A CONSTRUCTION FOR A SELF-POLAR DOUBLE- \boldsymbol{N} ASSOCIATED WITH A PAIR OF NORMAL RATIONAL CURVES

P. B. KIRKPATRICK

(Received 23 January 1967)

1. Introduction

In [2] the author introduced a self-polar double- N (" $C D$ "): this double- N is associated with a pair of very specially related (" \mathscr{S}-related") normal rational curves, in that the spaces H_{i} of one row of the double- N are chordal to one of the curves while the spaces K_{i} of the other row are chordal to the other curve. The double- N might be said to be "associated with" the triple consisting of these two curves and the polarizing quadric.

We introduce in the present paper a double- N (" $C D_{b, c}^{\left.p, q^{\prime \prime}\right)}$ associated with a triple which is slightly less specialised than the triple associated with $C D_{b, c}^{p, q}$. This double- N has been shown by the author (in a recently submitted thesis) to be the most general determinantal double- N of Π_{p-2} 's and Π_{q-2} 's in $\Pi_{n}(3 \leqq p \leqq q, n=p+q-3)$ associated with a triple whose curves have $n+2$ distinct common points and whose quadric is inpolar to each of the curves.

The main purpose of the paper is to establish a construction for $C D_{b, c}^{p, q}$. Room [3] has given a construction for Coble's self-polar double $-\binom{n+1}{2}$ of lines and secunda in I_{n} (a special case of $C D_{b, c}^{p, q}$, obtained by fixing $p=3$). We start with the two curves and a linear series on one of them, but do not use the quadric.

No construction is known for the general self-polar determinantal double- N.

2. \mathscr{C}-Triples

Definition. A pair of distinct normal rational curves (n.r.c.'s) of order n is called "a \mathscr{C}-related pair" if both curves lie on the same conical sheet $C R_{2}^{n-1}$ (the locus of joins of a fixed point to the points of a normal rational curve of order $n-1$ lying in a Π_{n-1} not incident with the fixed point).

The \mathscr{S}-related pairs considered in [2] are (special) \mathscr{C}-related pairs. A n.r.c. of order n on $C R_{2}^{n-1}$ must pass through the vertex P and cut
each generator once more.
The generators determine a natural $1-1$ correspondence between the points of any two such curves r^{n} and ρ^{n}. The cone may be regarded as the locus of joins of pairs in this correspondence, whence it follows (cf. for example [1] p. 18) that r^{n} and ρ^{n} have $n+1$ common points, apart from P, unless they touch at P (as they do when r^{n}, ρ^{n} is an \mathscr{S}-related pair).

We call the vertex of the cone "the \mathscr{C}-point of the pair r^{n}, ρ^{n} "; and the simplex whose vertices are the remaining points P_{0}, \cdots, P_{n} common to r^{n} and ρ^{n} we call "the \mathscr{C}-simplex".

Let r^{n} be a n.r.c. on $C R_{2}^{n-1}$. Then there is at most one n.r.c. of order n on $C R_{2}^{n-1}$ which passes through $n+1$ given points P_{0}, \cdots, P_{n} (apart from P) on r^{n} and whose tangent line at P is a given generator ($[1] \mathrm{p} .18$).

Choose a coordinate system by taking as A_{0} the vertex P, as A_{n} the point (assuming it is not P) in which the given generator meets r^{n} again, as unit point any point on r^{n} except A_{0} and A_{n}, and as A_{1}, \cdots, A_{n-1} the points determined (cf. [4] p. 220) by the condition that the equations

$$
\left\|\begin{array}{l}
x_{0} \cdots x_{n-1} \\
x_{1} \cdots x_{n}
\end{array}\right\|_{1}=0
$$

are to represent r^{n}. Then $C R_{2}^{n-1}$ is given by the equations

$$
\left\|\begin{array}{lll}
x_{1} \cdots x_{n-1} \\
x_{2} \cdots x_{n}
\end{array}\right\|_{1}=0
$$

