A CONSTRUCTION FOR A SELF-POLAR DOUBLE-N ASSOCIATED WITH A PAIR OF NORMAL RATIONAL CURVES

P. B. KIRKPATRICK

(Received 23 January 1967)

1. Introduction

In [2] the author introduced a self-polar double-N ("CD"): this double-N is associated with a pair of very specially related (" \mathscr{S} -related") normal rational curves, in that the spaces H_i of one row of the double-N are chordal to one of the curves while the spaces K_i of the other row are chordal to the other curve. The double-N might be said to be "associated with" the triple consisting of these two curves and the polarizing quadric.

We introduce in the present paper a double-N (" $C\bar{D}_{b,c}^{p,q}$ ") associated with a triple which is slightly less specialised than the triple associated with $CD_{b,c}^{p,q}$. This double-N has been shown by the author (in a recently submitted thesis) to be the most general determinantal double-N of Π_{p-2} 's and Π_{q-2} 's in Π_n ($3 \leq p \leq q$, n = p+q-3) associated with a triple whose curves have n+2 distinct common points and whose quadric is inpolar to each of the curves.

The main purpose of the paper is to establish a construction for $C\bar{D}_{b,c}^{p,q}$. Room [3] has given a construction for Coble's self-polar double $-\binom{n+1}{2}$ of lines and secunda in Π_n (a special case of $C\bar{D}_{b,c}^{p,q}$, obtained by fixing p = 3). We start with the two curves and a linear series on one of them, but do not use the quadric.

No construction is known for the general self-polar determinantal double-N.

2. C-Triples

DEFINITION. A pair of distinct normal rational curves (n.r.c.'s) of order n is called "a \mathscr{C} -related pair" if both curves lie on the same conical sheet CR_2^{n-1} (the locus of joins of a fixed point to the points of a normal rational curve of order n-1 lying in a Π_{n-1} not incident with the fixed point).

The \mathscr{S} -related pairs considered in [2] are (special) \mathscr{C} -related pairs. A n.r.c. of order n on CR_2^{n-1} must pass through the vertex P and cut

415

each generator once more.

The generators determine a natural 1-1 correspondence between the points of any two such curves r^n and ρ^n . The cone may be regarded as the locus of joins of pairs in this correspondence, whence it follows (cf. for example [1] p. 18) that r^n and ρ^n have n+1 common points, apart from P, unless they touch at P (as they do when r^n , ρ^n is an \mathscr{S} -related pair).

We call the vertex of the cone "the \mathscr{C} -point of the pair r^n , ρ^n "; and the simplex whose vertices are the remaining points P_0, \dots, P_n common to r^n and ρ^n we call "the \mathscr{C} -simplex".

Let r^n be a n.r.c. on CR_2^{n-1} . Then there is at most one n.r.c. of order n on CR_2^{n-1} which passes through n+1 given points P_0, \dots, P_n (apart from P) on r^n and whose tangent line at P is a given generator ([1] p. 18).

Choose a coordinate system by taking as A_0 the vertex P, as A_n the point (assuming it is not P) in which the given generator meets r^n again, as unit point any point on r^n except A_0 and A_n , and as A_1, \dots, A_{n-1} the points determined (cf. [4] p. 220) by the condition that the equations

$$\left\| \begin{matrix} x_0 \cdots x_{n-1} \\ x_1 \cdots x_n \end{matrix} \right\|_1 = 0$$

are to represent r^n . Then CR_2^{n-1} is given by the equations

$$\left\| \begin{vmatrix} x_1 \cdots x_{n-1} \\ x_2 \cdots x_n \end{vmatrix} \right\|_1 = 0.$$

The tangent line to r^n at A_0 is the generator A_0A_1 .

The curve r^n may be represented parametrically by $\kappa x_{\delta} = \theta^{\delta}$ $(\delta = 0, \dots, n)$. Let $\theta^{n+1} - b_{\delta} \theta^{\delta}$ be the monic polynomial whose roots are the parameters $\theta_0, \dots, \theta_n$ of P_0, \dots, P_n . Then the n.r.c. ρ^n given by

$$\left\| \begin{pmatrix} x_1 \cdots x_{n-1} & x_n \\ x_2 \cdots x_n & b_{\delta} x_{\delta} \end{pmatrix} \right\|_1 = 0$$

lies on CR_2^{n-1} , passes through P_0, \dots, P_n , and has A_0A_n as its tangent at A_0 .

