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Abstract. We present a fully relativistic study on the standing shock
formation for magnetohydrodynamical plasmas in a stationary and ax-
isymmetric black hole magnetosphere. We express all the postshock phys-
ical quantities in terms of the relativistic compression ratio. Then, the
downstream state of a shocked plasma is determined by the upstream
state of the accretion. We also discuss the dragging-effects of the rotat-
ing black hole on the shock conditions.

1. Introduction

We study the central engine of active galactic nuclei (AGNs). There are many
suggestions for the existence of supermassive black holes and accreting plasmas
in the central regions. In this paper, to explain the activities of AGNs, we
introduce the effect of magnetic fields and discuss the central engine as "a black
hole magnetosphere", where magnetized plasma (e.g., an accretion disk and its
corona) surrounds a black hole and an accretion and wind/jet would be generated
from the surrounding plasma. We treat plasmas accreting onto a black hole
and formulate the general relativistic magnetohydrodynamical (MHD) shock
conditions. We expect that a very hot plasma area appears near the event
horizon by the shock. The emission from this hot plasma would directly bring
information of the black hole to us.

The formation of shocks is based on the existence of multi-magnetosonic
points in the accretion solution. This is because an accretion initially ejected
from a plasma source with a low velocity must be terminally superfast magne-
tosonic at the event horizon. At the shock front, the flow transits from super-
magnetosonic to sub-magnetosonic, so the accretion with a shock must pass
through a magnetosonic point on each side of the shock front.

The trans-magnetosonic MHD flow solution was discussed by Takahashi
(2000). Along the magnetic field line, the five physical quantities are conserved:
the total energy and angular momentum, the angular frequency of the magnetic
field line, the particle number flux per magnetic flux tube, and entropy (see
Camenzind 1986). When these conserved quantities are given at the plasma
source, the locations of the fast/slow magnetosonic points and the Alfven points
are determined. Takahashi (2000) demonstrated multi-magnetetosonic point
solutions and found two regimes of accreting flows, that is, "hydro-like" and
"magneto-like" accretion solutions. The hydro-like accretion would transit to
magneto-like accretion by the shock formation.
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In this paper, we apply the shock conditions for special relativistic MHD
jets derived by Appl & Camenzind (1988) to the shock conditions for general
relativistic MHD accretions onto a Kerr black hole. Our main purpose of this
extension is to be clear about "the general relativistic effects" in MHD shock
conditions. We try to express all the postshock physical quantities in terms
of the relativistic compression ratio. This compression ratio is the solution of a
polynomial of seventh degree; this situation is the same as the special relativistic
case.

2. Basic Equations of Relativistic Plasma Flow

We assume a stationary and axisymmetric magnetosphere and ignore its self-
gravity. We also require infinite conductivity for the plasma flow. The back-
ground metric is written in Boyer-Lindquest coordinates. We are using ge-
ometrized units (c = G = 1). The basic equations of relativistic plasma flow are
as follows:
(i) the particle number conservation

(nuO);a = 0 ; (1)

(ii) the conservation of total energy and momentum

~1 = 0 , (2)

where the energy-momentum tensor is given by

To:{3 = n/LuO:u{3 - p go:{3 + 4~ (F1F)..{3 + ~gO:{3F 2) , (3)

n is the proper particle number density, J-L is the relativistic specific enthalpy, P
is the pressure, and F 2 = FJ1.V Fp v ; and
(iii) the MHD condition

(9)

(8)

(4)

(7)

(5)

(6)

and

u{3Fa{3 = 0 .

The magnetic field and electric field seen in the shock rest frame are

B 1 k{3F'Yo d
a - 2'TJa/3'Yo , an

Eo - Fa{3k{3,

where ka = (1,0, 0, 0) is the time-like Killing vector and TJa{3'Yo == A €o{3'Yo.
Further, we introduce the angular velocity of the magnetosphere (see Beken-

stein & Oron 1978; Camenzind 1986)

OF == _ Ftr = _ Ft9 .

Flj>r Flj>o

Then, we obtain the following useful expressions

-AOF B rEo
9tt + 9tlj>OF '

AOF B O •

9tt + 9tlj>OF
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3. The Jump Conditions
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We discuss the properties of MHD shocks associated with accretion flows. The
accretion is originated from the disk surface located on the equatorial plane of
a black hole. We expect that the strong shock would be produced somewhere
between the plasma source and the event horizon.