The tangent line to r^{n} at A_{0} is the generator $A_{0} A_{1}$.
The curve r^{n} may be represented parametrically by $\kappa x_{\delta}=\theta^{d}$ $(\delta=0, \cdots, n)$. Let $\theta^{n+1}-b_{\delta} \theta^{\delta} 1$ be the monic polynomial whose roots are the parameters $\theta_{0}, \cdots, \theta_{n}$ of P_{0}, \cdots, P_{n}. Then the n.r.c. ρ^{n} given by

$$
\left\|\begin{array}{ll}
x_{1} \cdots x_{n-1} & x_{n} \\
x_{2} \cdots x_{n} & b_{\delta} x_{\delta}
\end{array}\right\|_{1}=0
$$

lies on $C R_{2}^{n-1}$, passes through P_{0}, \cdots, P_{n}, and has $A_{0} A_{n}$ as its tangent at A_{0}.

Thus a \mathscr{C}-related pair can in general be represented by equations of the form

$$
\left\|\begin{array}{l}
x_{0} \cdots x_{n-1} \tag{1}\\
x_{1} \cdots x_{n}
\end{array}\right\|_{1}=0, \quad\left\|\begin{array}{ll}
x_{1} \cdots x_{n-1} & x_{n} \\
x_{2} \cdots x_{n} & b_{\delta} x_{\delta}
\end{array}\right\|_{1}=0
$$

(with $b_{\mathbf{0}} \neq 0$). Conversely, such equations always represent a \mathscr{C}-related pair.
The coordinate system in which the pair r^{n}, ρ^{n} may be represented by equations of the form (1), with $b_{0}=1$, we call "the \mathscr{C}-system".

[^0]Definitions. A triple consisting of a pair of n.r.c.'s and a non-singular tangential quadic is called "a \mathscr{C}-triple" if the pair of n.r.c.'s is \mathscr{C}-related, with $n+2$ distinct common points, and the quadric polarizes the \mathscr{C}-simplex.

An " \mathscr{H}_{m}-space" of a \mathscr{C}-triple r^{n}, ρ^{n}, S is a chordal Π_{m} of r^{n} whose polar space is chordal to ρ^{n}; while a " $\mathscr{K}_{m^{\prime}}$-space" is a chordal $\Pi_{m^{\prime}}$ of ρ^{n} whose polar space is chordal to r^{n}.

The reasoning used in the proof of Theorem V in [2], § 1, establishes
Theorem 1. The \mathscr{H}_{m}-spaces $(m=0, \cdots, n-1)$ of a \mathscr{C}-triple r^{n}, p^{n}, S^{\prime} are precisely the m-edges of the simplexes determined by a certain linear series of dimension one and order $n+1$ on r^{n}.

We call these simplexes "the simplexes \mathscr{A} of the \mathscr{C}-triple", and their polar reciprocals "the simplexes \mathscr{A}^{\prime}." The simplexes \mathscr{A} ' are inscribed in ρ^{n}.

Denote by \mathscr{T} the projectivity which maps each point A of r^{n} to the point A^{\prime} in which the line joining A to the \mathscr{C}-point meets ρ^{n} again.
\mathscr{T} is given (in the \mathscr{C}-system for $\boldsymbol{r}^{n}, \rho^{n}$) by

$$
\begin{aligned}
& \lambda x_{0}^{\prime}=x_{n}-b_{\gamma+1} x_{\gamma} \quad(\gamma=0, \cdots, n-1), \\
& \lambda x_{\gamma+1}^{\prime}=x_{\gamma}
\end{aligned}
$$

Theorem 2. Let H be any m-edge of any simplex \mathscr{A}, say \mathscr{A}_{H}. Let K be the polar space of H. Then K is the image under \mathscr{T} of the $(n-m-1)$-edge of \mathscr{A}_{H} opposite the m-edge H.

Proof. Let \mathscr{S} (mapping primes to points) be the polarity determined by S. We seek first the quadric which polarizes the ∞^{1} simplexes \mathscr{A}.