Thus a \mathscr{C} -related pair can in general be represented by equations of the form

(1)
$$\left\| \begin{array}{c} x_0 \cdots x_{n-1} \\ x_1 \cdots x_n \end{array} \right\|_1 = 0, \quad \left\| \begin{array}{c} x_1 \cdots x_{n-1} & x_n \\ x_2 \cdots x_n & b_\delta x_\delta \end{array} \right\|_1 = 0$$

(with $b_0 \neq 0$). Conversely, such equations always represent a \mathscr{C} -related pair.

The coordinate system in which the pair r^n , ρ^n may be represented by equations of the form (1), with $b_0 = 1$, we call "the \mathscr{C} -system".

¹ Repetition of the same Greek suffix in one term indicates summation over the range of the suffix.

A self-polar double-n

DEFINITIONS. A triple consisting of a pair of n.r.c.'s and a non-singular tangential quadic is called "a \mathscr{C} -triple" if the pair of n.r.c.'s is \mathscr{C} -related, with n+2 distinct common points, and the quadric polarizes the \mathscr{C} -simplex.

An " \mathscr{H}_m -space" of a \mathscr{C} -triple r^n , ρ^n , S is a chordal Π_m of r^n whose polar space is chordal to ρ^n ; while a " \mathscr{H}_m -space" is a chordal $\Pi_{m'}$ of ρ^n whose polar space is chordal to r^n .

The reasoning used in the proof of Theorem V in [2], § 1, establishes

THEOREM 1. The \mathscr{H}_m -spaces $(m = 0, \dots, n-1)$ of a C-triple r^n , ρ^n , S are precisely the m-edges of the simplexes determined by a certain linear series of dimension one and order n+1 on r^n .

We call these simplexes "the simplexes \mathscr{A} of the \mathscr{C} -triple", and their polar reciprocals "the simplexes \mathscr{A}' ." The simplexes \mathscr{A}' are inscribed in ρ^n .

Denote by \mathscr{T} the projectivity which maps each point A of r^n to the point A' in which the line joining A to the \mathscr{C} -point meets ρ^n again.

 \mathcal{T} is given (in the \mathscr{C} -system for r^n , ρ^n) by

$$\lambda x'_{0} = x_{n} - b_{\gamma+1} x_{\gamma} \qquad (\gamma = 0, \cdots, n-1),$$

$$\lambda x'_{\gamma+1} = x_{\gamma}.$$

THEOREM 2. Let H be any m-edge of any simplex \mathcal{A} , say \mathcal{A}_H . Let K be the polar space of H. Then K is the image under \mathcal{T} of the (n-m-1)-edge of \mathcal{A}_H opposite the m-edge H.

PROOF. Let \mathscr{S} (mapping primes to points) be the polarity determined by S. We seek first the quadric which polarizes the ∞^1 simplexes \mathscr{A} .

If $\lambda_0, \dots, \lambda_n$ are the faces of any simplex \mathscr{A} then $\mathscr{S}(\lambda_0), \dots, \mathscr{S}(\lambda_n)$ are the vertices of a simplex \mathscr{A}' . Thus $\mathscr{T}^{-1}\mathscr{S}(\lambda_0), \dots, \mathscr{T}^{-1}\mathscr{S}(\lambda_n)$ are n+1 points on r^n , say L_0, \dots, L_n . Taking the \mathscr{C} -simplex as simplex of reference and the \mathscr{C} -point as unit point, \mathscr{S} and \mathscr{T} are given by diagonal matrices, say D and T. $T^{-1}D$ is diagonal, i.e. the correlation $\mathscr{T}^{-1}\mathscr{S}$ is the polarity determined by a non-singular tangential quadric, say S_1 , which polarizes the \mathscr{C} -simplex. S_1 is inpolar to r^n and therefore polarizes ∞^1 simplexes inscribed in r^n . Two points of r^n are conjugate w.r.t. S_1 if and only if one is a vertex of the simplex determined by the other. It follows that L_0, \dots, L_n are the vertices of the simplex \mathscr{A} whose faces are $\lambda_0, \dots, \lambda_n$. Thus S_1 is the quadric which polarizes the simplexes \mathscr{A} .

Write $\mathscr{S}_1 = \mathscr{T}^{-1}\mathscr{S}$ and let λ be any face of \mathscr{A}_H . Then the vertex L of \mathscr{A}_H opposite λ is $\mathscr{S}_1(\lambda)$. But $\mathscr{S}(\lambda)$ is the image of L under \mathscr{T} , since $\mathscr{S} = \mathscr{T}\mathscr{S}_1$. The theorem follows immediately.

