}$, then

$$
\left|G\left(W_{1}\left(k, k_{1}\right)\right)\right|=2(k!)^{2} .
$$

If $k \neq k_{1}$, then

$$
\left|G\left(W_{1}\left(k, k_{1}\right)\right)\right|=k!k_{1}!.
$$

Taking the maximum of $\left|G\left(W_{1}\left(k, k_{1}\right)\right)\right|$ subject to the restrictions $k+k_{1}=$ $r-4, k \geqq 3$, and $k_{1} \geqq 3$, we obtain:

$$
w_{r}(1)= \begin{cases}0 & \text { for } r=8,9 \\ 72 & \text { for } r=10 \\ 1152 & \text { for } r=12 \\ 3!(r-7)! & \text { otherwise }\end{cases}
$$

A member of $\mathfrak{W}(2)$ is obtained by adding points incident to lines of a member $V_{2}(b), b \geqq 2$, of $\mathfrak{B}(2)$. Let $W_{2}\left(f_{0}, f_{1}, \ldots\right)$ be the member of $\mathfrak{X}(2)$ obtained by adding k points to each of f_{k} of the lines of $V_{2}(b), k=0,1, \ldots$ Then $f_{0}+f_{1}+\ldots=b+1$, and

$$
R\left(W_{2}\left(f_{0}, f_{1}, \ldots\right)\right)=2+\sum\left\{(k+1) f_{k}: k \leqq 0\right\}
$$

Suppose that $f_{1}>0$. Then exactly one new point was added incident to some line y_{j}. Thus, $d\left(y_{j}, W_{2}\left(f_{0}, f_{1}, \ldots\right)\right)=2$. This is a contradiction since $W_{2}\left(f_{0}\right.$, f_{1}, \ldots) is a type U incidence structure. We conclude that $f_{1}=0$. In order that $W_{2}\left(f_{0}, f_{1}, \ldots\right)$ be non-degenerate we must have that

$$
\sum\left\{f_{k}: k>0\right\} \geqq 2
$$

That is, the total number of points added must be at least four, and they must not all lie on the same line. Furthermore,

$$
\left|G\left(W_{2}\left(f_{0}, f_{1}, \ldots\right)\right)\right|=\Pi\left\{f_{k}!(k!)^{f_{k}}: k \geqq 0\right\} .
$$

Taking the maximum over the rank r members of $\mathfrak{W}(2)$, we obtain

$$
w_{r}(2)= \begin{cases}0 & \text { for } r=8 \\ 8 & \text { for } r=9 \\ 16 & \text { for } r=10 \\ 72 & \text { for } r=11 \\ 2(r-7)! & \text { otherwise }\end{cases}
$$

Calculation of the remaining $w_{r}(i)$ is similar, and we omit the details. The values of $w_{r}(i)$ are given in the following table.

We see that

$$
w_{r}= \begin{cases}2 & \text { for } r=8 \\ 72 & \text { for } r=10 \\ 2(r-6)! & \text { otherwise }\end{cases}
$$

$w_{r}(i)$

i	$r=8$	$r=9$	$r=10$	$r=11$	$r=12$	$r \geqq 13$
1	0	0	72	144	1152	$3!(r-7)!$
2	0	8	16	72	240	$2(r-7)!$
3	2	6	24	120	720	$(r-6)!$
4	0	4	12	48	240	$2(r-7)!$
5	0	12	48	240	1440	$2(r-6)!$
6	2	6	6	24	120	$(r-7)!$
7	0	4	12	48	240	$2(r-7)!$
8	0	2	4	12	48	$2(r-8)!$
9	0	0	0	8	24	$4(r-9)!$

Since $u_{r}=\max \left\{z_{r}, w_{r}\right\}$ we have that $u_{8}=z_{8}=4!, u_{9}=w_{9}=2 \cdot 3!, u_{10}=$ $z_{10}=5$!, and $u_{r}=w_{r}=2(r-6)$! for $r \geqq 11$. Thus,

$$
u_{r}= \begin{cases}4! & \text { for } r=8 \\ 5! & \text { for } r=10 \\ 2(r-6)! & \text { otherwise }\end{cases}
$$