If $\lambda_{0}, \cdots, \lambda_{n}$ are the faces of any simplex \mathscr{A} then $\mathscr{S}\left(\lambda_{0}\right), \cdots, \mathscr{S}\left(\lambda_{n}\right)$ are the vertices of a simplex \mathscr{A}^{\prime}. Thus $\mathscr{T}^{-1} \mathscr{S}\left(\lambda_{0}\right), \cdots, \mathscr{T}^{-1} \mathscr{S}\left(\lambda_{n}\right)$ are $n+1$ points on r^{n}, say L_{0}, \cdots, L_{n}. Taking the \mathscr{C}-simplex as simplex of reference and the \mathscr{C}-point as unit point, \mathscr{S} and \mathscr{T} are given by diagonal matrices, say D and $T . T^{-1} D$ is diagonal, i.e. the correlation $\mathscr{T}^{-1} \mathscr{S}$ is the polarity determined by a non-singular tangential quadric, say S_{1}, which polarizes the \mathscr{C}-simplex. S_{1} is inpolar to r^{n} and therefore polarizes ∞^{1} simplexes inscribed in r^{n}. Two points of r^{n} are conjugate w.r.t. S_{1} jf and only if one is a vertex of the simplex determined by the other. It follows that L_{0}, \cdots, L_{n} are the vertices of the simplex \mathscr{A} whose faces are $\lambda_{0}, \cdots, \lambda_{n}$. Thus S_{1} is the quadric which polarizes the simplexes \mathscr{A}.

Write $\mathscr{S}_{1}=\mathscr{T}^{-1} \mathscr{S}$ and let λ be any face of \mathscr{A}_{H}. Then the vertex L of \mathscr{A}_{H} opposite λ is $\mathscr{S}_{1}(\lambda)$. But $\mathscr{S}(\lambda)$ is the image of L under \mathscr{T}, since $\mathscr{S}=\mathscr{T} \mathscr{S}_{1}$. The theorem follows immediately.

3. Configurations $C \bar{D}_{b, c}^{p, q}$

Denote by $\bar{D}_{b, c}^{p, q}$ the locus given by the equations

$$
\left\|\begin{array}{llll}
x_{1} & \cdots & x_{q-1} & x_{q} \\
\vdots & & \vdots & \vdots \\
\vdots & & \vdots & x_{n} \\
x_{p-1} & \cdots & x_{n} & b_{\delta} x_{\delta} \\
x_{0} & \cdots & x_{q-2} & c_{\delta} x_{\delta}
\end{array}\right\|_{p-1}=0 \quad\left(b_{0}=1\right)
$$

and denote by $C D_{b, c}^{p, q}$ the associated double- $N\left[N=\binom{p+q-2}{p-1}=\binom{n+1}{p-1}\right]$.
It is easily verified, using Room's criterion for self-polarity ([3] p. 66) that the configuration $C \bar{D}_{b, c}^{p, q}$ is self-polar. The polarizing quadric S is inpolar to each of the curves r^{n} and ρ^{n}, where r^{n} is given by

$$
\left\|\begin{array}{l}
x_{0} \cdots x_{n-1} \\
x_{1} \cdots x_{n}
\end{array}\right\|_{1}=0
$$

and ρ^{n} by

$$
\left\|\begin{array}{ll}
x_{1} \cdots x_{n-1} & x_{n} \\
x_{2} \cdots x_{n} & b_{\delta} x_{\delta}
\end{array}\right\|_{1}=0
$$

S is determined by a matrix $\left[k_{\alpha \beta}\right]=\left[k_{\alpha+\beta-2}\right](\alpha, \beta=1, \cdots, n+1)$ with

$$
\left\{\begin{array}{l}
b_{\delta} k_{\delta+t}=k_{n+t+1} \tag{2}\\
c_{\delta} k_{\delta+t+1}=k_{q+t}
\end{array} \quad(t=0, \cdots, n-1)\right.
$$