3. Configurations $C\bar{D}_{b,c}^{p,q}$

Denote by $\bar{D}_{b_1c}^{p,q}$ the locus given by the equations

$$\begin{vmatrix} x_{1} & \cdots & x_{q-1} & x_{q} \\ \vdots & \vdots & \vdots \\ x_{p-1} & \cdots & x_{n} & b_{\delta} x_{\delta} \\ x_{0} & \cdots & x_{q-2} & c_{\delta} x_{\delta} \end{vmatrix}_{p-1} = 0 \qquad (b_{0} = 1);$$

11

and denote by $C\bar{D}^{p,q}_{b,c}$ the associated double- $N\left[N = \binom{p+q-2}{p-1} = \binom{n+1}{p-1}\right]$.

It is easily verified, using Room's criterion for self-polarity ([3] p. 66) that the configuration $C\bar{D}_{b,c}^{p,q}$ is self-polar. The polarizing quadric S is inpolar to each of the curves r^n and ρ^n , where r^n is given by

$$\left\| \begin{matrix} x_0 \cdots x_{n-1} \\ x_1 \cdots x_n \end{matrix} \right\|_1 = 0$$

and ρ^n by

$$\left\| \begin{array}{ccc} x_1 \cdots x_{n-1} & x_n \\ x_2 \cdots x_n & b_{\delta} x_{\delta} \end{array} \right\|_1 = 0.$$

S is determined by a matrix $[k_{\alpha\beta}] = [k_{\alpha+\beta-2}]$ ($\alpha, \beta = 1, \dots, n+1$) with

(2)
$$\begin{cases} b_{\delta}k_{\delta+t} = k_{n+t+1} \\ c_{\delta}k_{\delta+t+1} = k_{q+t} \end{cases} (t = 0, \dots, n-1).$$

The pair r^n , ρ^n is \mathscr{C} -related.

Assume that $\theta^{n+1} - b_{\delta} \theta^{\delta}$ has no repeated roots, that is r^{n} and ρ^{n} have n+2 distinct common points. Then r^n , ρ^n , S is a \mathscr{C} -triple: for S is inpolar to r^n , ρ^n and the quadric $b_{\delta}x_{\delta}x_0 = x_1x_n$; and the \mathscr{C} -point A_0 is the pole of the prime $c_{\delta} x_{\delta} = x_{g-1}$ [by equations (2)].

From the form of the equations of $\bar{D}_{b,c}^{p,q}$, it is evident that $C\bar{D}_{b,c}^{p,q}$ is (cf. [2] p. 216) associated with the \mathscr{C} -triple r^n , ρ^n , S.

LEMMA 1. Let r^n , ρ^n be a \mathscr{C} -related pair whose common points are distinct, H a chordal $\prod_{p=2}$ of r^n and K a chordal $\prod_{q=2}$ of ρ^n (where $3 \leq p \leq q$ and n = p+q-3). Suppose that neither H nor K passes through the C-point. Then H, K is a pair in exactly one of the configurations $C\bar{D}_{b,c}^{p,q}$ associated with the pair r^n , ρ^n .

PROOF. *H* is given (in the \mathscr{C} -system) by say $\lambda_{\alpha} x_{\alpha+\varepsilon} = 0$ ($\alpha = 0, \dots, p-1$; $\varepsilon = 0, \dots, q-2$ and K by say $\mu_{\beta} x_{\beta+\phi} = 0$ ($\beta = 0, \dots, q-1; \phi = 1, \dots, p-1$), where $x_{n+1} \equiv b_{\delta} x_{\delta}$ ($\delta = 0, \dots, n$) (an identity in x_0, \dots, x_n).

H, K is a pair in the configuration $C\bar{D}_{b,c}^{p,q}$ determined by c_0, \dots, c_n if and only if o (1)

$$\mu_{\delta}\lambda_{\alpha}x_{\alpha+\varepsilon} + \mu_{q-1} \left(\lambda_{0}c_{\delta}x_{\delta} + \lambda_{1}x_{q} + \dots + \lambda_{p-1}x_{n+1}\right) \equiv 0 \begin{cases} (\alpha = 0, \dots, p-1) \\ (\varepsilon = 0, \dots, q-2) \end{cases}$$

A self-polar double-n

(cf. [4] p. 72). Since neither H nor K passes through the \mathscr{C} -point A_0 , we can suppose that $\lambda_0 \mu_{q-1} = 1$. So the identity determines (uniquely) a suitable set of constants c_0, \dots, c_n .