In a complete solution of the accretion which includes a shock, the flow
must satisfy a set of conditions on either side of the discontinuity. The jump
conditions for arbitrary shocks in a relativistic MHD flow are

[nuO]nO = °
[Tol3]n

o = °
[E] x n = °

[B] ·n=O

- the particle number conservation, (10)

- the energy momentum conservation, (11)
- the continuity relations for the electric field, and (12)
- the continuity relations for the magnetic field, (13)

where nO = (no, n).
We consider a shock located in the (r,8)-plane in Boyer-Lindquest coordi-

nates. We assume that the downstream flow velocity is radial (normal to the
event horizon) and that the shock front is perpendicular to the downstream flow,
n=(I,O,O). Then, we set

uf (t r 8 4» (14)UI , ul ,UI , ul ,

U2 (u~, u;, 0, ut) , (15)

BO = (Br,Bf,BT) , (16)I

B~ (Br,O,Bf) , (17)
EO: = (Er,E8,0) , and (18)I

E~ (0,E8
, 0) , (19)

where Eqs. (12) and (13) have been used. From Eq. (8), we see that OF does
not change across the shock. Equations (10) and (11) evaluated in the shock
rest frame yield the following relations

nlul = n2u; , (20)

nlJ.tI(UrUr)1 - PI + -81 (-ErEr l + BfB(JI + BtBt/ld
1T9tt

= n2J.t2(UrU
r)2 - P2 + -81 (BfBt/l2), (21)

1T9tt

(22)
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Figure 1. A schematic picture of accretion onto a black hole with a
shock front.

where the subscripts "I" and "2" denote the preshock and the postshock quan-
tities, respectively, and from the MHD conditions, we also obtain

Er1Utl + yCg(Btuf - Bfut) == 0 , (25)

(Brut/> _ Bt/>ur)~ = -Eo = (Brut/> - Bt/>ur)~ (26)
1 1 1 U ~g 2 2 2 U 'tl V -~ t2

(gt¢Eo + yCgBr)uf + (gt¢Er1 - yCgBf)u~ == 0 ,and (27)

Er1ul + Eo1uf == 0 . (28)

4. Dimensionless Parameters

For any stationary and axisymmetric system we can define conserved flux vectors
for energy and angular momentum about the axis of symmetry (see Blandford
& Znajek 1977). From the conservation of total energy and momentum (2) and
the Killing equation XjljV + XVjJ1. == 0, where XJ1. is a Killing vector, it follows that
(XJ1.TJ1.V)jV == O. Thus, we define the conserved energy flux

and angular momentum flux
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where m" is the axial Killing vector with Boyer-Lindquist component (0,0,0,1).
In the case of MHD flows, these fluxes are composed of the electromagnetic part
labeled by "em" and the fluid part labeled by "fluid".

The fluid and electromagnetic parts of the radial component of the energy
flux E" are

Eliuid (29)

(30)

respectively, and the fluid and electromagnetic parts of the radial component of
the angular momentum flux E" are

-£fiuid

respectively, where we have used the relation (8).
From the energy momentum conservation at the shock front, we have (T r t )1 =

(T r t )2. T r t can be reduced as

(33)

(34)

where i == -ufj>/Ut is the specific angular momentum of the plasma and w ==
-Ytc/J/9c/Jc/J is the angular velocity of the zero angular momentum observer (ZAMO)
with respect to a distant observer.

Here, we define dimensionless parameters. First, we define the "magneti-
zation parameter", which denotes the ratio of the Poynting flux and the total
mass-energy flux seen by ZAMO:

(35)

Thus, we can express Eq. (33) as

(36)

From these definitions and Eq. (8), we get

where
A = -(9tfj> + 9fj>fj>Op)

- P~(9tt + 9tlj>Op) .

(37)

(38)
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From Eqs. (26) and (8), we also get

(39)

where 0 == ulj> jut is the angular velocity of the fluid. Then, Eq.(37) can be
reduced to

(Blj»2 { -9lj>lj>(OF - w) }
a = 41rnj.t(ut)2 (p~)2(OF - 0) .

For a local observer corotating with the magnetic field line (w
parameter becomes zero.