The pair r^{n}, ρ^{n} is \mathscr{C}-related.
Assume that $\theta^{n+1}-b_{\delta} \theta^{\delta}$ has no repeated roots, that is r^{n} and ρ^{n} have $n+2$ distinct common points. Then r^{n}, ρ^{n}, S is a \mathscr{C}-triple: for S is inpolar to r^{n}, ρ^{n} and the quadric $b_{\delta} x_{\delta} x_{0}=x_{1} x_{n}$; and the \mathscr{C}-point A_{0} is the pole of the prime $c_{\delta} x_{\delta}=x_{q-1}$ [by equations (2)].

From the form of the equations of $D_{b, c}^{p, q}$, it is evident that $C D_{b, c}^{p, q}$ is (cf. [2] p. 216) associated with the \mathscr{C}-triple $\boldsymbol{r}^{n}, \rho^{n}, S$.

Lemma 1. Let r^{n}, ρ^{n} be a \mathscr{C}-related pair whose common points are distinct, H a chordal Π_{p-2} of r^{n} and K a chordal Π_{q-2} of ρ^{n} (where $3 \leqq p \leqq q$ and $n=p+q-3)$. Suppose that neither H nor K passes through the \mathscr{C}-point. Then H, K is a pair in exactly one of the configurations $C D_{b, c}^{p, q}$ associated with the pair $\boldsymbol{r}^{n}, \rho^{n}$.

Proof. H is given (in the \mathscr{C}-system) by say $\lambda_{\alpha} x_{\alpha+\varepsilon}=0(\alpha=0, \cdots, p-1$; $\varepsilon=0, \cdots, q-2)$ and K by say $\mu_{\beta} x_{\beta+\phi}=0(\beta=0, \cdots, q-1 ; \phi=1, \cdots, p-1)$, where $x_{n+1} \equiv b_{\delta} x_{\delta}(\delta=0, \cdots, n)$ (an identity in $\left.x_{0}, \cdots, x_{n}\right)$.
H, K is a pair in the configuration $C D_{b, c}^{p, q}$ determined by c_{0}, \cdots, c_{n} if and only if

$$
\mu_{\delta} \lambda_{\alpha} x_{\alpha+\varepsilon}+\mu_{q-1}\left(\lambda_{0} c_{\delta} x_{\delta}+\lambda_{1} x_{q}+\cdots+\lambda_{p-1} x_{n+1}\right) \equiv 0\left\{\begin{array}{l}
(\alpha=0, \cdots, p-1) \\
(\varepsilon=0, \cdots, q-2)
\end{array}\right.
$$

(cf. [4] p. 72). Since neither H nor K passes through the \mathscr{C}-point A_{0}, we can suppose that $\lambda_{0} \mu_{q-1}=1$. So the identity determines (uniquely) a suitable set of constants c_{0}, \cdots, c_{n}.

Lemma 2. Let r^{n}, ρ^{n}, S be a \mathscr{C}-triple. Suppose that H is an \mathscr{H}_{p-2}-space such that neither H nor its polar space K passes through the \mathscr{C}-point. Then S polarizes the configuration $C D_{b, c}^{p, q}$ determined $b y r^{n}, \rho^{n}, H$ and K.

Proof. $C D_{b, c}^{p, q}$ is determined by a matrix

$$
\left[\begin{array}{llll}
\lambda_{\alpha} x_{\alpha} & \cdots & \lambda_{\alpha} x_{\alpha+\alpha-2} & 0 \\
x_{1} & \cdots & x_{a-1} & \mu_{\beta} x_{\beta+1} \\
\vdots & & \vdots & \vdots \\
x_{p-1} & \cdots & x_{n} & \mu_{\beta} x_{\beta+p-1}
\end{array}\right]
$$

with $x_{n+1} \equiv b_{\delta} x_{\delta}$.
S is inpolar to each of r^{n} and ρ^{n} (since it polarizes the \mathscr{C}-simplex), and H is the polar of K. So, applying Room's criterion, we deduce that S polarizes $C D_{b, c}^{p, q}$.