LEMMA 2. Let r^n , ρ^n , S be a C-triple. Suppose that H is an \mathscr{H}_{p-2} -space such that neither H nor its polar space K passes through the C-point. Then S polarizes the configuration $C\overline{D}_{b,c}^{p,q}$ determined by r^n , ρ^n , H and K.

PROOF. $C\bar{D}_{b,c}^{p,q}$ is determined by a matrix

 $\begin{bmatrix} \lambda_{\alpha} x_{\alpha} & \cdots & \lambda_{\alpha} x_{\alpha+q-2} & 0 \\ x_1 & \cdots & x_{q-1} & \mu_{\beta} x_{\beta+1} \\ \vdots & \vdots & \vdots \\ x_{p-1} & \cdots & x_n & \mu_{\beta} x_{\beta+p-1} \end{bmatrix},$

with $x_{n+1} \equiv b_{\delta} x_{\delta}$.

S is inpolar to each of r^n and ρ^n (since it polarizes the C-simplex), and H is the polar of K. So, applying Room's criterion, we deduce that S polarizes $C\bar{D}_{b,e}^{p,q}$.

LEMMA 3. Suppose that $C\bar{D}_{b,c}^{p,q}$ (with $c_{\delta}x_{\delta} \neq x_{q-1}$) is associated with a \mathscr{C} -triple r^n , ρ^n , S. Then a configuration $C\bar{D}_{b,c}^{p,q}$ is associated with the same triple if and only if $a_{\delta}x_{\delta} \equiv c_{\delta}x_{\delta} + k(c_{\delta}x_{\delta} - x_{q-1})$ for some constant k.

PROOF. This result follows immediately from the consideration of equations (2), using the fact that S is non-singular (since r^n , ρ^n , S is a \mathscr{C} -triple).

4. The \mathscr{K}_{q-2} -spaces which meet a fixed \mathscr{K}_{p-2} -space

Let r^n , ρ^n , S be a \mathscr{C} -triple, H_1 an \mathscr{H}_{p-2} -space of the triple, and K_1 its polar space. By Theorem 1, H_1 is a (p-2)-edge of one of the simplexes \mathscr{A} of the triple, say \mathscr{A}_{H_1} . By Theorem 2, K_1 is the (q-2)-edge, of the simplex \mathscr{A}' which is the polar reciprocal of \mathscr{A}_{H_1} , opposite the (p-2)-edge $\mathscr{T}(H_1)$. Write

$$\mathscr{A}'_{K_1} = \mathscr{T}(\mathscr{A}_{H_1}).$$

If $H_1 \Rightarrow$ the \mathscr{C} -point and $H_1 \Leftrightarrow$ the polar of the \mathscr{C} -point, then H_1 and K_1 are paired in a configuration $C\bar{D}_{b,c}^{p,q}$ associated with the \mathscr{C} -triple. If also H_1 is not a (p-2)-edge of the \mathscr{C} -simplex, it is readily verified that $c_{\delta}x_{\delta} \neq x_{q-1}$.

The spaces K_i $(i \neq 1)$ of $C\bar{D}_{b,c}^{p,q}$ are all \mathscr{K}_{q-2} -spaces (of the \mathscr{C} -triple) which meet H_1 .

THEOREM 3. Let H_1 be an \mathscr{H}_{p-2} -space of a given C-triple r^n , ρ^n , S, and K_1 its polar. Let K be any \mathscr{H}_{q-2} -space of the triple, excepting the (q-2)-edges

of \mathscr{A}'_{K_1} , which meets H_1 . Then K is one of the spaces K_i of the configuration $C\overline{D}^{p,q}_{b,c}$ (associated with the C-triple) in which H_1 , K_1 is a pair, provided that H_1 is not a member of a certain finite subset (to be specified) of the set of \mathscr{H}_{p-2} -spaces.

PROOF. Suppose H_1 is not an edge of: (1) the simplex \mathscr{A} , say \mathscr{A}_1 , one of whose vertices is the \mathscr{C} -point, (2) the simplex \mathscr{A} , say \mathscr{A}_2 , one of whose faces is the polar of the \mathscr{C} -point, and (3) the \mathscr{C} -simplex; and that H_1 does not meet any (q-2)-edge of: (1) the simplex $\mathscr{T}(\mathscr{A}_1)$, (2) the simplex $\mathscr{T}(\mathscr{A}_2)$, and (3) any simplex \mathscr{A}' which has a pair of coincident vertices.