We now calculate m_{n}. Let

$$
x_{n}=\max \left\{t!u_{n-t+4}: 0 \leqq t \leqq n-7\right\}
$$

and

$$
y_{n}=\max \left\{t!u_{n-t+4}: n-6 \leqq t \leqq n-4\right\} .
$$

Then $m_{n}=\max \left\{x_{n}, y_{n}\right\}$. For $4 \leqq n \leqq 6$ we have that $x_{n}=0$. Thus, $m_{4}=y_{4}=$ $u_{8}, \quad m_{5}=y_{5}=u_{8}$ and $m_{6}=y_{6}=u_{10}$. Now suppose that $n \geqq 7$. Then $x_{n}=2(n-2)!$ and $y_{n}=4(n-4)!$. Hence $u_{n}=2(n-2)!$. We have proved the following theorem.

Theorem 5.4. If H is a finite subgroup of G_{n}, then $|H| \leqq m_{n}$, where

$$
m_{n}= \begin{cases}4! & \text { for } n=4,5 \\ 5! & \text { for } n=6 \\ 2(n-2)! & \text { otherwise }\end{cases}
$$

We now establish the fact that for $n \neq 5, m_{n}$ is the best upper bound for the orders of the finite subgroups of G_{n}. We shall exhibit a subgroup of G_{n} of order m_{n}, for $n \neq 5$.

Suppose that $n=4$. Let A be a free generator of F_{4} consisting of four points. Now $G(A)$ is isomorphic to S_{4}; thus $|G(A)|=4!=m_{4}$. Since each member of $G(A)$ has a unique extension of $F_{4}, G(A)$ is a subgroup of G_{4}. Suppose that $n=6$. Let A be a free generator of F_{6} consisting of five points. Now $G(A)$ is isomorphic to S_{5}; thus $|G(A)|=5!=m_{6}$. As before, $G(A)$ is actually a subgroup of G_{6}. Suppose that $n \geqq 7$. Let A be a free generator of F_{n} consisting of n points $x_{1}, x_{2}, \ldots, x_{n}$ and one line y with x_{i} incident to y for $1 \leqq i \leqq n-2$. Now $G(A)$ is isomorphic to $S_{2} \times S_{n-2}$; thus $|G(A)|=2(n-2)!=$ m_{n}. Again, $G(A)$ is a subgroup of G_{n}.

Corollary 5.1. For $n \neq 5$, the upper bound m_{n} of Theorem 5.4 is in fact the best upper bound.

The best upper bound for the orders of the finite subgroups of G_{5} is not known. From Theorem 5.4 we conclude that 24 is an upper bound. It is easily shown that the best upper bound is greater than or equal to 12 . Let A be the free generator of F_{5} consisting of the five points $x_{1}, x_{2}, \ldots, x_{5}$ and one line y, with x_{1}, x_{2}, and x_{3} incident to y. Then $|G(A)|=12$ and $G(A)$ is a subgroup of G_{5}. The author conjectures that 12 is in fact the best upper bound for $n=5$.

The author is grateful to the referee for his many helpful suggestions concerning this paper.

References

1. Peter Dembowski, Freie und offene projektive Ebenen, Math. Z. 72 (1959/60), 410-438.
2. M. Hall, Projective planes, Trans. Amer. Math. Soc. 54 (1943), 229-277.
3. P. C. Hammer, Kuratowski's closure theorem, Nieuw Arch. Wisk. (3) 8 (1960), 74-80.
4. O. Iden, Free planes. I, Math. Z. 99 (1967), 117-122.
5. L. I. Kopeikina, Freie Zerlegungen projektiver Ebenen, Izv. Akad. Nauk SSSR Ser. Mat. 9 (1945), 495-526. (German translation from Russian privately circulated)
6. Marco Lippi, Sugli elementi uniti nelle collineazioni dei piani liberi e dei piani aperti. I ; II, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 40 (1966), 233-237; 379-384.
7. G. Pickert, Projektive Ebenen (Springer-Verlag, Berlin, 1955).
8. Reuben Sandler, The collineation groups of free planes, Trans. Amer. Math. Soc. 107 (1963), 129-139.

Michelson Laboratories,
China Lake, California

[^0]: Received May 3, 1967 and in revised form, November 9, 1967. This paper contains part of the results from the author's doctoral dissertation prepared under the direction of Professor J. D. Swift at the University of California at Los Angeles.