Lemma 3. Suppose that $C \bar{D}_{b, c}^{p, q}\left(\right.$ with $\left.c_{\delta} x_{\delta} \neq x_{a-1}\right)$ is associated with a \mathscr{C}-triple r^{n}, ρ^{n}, S. Then a configuration $C D_{b, c}^{p, q}$ is associated with the same triple if and only if $a_{\delta} x_{\delta} \equiv c_{\delta} x_{\delta}+k\left(c_{\delta} x_{\delta}-x_{\alpha-1}\right)$ for some constant k.

Proof. This result follows immediately from the consideration of equations (2), using the fact that S is non-singular (since r^{n}, ρ^{n}, S is a \mathscr{C}-triple).

4. The \mathscr{K}_{q-2}-spaces which meet a fixed \mathscr{H}_{p-2}-space

Let r^{n}, ρ^{n}, S be a \mathscr{C}-triple, H_{1} an \mathscr{H}_{p-2}-space of the triple, and K_{1} its polar space. By Theorem 1, H_{1} is a ($p-2$)-edge of one of the simplexes \mathscr{A} of the triple, say $\mathscr{A}_{H_{1}}$. By Theorem $2, K_{1}$ is the ($q-2$)-edge, of the simplex \mathscr{A}^{\prime} which is the polar reciprocal of $\mathscr{A}_{H_{1}}$, opposite the $(p-2)$-edge $\mathscr{T}\left(H_{1}\right)$. Write

$$
\mathscr{A}_{K_{1}}^{\prime}=\mathscr{T}\left(\mathscr{A}_{H_{1}}\right) .
$$

If $H_{1} \neq$ the \mathscr{C}-point and $H_{1} \notin$ the polar of the \mathscr{C}-point, then H_{1} and K_{1} are paired in a configuration $C \bar{D}_{b, c}^{p, q}$ associated with the \mathscr{C}-triple. If also H_{1} is not a $(p-2)$-edge of the \mathscr{C}-simplex, it is readily verified that $c_{\delta} x_{\delta} \neq x_{\alpha-1}$.

The spaces $K_{i}(i \neq 1)$ of $C \bar{D}_{b, c}^{p, q}$ are all $\mathscr{K}_{q-2^{-}}$-spaces (of the \mathscr{C}-triple) which meet H_{1}.

Theorem 3. Let H_{1} be an \mathscr{H}_{p-2}-space of a given \mathscr{C}-triple r^{n}, ρ^{n}, S, and K_{1} its polar. Let K be any \mathscr{K}_{a-2}-space of the triple, excepting the $(q-2)$-edges
of $\mathscr{A}_{K_{1}}^{\prime}$, which meets H_{1}. Then K is one of the spaces K_{i} of the configuration $C \bar{D}_{b, c}^{p, q}$ (associated with the \mathscr{C}-triple) in which H_{1}, K_{1} is a pair, provided that H_{1} is not a member of a certain finite subset (to be specified) of the set of $\mathscr{H}_{p-2^{-}}$ spaces.

Proof. Suppose H_{1} is not an edge of: (1) the simplex \mathscr{A}, say \mathscr{A}_{1}, one of whose vertices is the \mathscr{C}-point, (2) the simplex \mathscr{A}, say \mathscr{A}_{2}, one of whose faces is the polar of the \mathscr{C}-point, and (3) the \mathscr{C}-simplex; and that H_{1} does not meet any ($q-2$)-edge of: (1) the simplex $\mathscr{T}\left(\mathscr{A}_{1}\right)$, (2) the simplex $\mathscr{T}\left(\mathscr{A}_{2}\right)$, and (3) any simplex \mathscr{A}^{\prime} which has a pair of coincident vertices.

