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Let 5 and T be inverse semigroups. Their free product S inv T is their coproduct in
the category of inverse semigroups, defined by the usual commutative diagram. Previous
descriptions of free products have been based, like that for the free product of groups, on
quotients of the free semigroup product 5 sgp T. In that framework, a set of canonical
forms for S inv T consists of a transversal of the classes of the congruence associated with
the quotient. The general result [4] of Jones and previous partial results [3], [5], [6] take
this approach.

The approach here is to make use of the relationships among the presentations of 5,
T and 5 inv T. Recall that if X is a nonempty set and X~l is a set of formal inverses of X
then the free inverse semigroup ¥\S{X) over X is (X U X~l)+/p, where (A' U A'"1)"1" is the
free semigroup on XUX'1 and p is the Vagner congruence (see [10]). If P is a relation
on X then the inverse semigroup with presentation (X \ P), Inv(Ar \ P), is the quotient
(X U X~1)+/T, where x is the congruence generated by p U P . (Clearly, Inv(A" | P) is
also isomorphic to a quotient of the free inverse semigroup on X, by a suitable
congruence.)

Now if the given inverse semigroups 5 and T are presented as 5 = Inv (A" | P) and
T = Inv(y | Q), where X and Y are disjoint, then it is an exercise in universal algebra to
verify that S inv T = Inv (A' U Y | P U Q). The graph-theoretical techniques developed by
Stephen to study presentations of inverse semigroups may then be used and this is the
point of view that will be taken in this paper. These techniques originated with Munn's
use of trees to study free inverse semigroups [9] and the current paper is therefore in a
sense also a sequel to his.

Stephen's techniques are reviewed rather summarily in Section 1. For many further
details the reader is referred to the paper [12] and the thesis [13] by Stephen (see also
[8]). Section 2 treats in the abstract the particular types of graphs that appear in the
construction of the Schiitzenberger automata for free products, the construction itself
appearing in Section 3 (Theorem 3.4). Exactly which automata can be the Schiitzenberger
automaton of an element of a free product is established in Section 4 (Theorem 4.1), thus
providing a set of canonical forms for the product. From these forms, the canonical forms
found by Jones in [4] may be quite easily found and proven unique (Theorem 4.5 and its
corollary). Yet another set of canonical forms is also produced (Theorem 4.7 and its
corollary). These are again graphical and are very similar to those previously given by
Jones [3] for the free product of £-unitary inverse semigroups and by Margolis and
Meakin [7] for the analogous product of inverse monoids, in the category of inverse
monoids.

The paper is completed by a new application: the free product of two residually finite
inverse semigroups is again residually finite.

We note that the methods of this paper may be extended in obvious ways to the free
product of finitely many inverse semigroups, and by means of direct limits, to arbitrary
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families. In addition, some of the results may be modified so as to construct the
Schiitzenberger automata for the free product of inverse monoids, within the category of
inverse monoids. As remarked above, a special case was studied in [7], to which the
reader is referred for a discussion of the differences between the two products.

For basic notions of semigroup theory see Clifford and Preston [1] and for inverse
semigroups in particular, see Petrich [10]. For basic automata theory see Hopcroft and
Ullman [2].

1. Inverse word graphs. Throughout this section, S is an inverse semigroup with
fixed presentation (X \ P). A labelled digraph F over a nonempty set T, of labels, consists
of a set V(T), of vertices, and a set E(T), of edges, where E(F) c V(T) xTx V(T). An
(inverse) word graph over X (more precisely, over X\JX~X) is a strongly connected
digraph F whose edges are labelled from X U X~l in such a way that for any edge labelled
by y there is an edge labelled by y~l in the reverse direction. (In diagrams the edges
labelled from X~x are conventionally omitted.) A path in F is a nonempty sequence p of
consecutive edges (whose vertices may be repeated). If the initial and terminal vertices of
p are or and /3, respectively, we write p : a—> /3. For p = P\p2. • . pn, the word labelling p
is the string yyy2. . .yne ( I U I " 1 ) + , where _y, labels pt. The inverse path p~l is then
labelled by y~l... y^yT1-

An inverse automaton over X is a triple si = (a, F, j8), where F is an inverse word
graph and a, /3 e V(T). (We may also term si a birooted word graph and if a = /} we may
call it rooted.) The language L(si) of si consists of the set of words in (ArUAr"')+ that
label paths in F from a to /?.

An inverse automaton (and likewise a word graph) is deterministic if all edges
directed from a vertex are labelled by different letters. A homomorphism of word graphs
is a homomorphism of the underlying graph that preserves the labelling; a
homomorphism of inverse automata is a homomorphism of the underlying word graphs
that maps roots to roots. A V-equivalence on an inverse word graph F is an equivalence
relation on V(F). If t] is such a relation then the V-quotient F/rj is defined by
V(I7IJ) = V<X)lt\ and E(YIT]) = {((V,IJ), x, (v2!/)) | (v,, x, v2) e £(F)}. K-equivalences
on inverse automata are defined in the obvious way.

For ue(XU Ar~1)+, the Schutzenberger graph 5F(u) of u (with respect to (X \ P)) is
the graph whose set of vertices is RUT, the S?-class of the image of u in 5; there is an edge
labelledy eXUX~l from vx to wx if (vy)x = wx. The Schutzenberger automaton d(u) is
the inverse automaton ((ww"1)^ 5F(M), MT). By [12, Corollary 3.2],

L{si{u)) = u] = {v e (X UX'Y:VT>UX in 5},

where ^ is the natural partial order on 5. Clearly, every Schutzenberger graph and
automaton is deterministic, a fact which will be used without comment. We may
sometimes blur the terminology by referring to the Schutzenberger graph or automaton of
an element of 5. This is justified by the following result from [12].