Next, we define the following dimensionless parameters:

(40)

OF), this

BrBr (41)x -
41rnj.turur

,

€
n2u~

(42)- trtt .
n1 u 1
Blj> Blj>2

q 2 and (43)=
Blj> Blj>1

,
1

(
j.t2U~

(44)- --t'
j.t1u1

where € is the shock frame compression ratio and q is the amplification factor
for the transverse magnetic field.

From Eqs. (20), (24), (26), we obtain

1 - ( = a1 (q - 1) , (45)

(46)

(47)

which is the same expression as Eq. (29) of Appl & Camenzind (1988). From
Eqs, (23) and (37), we obtain

f! rf! -BfB
r

(-1)1-':>2='4 rt q
1rn1j.t1u 1U19tt

= X 1(q - 1) ( OF-
0

1 )

9tt + 9tlj>OF

and from Eqs. (26) and (39), we also obtain

Thus, from Eqs. (47) and (48), we obtain

q = efR.(gtt + gtcf>f!F) - xt}
((9tt + 9tlj>OF) - X1€ '

(48)

(49)
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(50)

(51)

where R == ((OF - 01)/(OF - 0 1 ) . From Eqs. (47) and (48), we also obtain

n2 = ~{01-X1(q-1)( nF-n~)}
~ 9tt + 9t4> F

(9tt + 9t4>0F)01 + X1(OF - 0 1 ) - X1~OF

((9tt + 9t4>0F) - X1~

The normalization of the 4-velocity gives an equation for u~:

When ~ and ( are determined, u~ is obtained.
From Eq. (21), we obtain

I- f - Pl-P2 + (-ErEr+B9B9+Bt/>Bt/>h-(Bt/>Bt/>h =0
~ n1JL1 (UrUr)l 87rn1JL1 (urUr )19tt .

Using the relations

(52)

(53)

= 9ttO BOB
(9tt + 9t</>OF )2 0 ,

(B4> B4»l (1 _ q2) ,

and (54)

(55)

with

(56)

II
P1- P2

(57)-
n1JL1 (UrUr)l

1 U1 2
(58)1 - e+ T(q - 1) + Xl - (q - 1)7i ,

Xl
x1o(BOBO)l

and (59)
2Br B r(9tt + 9t4>0F)2 '

t: 0"1 (Utr p~(nl - nF) (60)=
2 ur 1 9rr(9t4> + 94>4>OF) .

Here, we restrict ourselves to cold accretions (PI = 0). Using the definition
of ( and the equation of state for a Boltzmann gas with polytropic index r,

(61)

(62)
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we find with Eq. (58)

1 - u~ = O'l(Q -1) __r_9rr(U
r
/utH(u~)2 II . (63)

ui r - 1 ~

Combining Eqs. (49) and (45) gives the quadratic equation for (

(2_{1+ C11+( Xl _ C110F )~}(+( Xl _ C1101 )~=o
9tt + 9tl/>0F OF - 0 1 9tt + 9tl/>0F OF -- 0 1 .

(64)
We are now able to eliminate u~ and q from Eq. (63). After considerable

manipulations, we end up with a polynomial of seventh degree in ~

7

LCi(ui,C11,X1,r;m,a,OF)~i = o. (65)
i=O

The coefficients Ci are dependent only on upstream parameters, except for T',
which is a function of the downstream temperature (see Appl & Camenzind
1988).

5. Concluding Remarks

We have discussed the general relativistic MHD shock conditions for accretion
onto a rotating black hole. Here, we introduce the magnetization parameter
seen by ZAMO, because the shock conditions are related to local plasmas and
the magnetosphere is dragged by the rotating black hole. Then, we can obtain
similar expressions as for the special relativistic case. However, our formulas
include the Kerr metric in many places.

We have seen that the compression ratio ~ is the solution of a polynomial
of seventh degree. The polynomial (65) has, in general, several real solutions
corresponding to the different shock transitions. Then, the downstream quanti-
ties (, q, u~, u2' O2 , and II are obtained from Equations, (64), (49), (52), (20),
(50), and (58), respectively. The concrete expressions of Ci and more detailed
analysis will be presented by Rilett (in preparation).

In the future, we will discuss applications of the results for accreting plasmas
in a black hole magnetosphere; that is, we will treat a multi-magnetosonic point
solution with the shock formation.
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