Since the \mathscr{H}_{p-2}-spaces constitute an irreducible algebraic family of dimension one, any given Π_{q-2} either meets all the \mathscr{H}_{p-2}-spaces or else meets only finitely many of them. No Π_{q-2} meets all the \mathscr{H}_{p-2}-spaces since every ($p-2$)-edge of the \mathscr{C}-simplex is an \mathscr{H}_{p-2}-space and the \mathscr{C}-simplex is proper.

There are only finitely many simplexes \mathscr{A}^{\prime} having a pair of coincident vertices; for the \mathscr{C}-simplex is proper, inscribed in p^{n} and self-polar, so that ρ^{n} does not lie on the point quadric defined by S.

Thus the conditions on H_{1} exclude the choice of only a finite number of \mathscr{H}_{p-2}-spaces.

We now show that $\operatorname{dim}\left(K \cap \bar{D}_{b, c}^{p, q}\right)>p-3$. The following lemma will be useful.

Lemma. Let M be an m-edge $(0 \leqq m \leqq q-3)$ of a simplex \mathscr{A}^{\prime}. Suppose M meets H_{1}. Then M is an edge of $\mathscr{A}_{K_{1}}^{\prime}$.

Proof. Since $\mathscr{A}_{H_{1}} \neq \mathscr{A}_{1}, H_{1} \neq$ the \mathscr{C}-point. So $\left\{H_{1}\right.$, the \mathscr{C}-point $\}$ is a Π_{p-1}, say $N . N$ is chordal to ρ^{n} : it contains the \mathscr{C}-point and $\mathscr{T}\left(H_{1}\right)$; the \mathscr{C}-point $\ddagger \mathscr{T}\left(H_{1}\right)$ since $\mathscr{A}_{H_{1}} \neq \mathscr{A}_{2} . M$ meets N, since $N \supset H_{1} . M \cap N$ is a chordal $\Pi_{s}(s \geqq 0)$, since $\operatorname{dim} M+\operatorname{dim} N \leqq p+q-4=n-1 . M \neq$ the $\mathscr{C}-$ point, since H_{1} does not meet any ($q-2$)-edge of $\mathscr{T}\left(\mathscr{A}_{2}\right)$; so $M \cap N \subset \mathscr{T}\left(H_{1}\right)$, which implies that $M \cap N$, and therefore M, is an edge of $\mathscr{A}_{K_{1}}^{\prime}$.

It follows from this lemma that none of the chordal Π_{p-3} 's of ρ^{n} which lies in K meets H_{1}.

Moreover, $K \cap H_{1} \notin$ the polar of the \mathscr{C}-point. For suppose the contrary. Let H be the polar of K. Then $\left\{H, K_{1}\right\} \supset \mathscr{T}(H)$. Also $\operatorname{dim}\left\{H, K_{1}\right\} \leqq n-1$. But $n-1=p+q-4$, so that $\mathscr{T}(H) \cap K_{1}$ is a chordal $\Pi_{r}(r \geqq 0)$ of ρ^{n}. So $\mathscr{T}(H)$, and therefore K, is an edge of $\mathscr{A}_{K_{1}}^{\prime}$. But K is, by hypothesis, not an edge of $\mathscr{A}_{K_{1}}^{\prime}$.

Now, because of the restrictions on H_{1}, K contains $q-1$ distinct points of ρ^{n}, and therefore $\binom{q-1}{p-2}$ chordal Π_{p-3} 's of ρ^{n}. It is easily verified that every chordal Π_{p-3} of ρ^{n} lies on $\bar{D}_{b, c}^{p, q}$.