RESULT 1.1. For S = ln\(X | P) = ( I u r ' ) + / T and u,ve(X(J X'1)* the follow-
ing are equivalent:

(a) ux = vx,
(b) L(si(u)) = L(si(v)),
(c) u e L(M(v)) and v e L{si(u)),
(d) M(u) = M(v).
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This result may be regarded as providing a set of canonical forms for S. Actual
solution of the word problem for 5 depends on the decidability of these automata. We
now present the procedure for constructing sl{u) given by Stephen. This procedure is not
in general effective but when it is it may be used to solve the word problem in 5. For
instance, the Schutzenberger automata of free inverse semigroups are precisely the trees
used by Munn [9] to solve the word problem. For various further applications, see [12].

We first extend the range of use of a definition in [12]. An inverse automaton
si = (a, F, /3) over X is an approximate automaton for u e (X U X~l)+, relative to the
given presentation, if (i) u e L(si) and (ii) L ( ^ ) c « | ; thus if si is an approximate
automaton for both u and v then ux = vx; the Schutzenberger automaton of u is itself an
approximate automaton for u. Call si an approximate automaton (relative to the
presentation) if it is an approximate automaton for some ue(XUX~1)+. Call a word
graph T an approximate word graph if for some a, /? e V(T), (a, T, /J) is an approximate
automaton. By [12, Theorem 3.1], this definition is independent of the choice of a and /J.

RESULT 1.2 [12, Lemmas 2.3, 2.4, Theorem 2.5]. Let s£x and sl2 be inverse automata
over X. If there exists a homomorphism from sdx to si2 then L(s£x) c. L{si2). If^i and si2

are deterministic and L{six) c. L(M2) then there is a homomorphism from slx to s$2 and if
L(six) = L(si2) then six = si2.

Let

(1)

be a sequence of inverse automata, where the <j>t are homomorphisms. The direct limit of
the sequence is defined in the usual way and is clearly again an inverse automaton over X.

LEMMA 1.3. Let w e(X UX~1)+. The direct limit of a sequence (1) of approximate
automata for w is again an approximate automaton for w.

Proof. Let si be the direct limit of the sequence (1). It is easily verified that
= U {Lisl,) : i> l} , whence w 6 L(st) c w].

Two constructions are defined in [12] for an automaton si = (a, I\ /3) over X:
determinations and expansions. If the word graph Y has two edges with common initial
vertex and the same label, the automaton obtained from si by identifying their terminal
vertices is an elementary determination of si. The determinized form of si is the quotient
of si by the least F-equivalence r] on si such that si/r] is deterministic. That a least such
relation exists is proven in [13, Lemma 4.3]. (The determinized form of a word graph is
defined similarly.) A partial determination is a quotient s&lr\u where ^i£»j. A similar
definition appears in a paper by Stallings [11].

LEMMA 1.4. Let w e(X U X~l)+. If si is an approximate automaton for w then so is
any partial determination of si.

Proof. Let 38 be a partial determination of si. Then L(si) c L(S8) by Result 1.2. By
[12, Corollary 4.5], L(flB) c L{si)] c ( M | ) | = u\, as required.

If r = s is a relation in P and T has a path, from y to 6, say, labelled by r but no such
path labelled by s, "sew on" a new path from y to 6, labelled by s. The resulting
automaton is an elementary expansion of si. An expansion of si is the automaton that
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results from simultaneously performing a set of elementary expansions (on si itself) and
then determinizing. Denoting the undeterminized form by Esi, it is clear that si is
embeddable in Esi and that there is a homomorphism from si into the consequent
expansion. Further, L{Esi)x 3 L(s£)x. If all possible elementary expansions are per-
formed the result is the full expansion of si.

LEMMA 1.5. Let w e{X\JX~l)+. If si is an approximate automaton for w then so is
any expansion of si and so is the undeterminized form Esi of the expansion.

Proof. Apply Lemma 1.4 and the remarks above.

An inverse automaton over X is closed if it is deterministic and no further expansions
can be applied to it.

The procedure devised by Stephen is now presented. Let w = u1u2. .. un, where
each M, e (X U X~l)+ and let sio(w) be the linear automaton of w:

Let s£x{w) be the full expansion of sio(w) and let (pl:si0(w)—* sit(w) be the
homomorphism mentioned earlier. In general, let si^w) be the full expansion of .!#,•_ ,(w),
with associated homomorphism faisij-^w) —*sij(w).

The direct limit 3)(w) of the sequence

sio(w) -±U sl^w) -£-> si2(w) • . . . - * - > sin(w) >... (2)

is a deterministic inverse automaton over X which, by Lemma 1.3, is an approximate
automaton for w and which is closed. The following result is a slight variation on [12,
Theorem 5.10].

RESULT 1.6. Let w e(X L)X~1)+. If si is a closed approximate automaton for w then
si is isomorphic to the Schutzenberger automaton for w.

The main tool for application in the sequel is now evident.

THEOREM 1.7. Let we(XUX~l)+. The Schutzenberger automaton si(w) is
isomorphic, as an inverse automaton over X, to the direct limit of the sequence (2) of
iterated full expansions of the linear graph of w.

(If the presentation (X \ P) is finite, the sequence (2) will consist of finite automata.
If the sequence should stabilize, this procedure thus provides an effective construction for
the Schutzenberger graph of w. If all such sequences stabilize, the word problem for the
inverse semigroup thus presented is therefore solved by Result 1.1. In [12] a "confluence
lemma" is proved, implying that any closed automaton that is obtained from the linear
graph of w by a sequence of expansions and determinations is isomorphic to the
Schutzenberger graph of w. A more general result yet is contained in [13]. However, we
shall not need any of these further observations.)

This introduction is completed with a method for forming a product of inverse
automata (a^Tt,^) and (cr2, T2,/32) over X. This product (auTu /3,) x (a2, F2, j32) is
the inverse automaton (a0, To, j80), whose underlying word graph is ro = (r, UF2)/0,
where 8 is the least K-equivalence on T, U T2 that identifies the vertices )3, and a2, and aQ
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and /?o are the images of ax and )S2, respectively, in that quotient graph. Clearly, the
product of two deterministic automata (aurupi) and (a2, F2, /32) need not again be
deterministic. However, if Tt and F2 are subgraphs of some deterministic word graph F,
and if /Jj = a2 in F then Fo is again a subgraph of F and the product is therefore once
again deterministic.

RESULT 1.8 [12, Lemma 5.2]. Let slx and sd2 be inverse automata over X. If Mx and
si2 are approximate automata for ux and u2, respectively, in (X U X~l)+ then i , x si2 is
an approximate automaton for uxu2.

2. Word graphs over X UY. Let (X \ P) and (Y | Q) be disjoint inverse presenta-
tions. In this section we study the abstract properties of the word graphs that appear in the
sequel. The edges of a word graph F over X UY may be considered "colored" by one of
two "colors"—one for XUX'1 and one for YUY~l. A subgraph of F is (edge-)
monochromatic if all its edges have the same color. (In general, then, word graphs over
X U Y are "dichromatic".) A path is monochromatic if its underlying subgraph is. A lobe
of F is a maximal monochromatic connected subgraph of F. Clearly the lobes of F
partition its edge set £(F) and each lobe is a word graph over either X or Y. A vertex of
F that belongs to more than one lobe (clearly, exactly two) is called an intersection (or
dichromatic) vertex.

A path in a digraph is simple if it contains no repeated vertex, other than perhaps its
first and last, in which case it is a simple cycle.

A word graph F over X U Y is called cactoid if
(i) F has finitely many lobes, and
(ii) every simple cycle of F is monochromatic.

We shall prove in Section 3 that the Schutzenberger graphs of the elements of
\n\{X U Y | P\J Q) are, up to isomorphism, the cactoid graphs over XUY each of
whose lobes is the Schutzenberger graph of an element of Inv(Ar | P) or of Inv( Y | Q).
This section is devoted to the study of cactoid graphs. Throughout the remainder of the
section F will denote such a graph.

Let p'.y—* d be a path in F. A switchpoint of p is a vertex that is common to
successive edges of different color. (Thus each switchpoint of p is an intersection point of
F, but p may pass through an intersection point without changing color.) The switchpoint
sequence of p is then the (possibly empty) sequence of switchpoints which p traverses, in
order. The path p may be factored as a product of monochromatic subpaths. The
sequence of colors of those subpaths is its color sequence.

LEMMA 2.1. Let y and 8 be distinct vertices of F. Any two simple paths from y to 8
traverse the same switchpoint sequence and the same color sequence.

Proof. The proof is by induction on the number of common vertices of the paths.
Suppose p, q: y-> 6 are simple paths with no common vertices other than y and 6. Then
the composite path pq'1 is a simple cycle in F whence, by hypothesis, monochromatic.
Thus p and q have the same color and the same (empty) switchpoint sequences.

On the other hand, if p and q have a common vertex JI, other than y and 6, then p
and q may be factored, as p\p2 and qxq2 respectively, where px,qx:y^>n and
p2,q2:n^>6. Now the induction hypothesis gives the requisite result, forp, and qx end in
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the same color and p2 and q2 begin in the same color; so n itself can be a switchpoint for
p if and only if it is for q.

(In fact the statement in the lemma is equivalent to the monochromaticity of simple
cycles in F.)

COROLLARY 2.2. Distinct lobes of F possess at most one common vertex.

Proof. Suppose lobes A! and A2 possess common vertices y, 8, y^8. There are
simple paths p and q, in At and A2, respectively, from y to 8. By the preceding lemma, p
and q have the same color sequence and therefore the same color. Thus A] = A2.

For distinct vertices y, 8 of F, the switchpoint sequence from y to 8 is the switchpoint
sequence of some (any) simple path from y to 8.

An automaton will be termed cactoid if its underlying word graph is. Let
si = (a, F, a) be a cactoid rooted automaton. Let y be a vertex of F distinct from a. The
switchpoint sequence of y is that from a to y. Let / be the length of the switchpoint
sequence of y. The norm of y (with respect to the root a) is defined by:

fO, if y = or,
+ /, otherwise.

The nodes of si are the intersection vertices of F, together with the root a.

LEMMA 2.3. Each lobe A of F possesses a unique vertex AA of least norm and XA is a
node of si. For every other vertex y of A, \\y\\ = ||AA|| + 1.