Also, K contains $\binom{q-1}{p-1}$ chordal Π_{p-2} 's of ρ^{n}. Let A be one of these. A is a \mathscr{K}_{p-2}-space. $A \nsubseteq$ the polar of the \mathscr{C}-point, since K is not an edge of $\mathscr{T}\left(\mathscr{A}_{1}\right)$; in fact, A meets the polar of the \mathscr{C}-point in the same Π_{p-3} as does the \mathscr{H}_{p-2}-space $\mathscr{T}^{-1}(A)$, since dim \{the \mathscr{C}-point, the polar of A, the polar of $\left.\mathscr{T}^{-1}(A)\right\}=q-1$. However, (the polar of the \mathscr{C}-point) $\cap \mathscr{T}^{-1}(A)$ lies on $\bar{D}_{b, c}^{p, q}$. For $\mathscr{T}^{-1}(A) \neq$ the \mathscr{C}-point and also $\mathscr{T}^{-1}(A) \notin$ the polar of the \mathscr{C}-point. So, by Lemmas $1,2,3, \mathscr{T}^{-1}(A)$ is a space H_{i} in a configuration $C \bar{D}_{b, a}^{p, q}$ with $a_{\delta} x_{\delta} \equiv c_{\delta} x_{\delta}+k\left(c_{\delta} x_{\delta}-x_{q-1}\right)$ for some k; that is $\mathscr{T}^{-1}(A)$ lies on $\bar{D}_{b, a}^{p, q}$. But the polar of the \mathscr{C}-point, being given by $c_{\delta} x_{\delta}=x_{q-1}$, has identical intersections with $\bar{D}_{b, a}^{p, q}$ and $\bar{D}_{b, c}^{p, q}$. So (the polar of the \mathscr{C}-point) $\cap A$ lies on $\bar{D}_{b, c}^{p, q}$; but it is not a chordal Π_{p-3} of ρ^{n}, since K is not an edge of $\mathscr{T}\left(\mathscr{A}_{1}\right)$.

We have shown that K contains $\binom{q-1}{p-2}+\binom{q-1}{p-1}$, that is $\binom{q}{p-1}$, distinct Π_{p-3} 's lying on $\tilde{D}_{b, c}^{p, q}$.

The dimension of $D_{b, c}^{p, c}{ }_{c}$ is $2 p-4$, and its order is $\binom{q}{p-1}$; $\operatorname{dim} K=q-2$; and $n=p+q-3$. Moreover, $K \cap \bar{D}_{b, c}^{p, q}$ includes not only the $\left(\begin{array}{c}q-1\end{array}\right) \Pi_{p-3}$'s found above but also a point which does not lie in of any these; for, none of the chordal Π_{p-3} 's of ρ^{n} which lies in K meets H_{1}; and $K \cap H_{1} \notin$ the polar of the \mathscr{C}-point. It follows that $\operatorname{dim}\left(K \cap \bar{D}_{b, c}^{p, q}\right)>p-3$.

Using this information, together with the fact that K is a space K_{i} in a configuration $C D_{b, a}^{p, q}$ with $a_{\delta} x_{\delta} \equiv c_{\delta} x_{\delta}+k\left(c_{\delta} x_{\delta}-x_{q-1}\right)$ for some k, so that $\operatorname{dim}\left(K \cap \bar{D}_{b, a}^{p, q}\right)>p-3$ (cf. [4] p. 40), we show that K is a space K_{i} in $C D_{b, c}^{p, q}$.

Let us suppose $k \neq 0$. Then $K \cap \bar{D}_{b, c}^{p, q}=K \cap$ the locus

$$
\left\|\begin{array}{llll}
\lambda_{\alpha} x_{\alpha} & \cdots & \lambda_{\alpha} x_{\alpha+\alpha-2} & \lambda_{0} \mu_{\alpha-1} k\left(x_{\alpha-1}-c_{\delta} x_{\delta}\right) \\
x_{1} & \cdots & x_{q-1} & 0 \\
\vdots & & \vdots & \vdots \\
x_{p-1} & \cdots & x_{n} & 0
\end{array}\right\|_{p-1}=0
$$