Proof. Suppose ae A. Then ||crll = 0 and, for every other vertex yo fA , ||y|| = l.
Otherwise, let A be a vertex of least norm in A. Let p be a simple path from a to A. Then
the final edge in p does not belong to A, for the final switchpoint n, say, of p would then
belong to A but have norm ||A|| - 1. Hence A is a node of si. Let y be any other vertex of
A and let q be a simple path from A to y in A. It follows from Lemma 2.1 that the
composite path pq is a simple path from a to y that has A as its final switchpoint. Thus

+ 1.

The node AA defined in the lemma will be called the root of A.

COROLLARY 2.4 (to the proof). The root a of M is the root of two distinct lobes if it
is an intersection vertex, and is the root of a unique lobe otherwise. Every other node is the
root of a unique lobe.

Proof. The first sentence is clear from || ar|| = 0. Let y be any other node and let p be
a simple path from a to y. Then y is the root of the lobe to which the last edge of p does
not belong and is not the root of the lobe to which it does belong.

3. The construction. Let (X \ P) and (Y | Q) be disjoint presentations and let
5 = Inv (Z |P ) and T = Inv(Y|Q}. Let w e(X UX^UYUY-y. We describe a
procedure for obtaining the Schiitzenberger automaton of w (relative to the presentations
of 5 and of T) from the linear automaton of w in a finite number of steps. The typical step
simply replaces a single lobe by the Schiitzenberger graph of the element of S U T that it
represents. Thus effective computation of s£{w) relies only on effective computation of
the Schiitzenberger graphs of the elements of 5 and of T.
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Denote the linear automaton sio(w) of w (see Section 1) by (aw, Tw, (}w). The graph
F,,, is clearly cactoid. Let the nodes of (aw, Tw, aw) be aw = Ao, A,,. . . , An, say, n > 0.
Thus for each /, ||A,|| = i and A, is the root of a unique lobe A,. Put An+1 = fiw. With each
lobe A, there is associated the inverse automaton (A,, A,, A,+1) which is the linear
automaton of some word w(l) in either {X KJX~x)+ or (KU Y~x)+ and is therefore an
approximate automaton for w(l) over X or Y. It follows that each rooted lobe (A,, A,, A,) is
also an approximate automaton (for wM{w(l)yl).

We now define a construction that, when applied to the linear automaton of w, will
yield its Schiitzenberger automaton in finitely many steps. Let si = (a-, F, /3) by any
cactoid inverse automaton over X UY with the property that each lobe is an approximate
graph (over X or over Y).

Suppose si is not closed. Then either there are two edges of F with the same label
and same initial vertex, or there is a path in F labelled by one side of some relation in
PUQ but no path between the same vertices labelled by the other side. In the former
case, both edges are contained in the same lobe of F. In the latter case, since
P^(XUX-l)+x(XUX-l)+ and Q c (YU Y~')+ x (Yu Y~l)+, this path is again
contained in some lobe of F. In either case, denote the lobe by A, with root A = AA.
Without loss of generality we may suppose A is colored from X, whence (A, A, A) is an
approximate automaton for some « e ( I U ^ 1 ) + . However, by assumption, A is not
closed with respect to (A' | P). By Theorem 1.7, there is a homomorphism </> from
(A, A, A) to the Schutzenberger automaton si(u) of u with respect to (X \ P). Thus
s4(u) = (A*, A*, A*), where A* = 5F(M), the Schutzenberger graph of u with respect to
(X | P), and A* = k(j>.

Construct a new automaton si* from si by replacing A by A*, the Schutzenberger
graph of u over X. Formally, let F* = (F U A*)/K, where K is the least K-equivalence on
FU A* that identifies each vertex of A with its image in A*. (Another viewpoint on this
construction is presented below.)

The homomorphism <j> from A to A* extends to a homomorphism <p* of F to F*; put
a* = a<t>*, 0* = PQ* and si* = (a*, F*, /S*). Clearly K identifies only vertices within A
(including, possibly, intersection vertices with other lobes). Thus <j>* is injective on lobes
other than A; we will identify these remaining lobes with their images in r*. The lobes of
F* therefore comprise: A* = 5F(u); those lobes of F that did not intersect A; and lobes
that were formed by the amalgamation of lobes of F by identification, under K, of their
intersection points with A.

Whilst "replacing the lobe by its Schiitzenberger graph" is the way this construction
is intended to be viewed, an alternative viewpoint will simplify its validation. Let i ^
denote the automaton (A, A, A). By hypothesis, i£, is an approximate automaton for u.
Hence, by Theorem 1.7, si(u) is the direct limit of the sequence

c^^^JU^ > . . . - * + . £ . . . . (3)

of iterated full expansions of î > with respect to (X \ P). For each i, let .2) = (A,, A,, A,).
Then si* is the direct limit of the sequence

„ <PX „ <t>i „ <t>n . , ...
si0 *Mi *si2 >... *sin >..., (4)
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where si0 = si and Mt is obtained from J^,_, by replacing the lobe A,_, by A, in J^,-_I, and
<f>f is the induced homomorphism from sij_x to sit.

Put si,: = ((Xj, F,, Pi). The replacement of A,_, by A, involves an expansion (see
Section 1) of sit-X: first all possible elementary expansions within A,_! are performed to
obtain the intermediate graph £F,_i and the intermediate automaton Esij-X. Then the
partial determination of Esit-X that determinizes EA,_, (to obtain A,) is performed.

PROPOSITION 3.1. If si is an approximate automaton for w then so is si*.

Proof. This follows from Lemmas 1.3 and 1.5.

PROPOSITION 3.2. The automaton si* is cactoid.

Proof. We use the original definition of si*. First observe that F* has at most as
many lobes as F has. Now letp be a simple cycle in its word graph F*. Suppose p contains
no vertex of the lobe A*. Then (using the identification of lobes of si disjoint from A with
their images in F*), p is a simple path in F and is therefore monochromatic.

Next, suppose p contains a vertex of A* but is not a path in that lobe. Without loss of
generality, p contains nodes y and 6 of A* (possibly equal) such that the subpath px from
y to 6 contains no vertex of A* other than its endpoints. This subpath is then the image of
a simple path qx from a preimage yx of y to a preimage 6X of 6 in F. If yx and <5, are
distinct then there is a simple path within A from the former to the latter; its composition
with qx forms a simple dichromatic cycle in F, contradicting the hypothesis that F is
cactoid. Thus yx = 8X and qx is a simple cycle in F, whence monochromatic. Hence px is
monochromatic. Moreover, since y = 8 and p is simple, p=px. The only remaining
possibility is that p lies within A* and is therefore again monochromatic.

PROPOSITION 3.3. If each lobe ofT is an approximate graph {over S or over T) then so
is each lobe o/F*.

Proof. The result is true of the new lobe A*, for it is the Schiitzenberger graph of u.
Any remaining lobe that was not just a lobe of F was formed from lobes Mx,. . . , Mk of F
of the same color by amalgamating over a common vertex, ju say, belonging to A. By
hypothesis, for each;, (ju, M;, ju) is an approximate automaton. The amalgamated lobe M
is then isomorphic to the underlying word graph of (ju, Mt, ju) x . . . x (//, Mk, ju) which is
an approximate automaton by Result 1.8.

The construction si^>si* may be iterated, beginning with the linear automaton
sio(w). The three preceding propositions verify that the hypotheses are valid at each
iteration. This yields a sequence

sio(w), M*0(w), < » . . .

At each stage the number of lobes either remains the same (if no identification of
nodes occurs) or decreases. After finitely many iterations, therefore, no further
identifications of nodes may occur. Thus each further iteration results in the closure of a
single lobe, leaving the remaining lobes untouched. Since the automata have finitely many
lobes, the process terminates in a closed automaton which is approximate, relative to
(X U Y | P U Q). An application of Lemma 1.6 completes the proof of our main theorem.
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THEOREM 3.4. Let (X \ P) and (Y \ Q) be disjoint presentations of inverse semigroups
S and T, respectively. Let w e (XL)X~* U YU Y~l)+. Beginning with the linear auto-
maton of w, iterated application of the above construction, at each step replacing a single
non-closed lobe with the associated Schutzenberger graph, relative to S or to T, terminates
in finitely many steps in the Schutzenberger automaton of w.

COROLLARY 3.5. / / there is an effective procedure for constructing the Schutzenberger
automata of elements of S and of T, there is such a procedure for constructing the automata
for the elements of S inv T.

4. Canonical forms. The main result of this section is the following theorem.

THEOREM 4.1. Let (X \ P) and (Y | Q) be disjoint presentations of inverse semigroups
S and T, respectively. The Schutzenberger automata of the elements of S inv T = Inv(Ar U
Y | P U Q) are precisely (a transversal of) the cactoid inverse automata over X L)Y each
of whose lobes is a Schutzenberger graph over either X or Y.

This theorem provides a set of canonical forms for 5 inv T. Its proof leads naturally
to a derivation of the canonical form of Jones (Theorem 4.5) in terms of words in the free
semigroup product 5 sgp T and to an alternative canonical form by trees labelled from 5
and T.

That every Schutzenberger automaton has the stated properties is immediate from
Propositions 3.2 and 3.3 and the remarks prior to Theorem 3.4. Conversely, let
si = (a, F, fi) be a cactoid automaton over XUY each of whose lobes is a
Schutzenberger graph over either X or Y. Let A be a lobe of si with root A distinct from
a. Define the extended switchpoint sequence of A to be the uniquely denned sequence
a- = Ao, A,,. . . , An = A, where the subsequence A,,. . . , An_j is the switchpoint sequence
of A. Let A(0) , . . . , A(n-1) be the sequence of distinct lobes containing the edges of some
simple path from a to A; let A(n) = A.

The branch to A, br(A), is the union of the subgraphs A(0),. . . , A(n) and its branch
automaton is (a, br(A), A). Its rooted branch automaton is (a, br(A), a). If A = a, put
br(A) = A and define the branch automata similarly.

From the definition of product of automata (end of Section 1), it is clear that

(a, br(A), A) = (a, A(0\ A,) x . . . x (An_1; A ^ 1 ) , A) x (A, A, A)

and that

(or, br(A), a) = (a, br(A), A) x (A, br(A), or).

By hypothesis, for / = 0,. . . , n - 1, there exists u, e (XUX~l)+ U (YU Y~')+ such
that J^(M,) = (A,, A(<), A,+1); and there exists un such that si(un) = (A, A, A). Put w(A) =
u0 . . . un.

PROPOSITION 4.2. The branch automaton (a, br(A), A) is the Schutzenberger auto-
maton of the product u(A); the rooted branch automaton (a, br(A), a) is the
Schutzenberger automaton of the product M(A)U(A)~1.