where $\lambda_{\alpha} x_{\alpha+\varepsilon}=0(\alpha=0, \cdots, p-1 ; \varepsilon=0, \cdots, q-2)$ are the equations of the polar H of K, and $\mu_{\beta} x_{\beta+\phi+1}=0(\beta=0, \cdots, q-1 ; \phi=0, \cdots, p-2)$, with $x_{n+1} \equiv b_{\delta} x_{\delta}$, are the equations of K. Since K is not an edge of either $\mathscr{T}\left(\mathscr{A}_{1}\right)$ or $\mathscr{T}\left(\mathscr{A}_{2}\right), \lambda_{0} \mu_{q-1} \neq 0$. Also $c_{\delta} x_{\delta} \neq x_{q-1}$, and $k \neq 0$. So $K \cap D_{b, c}^{p, q}=K \cap$ the prime $c_{\delta} x_{\delta}=x_{q-1} \cap$ the locus \mathscr{L} given by

$$
\left\|\begin{array}{ccc}
x_{1} & \cdots & x_{q-1} \\
\vdots & & \vdots \\
x_{p-1} & \cdots & x_{n}
\end{array}\right\|_{p-2}=0
$$

Since \mathscr{L} is generated by those chordal Π_{p-2} 's of ρ^{n} which pass through the \mathscr{C}-point A_{0}, and $K \neq$ the \mathscr{C}-point, $\operatorname{dim}\left(K \cap \bar{D}_{b, c}^{p, q}\right) \leqq p-3$. But $\operatorname{dim}\left(K \cap D_{b, c}^{p, q}\right)>p-3$. So $k=0$.

5. The construction

Suppose we are given a \mathscr{C}-related pair r^{n}, p^{n} whose common points are distinct, and a g_{1}^{n+1}, on ρ^{n}, one of whose simplexes is the \mathscr{C}-simplex. Then, in general, the g_{1}^{n+1} determines a non-singular quadric S such that any set of the g_{1}^{n+1} gives the $n+1$ vertices of a simplex \mathscr{A}^{\prime} of the \mathscr{C}-triple r^{n}, ρ^{n}, S (cf. the proof of Theorem 2 and [4] pp. 227-8). S is not needed in the construction.

Let K_{1} be a ($q-2$)-edge of one of the simplexes \mathscr{A}^{\prime}, say $\mathscr{A}_{K_{1}}^{\prime}$. Then we can construct the edge, say H_{1}, of $\mathscr{T}^{-1}\left(\mathscr{A}_{K_{1}}^{\prime}\right)$ which lies opposite the ($q-2$)-edge $\mathscr{T}^{-1}\left(K_{1}\right)$. For if Q is any point on ρ^{n} then $\mathscr{T}^{-1}(Q)$ is the point in which the line joining Q to the \mathscr{C}-point meets r^{n} again.

We have shown (cf. Theorem 3) that, for general choice of K_{1}, any \mathscr{K}_{q-2}-space (i.e. edge of a simplex of the given g_{1}^{n+1}) which meets H_{1}, but is not an edge of $\mathscr{A}_{K_{1}}^{\prime}$, is a space $K_{i}(i \neq 1)$ of the configuration $C D_{b, c}^{p, q}$ (associated with r^{n}, ρ^{n}) in which H_{1}, K_{1} is a pair.

Given K_{i}, H_{i} can be constructed in the manner used to construct H_{1} (given K_{1}).

We leave unsettled the question: is any space $K_{i}(i \neq 1)$ an edge of $\mathscr{A}_{K_{1}}^{\prime}$?

References

[1] W. L. Edge, Ruled surfaces (Cambridge U.P., 1931).
[2] P. Kirkpatrick, 'Self-polar double configurations defined by certain pairs of normal rational curves', J. Aust. Math. Soc. 6 (1966), 210.
[3] T. G. Room, 'Self-polar double configurations, I and II', J. Aust. Math. Soc. 5 (1965), 65.
[4] T. G. Room, The geometry of determinantal loci (Cambridge U.P., 1938).
University of Sydney

[^0]: ${ }^{1}$ Repetition of the same Greek suffix in one term indicates summation over the range of the suffix.