Proof. By Result 1.8, (a, br(A), A) is an approximate automaton for «(A); but, since
T is closed, so is br(A) and the first statement follows from Result 1.6. The second
statement is similar.
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PROPOSITION 4.3. The rooted automaton {a, F, a) is isomorphic with the product, in
any order, of the rooted branch automata (a, br(A), a) over the set of lobes ofT. Hence,
(a, F, a) is the Schiitzenberger automaton of II {M(A)M(A)~1 : A a lobe of F} , the product
taken in any order.

Proof. The first statement follows from a straightforward induction argument (note
the comments preceding Result 1.8). The second uses the method of the preceding
proposition.

Finally we take account of the vertex /3. If /? = a, define r(/3) = 1. Otherwise, let
a = f}0,. . . , fim = /S be its extended switchpoint sequence. Let M(o),. . . , M(m~° be the
sequence of distinct lobes containing the edges of some simple path from a to /3. For
i = 0 , ...,m-l, let r, be a word in (X U X'l)+U^YUY^y whose Schutzenberger
automaton is (/J,, M('\ )31+1). Put r(/3) = r0 . . . rm_, (cf. the definition of M(A) above).

PROPOSITION 4.4. For /S =h a, the automaton si = (a, F, jS) is isomorphic with the
product

(a, T, a) x (/S0) M
(o>, ft) x . . . x (/3m_,, M(—1\ 0).

Hence, in every case, si is the Schutzenberger automaton of the word

I ] (M(A)M(A)-1 : A a lobe of F}r(/3) e (X U X'1 U Y U Y'Y-

Proof. The isomorphism with the specified product is clear. The second statement
follows from Proposition 4.3, by the same techniques.

This completes the proof of Theorem 4.1, characterizing the Schutzenberger
automata of the element of SinvT and therefore, in conjunction with Result 1.1,
providing a set of canonical forms for the free product. Of course this form is dependent
on the particular presentations provided for 5 and T. An alternative "presentation-
independent" graphical canonical form will be presented later in this section. Next,
however, we show that Jones' canonical forms [4] can be easily derived from Theorem
4.1, using the propositions in its proof.

We briefly review some notation and terminology from [4]. Elements of the free
semigroup product 5 sgp T may be represented uniquely as words of the form vr. . . vn,
where the letters belong alternately to 5 and to T. Since 5 inv T is generated, as an
inverse semigroup, by 5 and T, we may view 5 inv T as a subset of S sgp T, when
convenient. A word in S sgp T is left reduced if its last letter, but no other, is an
idempotent. A canonical set for 5 inv T is a finite nonempty set A of left reduced words
such that

(i) A is prefix-closed, i.e. if v1. .. vn eA then t^ . . . (u/U,"1) zA for i = 1 , . . . , n,
and

(ii) A has unique last letters, i.e. if vx. . . vn, wt.. . wn eA and vx, wx belong to the
same factor 5 or T then u, = w, for all i < n implies vn = wn.

An associate of such a set A is either the empty word 1 or a reduced word
a = ax. . . an (with no a, idempotent) such that ax • • • {ana~l) eA. A canonical pair (A, a)
for 5 inv T consists of a canonical set A and an associate a of A.
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If a = a, . . . an e S sgp T, put aa~l = a, . . . (ana~*) . . . a^1; if A is a finite nonempty
subset of S sgp T, put £(/l) = II {aa~l :a e A}, where the product is taken is some fixed
order. (Considered as an element of 5 inv T, the order in which the product is taken is
immaterial.)

One procedure for associating a canonical pair with an element of 5 inv T is
presented in [4]. Our procedure here is based on Theorem 4.1 and its proof. Thus we
must first choose presentations (X \ P) and (Y \ Q) for S and T respectively. (However
the end result will be independent of these choices.) Let s& = (a-, T, /3) be a
Schiitzenberger automaton for 5 inv T, according to Theorem 4.1. For each lobe A, with
root A, define w(A) = ut . . . un as above (before Proposition 4.2) and let u(A) =~u\ . . . u~n,
where wj is the image of «, in 5 or in T, depending on whether w, is in (X U X~l)+ or in
(y U y~')+- By Proposition 4.2, (a, br(A), A) s si(u\. . .u~n).

From the definition of w(A), it is clear that M(A) is a left reduced word in S sgp T and
that for i < n, u[. . . (UjUi~l) = w(A(0). Hence the set A(s&) = {M(A) : A a lobe of T} is
prefix-closed. Let A, M be lobes of T, with roots A, fi, respectively, and let
w(A) = « ! . . . «„ , M(M) = Vi . . . vm. Suppose m = n, u\, v~x both belong to the same factor
5 or T and ~ut = xTh i<n. Then a simple induction establishes that u, and u, represent the
same lobes, for i<n, whence A and M have the same intersection point with the lobe
represented by «„_], that is, A = /i. Therefore s£{un) = (A, A, A) = si(vn) and ~u~n =

 :v~ri.
Hence A($£) has unique last letters.

Finally, recall the definition of r(/S) (before Proposition 4.4), define r(/3) as for ii(A)
and denote it by r(sd). It is easily verified that r{s£) is a reduced word in 5 sgp T and is an
associate of A{s&).

THEOREM 4.5. The map s£-*(A{s£),r(M)) is a 1-1 correspondence from the
set of isomorphism classes of Schiitzenberger automata for S inv T, with respect to
(X U Y | P U Q), to the set of canonical pairs for S inv T, with inverse (A, r)—* si(e(A)r).

Before completing the proof of the theorem we draw its main conclusion.

COROLLARY 4.6. The elements of S inv T are uniquely representable in the form e{A)r,
where {A, r) is a canonical pair for S inv T.

Proof. Choose presentations as above. Any element of 5 inv T has the form wx for
some t v e ^ u r ' u y u Y " 1 ^ . Put A = A(M(w)) and r = r{sd(w)). Then, by the
theorem, (̂ 4, r) is a canonical pair and, regarding e(A)r as a member of 5 inv T, we have
s£(wx) = k{e(A)r), so that wx = e{A)r in 5 inv T. Uniqueness follows from the theorem
and Theorem 4.1.

That the representation e(A)r is independent of the choice of presentations for 5 and
T is immediate from the uniqueness of the representation.

Proof of Theorem 4.5. It has already been demonstrated that if si is a Schiitzenberger
automaton for 5 inv T then (A{s&), r{s&)) is a canonical pair. Further, by Proposition 4.4,
s& = sl{e{A(s&))r{A{s0.))). It remains to prove that the map (A,r)-> sd{e{A)r) is indeed
the requisite inverse. In so doing we actually construct M{e{A)r).

First let v = t^ . . . vn be a left reduced word in S sgp T and si = s£{v{) x . . . x M{vn).
It is clear that since for each i < n, u, is a nonidempotent and the successive terms
alternate between 5 and T, the lobes of si are just (isomorphic copies of)
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si(vx),. . . , s&(yn) and, in fact, si = (a, br(si(vn)), A), where a is the root of si(vx) and
A is the root of si{vn). By Proposition 4.1 and the remarks that precede it,
si = si(vx. . . vn) (interpreting the product in SinvT), and {a, br(si(vn)), a) =
tf(vl...(vnv;1)...vT>) = s4(vv-i).

Now let A be a canonical set for 5 inv T. Form the product of the rooted automata
si(vv~l), veA, as just constructed. The result is a rooted automaton (a, F, a), say,
whose branches are clearly (isomorphic copies of) the individual automata in the product.
By Proposition 4.3, (a, F, a) = si{e{A)), where the product e(A) is interpreted in
5 inv T.

Finally, if r = 1, let j8 = a. Otherwise, r = rx. . . rm, say, where rx . . . (rmr~') eA.
Then for some lobe A of F, with root A, (A, A, A) = si(rmr^,1), (with respect to (X | P) or
(Y | Q)). Since rjkrmr~^, we may letJTbe the vertex of A such that (A, A, /3) = si(rm).
Now, as an element of SinvT, r = r(/3) and (a, F, /S) is isomorphic to the product in
Proposition 4.4. Thus, by that proposition, (a-, F, /J) = si(e(A)r). This completes the
proof of Theorem 4.5.

Our final canonical form is again graphical. We will use the following concept.
Let 9~ be a finite rooted tree, with root a, say. Then 3~ is implicitly directed "away

from" a-. We call 3~ a bilabelled tree over S U T if its vertices are labelled by idempotents
of 5 U T and its edges are labelled by nonidempotents of 5 U T so that:

(i) if an edge is labelled by u then its initial vertex is labelled by MM"1 and its
terminal vertex is labelled from the alternate factor S or T;

(ii) edges with the same initial vertex have different labels.
In such a tree, successive edges are labelled alternately from 5 and from T; for any

vertex A other than possibly the root, the edges leaving A are labelled from the ^-class of
the label of A; the root may be labelled twice, in which case the outgoing edges are
labelled from one of the two £%-classes of the labels of a. (To avoid this complication it is
sometimes convenient to split ST into two components, one whose outgoing edges from
the root are labelled from S and another whose corresponding edges are labelled from T,
see [3].)

Let A be a vertex of such a tree. There is a unique simple path to A from a. Let
u(A) = U] . . . vn, where vx,...,vn_x label the sequence of edges of the path and vn labels
A itself. Then u(A) is a left reduced word in S sgp T. Put A(3~) = {v(A): A e V(T)}, where
V(3') is the vertex set of ?f. Then it is easily verified that A{&) is a canonical set for
5 inv T.

An associate of a bilabelled tree is either 1 or a reduced word r-rx...rm such that
r\ • • • (rmrm1) eA(5~) (that is, rx,.. . , rm_, label the edges of a simple path in W and rm

belongs to the £%-class of the label of the path's terminal vertex).
To associate a bilabelled tree with an element of S inv T, we again select

presentations (X \ P) and (Y | Q) for 5 and T, respectively. Let si = (a, F, j3) be an
automaton of the form described in Theorem 4.1. The skeleton sk(^) of si is constructed
as follows. The vertices of sk(j^) are the nodes of si (relative to the root a). If the vertex
A is the root of the lobe A, label it by the element of S or of T represented by the
automaton (A, A, A). (The root a may be labelled from both 5 and T if it is an
intersection point.) For each remaining node y of A, if any, there is an edge from A to y
labelled by the element of S or of T represented by the automaton (A, A, y).
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Then sk(j^) is a bilabelled tree over S UT. Moreover, A(s4) = A{3^, as is clear from
a comparison of the definitions of the two sets, and r(M) is an associate of sk(j^). The
map S&—* (A(si), r(si)), therefore, factors as

and an application of Theorem 4.5 completes the proof of the following theorem.

THEOREM 4.7. The map M-*(sk(si),r(M)) is a 1-1 correspondence from the
set of isomorphism classes of Schiitzenberger automata for S inv T, with respect to
lm(X \JY\P\JQ), to the set of pairs (3, a), where 3 is a bilabelled tree over S inv T
and a is an associate of 3~.

COROLLARY 4.8. The elements of S inv T are uniquely representable in the form
e(A(T))a, where 3" is a bilabelled tree over S inv T and a is an associate of ST.

That these canonical forms are independent of the chosen presentations follows from
the corresponding fact for canonical pairs.

A slight variant of this last description was used by Jones [3] to describe the free
product of two £-unitary inverse semigroups. Margolis and Meakin [7] described the free
product of two is-unitary inverse monoids, in the category of inverse monoids, in a
graphical form, using the Cay ley graph of the free group product of the maximal group
homomorphic images of the inverse monoids. This form is strongly related to Corollary
4.8. For further details, see the cited papers.

5. Applications. By using Theorem 4.1, all the properties of free products deduced
in [4] by the use of canonical pairs, may be re-derived by using Theorems 3.4-3.8 of [12]
and related results. For instance, suppose wx, w2e (XUX~l U YU Y~l)+ and M(wx) =
(or,, T,, /3,), s&{w2) = (a2, T2, j82). Then W1T3)W2T if and only if I\ = T2; WXT31W2T if and
only if F, = F2 and at = a2. This leads to the following result.

PROPOSITION 5.1. / / every 0t-class of S and every 9i-class of T is finite, then every
91-class of S inv T is finite.

Proof. It is immediate from the definition of the Schiitzenberger graph itself that the
hypothesis is equivalent to the finiteness of every Schiitzenberger graph of 5 and of T. By
Theorem 4.1, every Schiitzenberger graph of SinvT has finitely many lobes, each of
which is a Schiitzenberger graph for either 5 or T. Hence every Schiitzenberger graph for
5 inv T is finite and thus every £%-class is finite.

We will use this proposition to prove the following new result.

THEOREM 5.2. The free product of two residually finite inverse semigroups is again
residually finite.

Proof. We first show that the semigroups may be assumed finite. This is most easily
accomplished in the framework of Jones's canonical forms. Let S and T be residually
finite inverse semigroups. Thus for any finite subset F of 5 there exists a homomorphism
of 5 into a finite inverse semigroup that separates the members of F, and similarly for T.

Let vuv2eSin\T, u ,#u 2 . By Theorem 4.5, there are canonical sets Au A2 in
SsgpT and associates a,, a2 respectively, such that v^ = e(A1)al and v2= e(A2)a2 in
5 inv T. Let Zo be the set of elements of 5 U T that appear as letters in words in
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Ax UA2U {ax,a2} and let Z = Z0U {zz~l:z e Zo}. (In terms of Schiitzenberger auto-
mata, assuming presentations for 5 and for T, we find that the set Z consists of the
elements of Sl)T represented by the individual Schutzenberger automata (A, A, n),
where A is a lobe of M{vx) or of s£{v2) with root A, and n is any node of A. Alternatively,
in the context of Theorem 4.7 and its corollary, Z consists of the union of the sets of
vertex labels and of edge labels of the bilabelled trees corresponding to Uj and v2,
together with the letters appearing in their associates.)

By assumption, there exist finite inverse semigroups 5 ' , 7" and homomorphisms
<j>s:S—*S', <j)T: T—* 7", which separate the sets ZC\S and Z C\T respectively. These two
homomorphisms jointly extend to a homomorphism 0 : 5 sgp T—*S' inv 7" and to a
homomorphism 0 : 5 inv T—*S' inv T', by freeness. As an element of 5 inv T, vx is
mapped by 0 to {s{Ax)ax)4> = s(A1(f>)ai(j). Now, for each word u = Ui . . . uneA1,
u<p = uxcf>. . . un(j> is again left reduced since, for each i, the homomorphism 0 5 or 0 r , as
appropriate, separates w,0 and Ujii~l{<t>). The set Ax^> is clearly prefix-closed, because At

is; and uniqueness of last letters for A^ follows from that for At because <f> is bijective
from Ai to A-i<f>. Hence A^ is a canonical set for S'. Since ax is an associate for Ax, at<p is
an associate for Ar(p. Thus the representation (e(Ai)al)4> = £(y4]0)a,0 for u ^ is the
canonical one in 5 ' inv 7". Similar results for v2 apply mutatis mutandi.

Since v1¥
:v2, {A^a^) ^ (A2, a2). It follows from bijectivity of 0 on Z that

(i410,a10)=?t (i420, a20). Hence Uj0 izv2<i> in 5 ' inv 7".
It is therefore sufficient to separate vt4> and v2<j) in some finite homomorphic image

of 5 ' inv 7". But, by Lemma 5.1, since 5' and 7" are finite, 5 ' inv 7" has finite Sfc-classes.
The proof is completed by the following general result.

LEMMA 5.3. If an inverse semigroup has finite 'Si-classes then it is residually finite.

Proof. This is an immediate consequence of the faithfulness of the direct sum of the
Schutzenberger representations of any inverse semigroup 5 [1, Theorem 3.21], thereby
embedding 5 in a direct product of semigroups of row-monomial matrices, each of finite
dimension over a finite subgroup of 5. (See [1, Sections 3.5, 3.6].)

An alternative proof of the lemma uses the Schutzenberger automata of 5, with
respect to some presentation (X \ P). Given u, v e (X U X~l)+ such that MT # vx, without
loss of generality ur>vr; then there is a homomorphism of 5 into the syntactic monoid of
the finite Schutzenberger automaton s£(u) that separates ux and vx. We omit the details.
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