Since the \mathscr{H}_{p-2} -spaces constitute an irreducible algebraic family of dimension one, any given Π_{q-2} either meets all the \mathscr{H}_{p-2} -spaces or else meets only finitely many of them. No Π_{q-2} meets all the \mathscr{H}_{p-2} -spaces since every (p-2)-edge of the \mathscr{C} -simplex is an \mathscr{H}_{p-2} -space and the \mathscr{C} -simplex is proper.

There are only finitely many simplexes \mathscr{A}' having a pair of coincident vertices; for the \mathscr{C} -simplex is proper, inscribed in ρ^n and self-polar, so that ρ^n does not lie on the point quadric defined by S.

Thus the conditions on H_1 exclude the choice of only a finite number of \mathscr{H}_{p-2} -spaces.

We now show that dim $(K \cap \overline{D}_{b,c}^{p,q}) > p-3$. The following lemma will be useful.

LEMMA. Let M be an m-edge $(0 \le m \le q-3)$ of a simplex \mathscr{A}' . Suppose M meets H_1 . Then M is an edge of \mathscr{A}'_{K_1} .

PROOF. Since $\mathscr{A}_{H_1} \neq \mathscr{A}_1$, $H_1 \Rightarrow$ the \mathscr{C} -point. So $\{H_1, \text{ the } \mathscr{C}\text{-point}\}$ is a Π_{p-1} , say N. N is chordal to ρ^n : it contains the \mathscr{C} -point and $\mathscr{T}(H_1)$; the \mathscr{C} -point $\notin \mathscr{T}(H_1)$ since $\mathscr{A}_{H_1} \neq \mathscr{A}_2$. M meets N, since $N \supset H_1$. $M \cap N$ is a chordal Π_s ($s \ge 0$), since dim M+dim $N \le p+q-4=n-1$. $M \Rightarrow$ the \mathscr{C} -point, since H_1 does not meet any (q-2)-edge of $\mathscr{T}(\mathscr{A}_2)$; so $M \cap N \subset \mathscr{T}(H_1)$, which implies that $M \cap N$, and therefore M, is an edge of \mathscr{A}'_{K_1} .

It follows from this lemma that none of the chordal $\prod_{p=3}$'s of ρ^n which lies in K meets H_1 .

Moreover, $K \cap H_1 \notin$ the polar of the \mathscr{C} -point. For suppose the contrary. Let H be the polar of K. Then $\{H, K_1\} \supset \mathscr{T}(H)$. Also dim $\{H, K_1\} \leq n-1$. But n-1 = p+q-4, so that $\mathscr{T}(H) \cap K_1$ is a chordal Π_r $(r \geq 0)$ of ρ^n . So $\mathscr{T}(H)$, and therefore K, is an edge of \mathscr{A}'_{K_1} . But K is, by hypothesis, not an edge of \mathscr{A}'_{K_1} .

Now, because of the restrictions on H_1 , K contains q-1 distinct points of ρ^n , and therefore $\binom{q-1}{p-2}$ chordal Π_{p-3} 's of ρ^n . It is easily verified that every chordal Π_{p-3} of ρ^n lies on $\bar{D}_{b,e}^{p,q}$.

Also, K contains $\binom{q-1}{p-1}$ chordal Π_{p-2} 's of ρ^n . Let A be one of these. A is a \mathscr{K}_{p-2} -space. $A \notin$ the polar of the \mathscr{C} -point, since K is not an edge of $\mathscr{T}(\mathscr{A}_1)$; in fact, A meets the polar of the \mathscr{C} -point in the same Π_{p-3} as does the \mathscr{H}_{p-2} -space $\mathscr{T}^{-1}(A)$, since dim {the \mathscr{C} -point, the polar of A, the polar of $\mathscr{T}^{-1}(A)$ } = q-1. However, (the polar of the \mathscr{C} -point) $\cap \mathscr{T}^{-1}(A)$ lies on $\tilde{D}_{b,c}^{p,q}$. For $\mathscr{T}^{-1}(A) \neq$ the \mathscr{C} -point and also $\mathscr{T}^{-1}(A) \notin$ the polar of the \mathscr{C} -point. So, by Lemmas 1, 2, 3, $\mathscr{T}^{-1}(A)$ is a space H_i in a configuration $C\tilde{D}_{b,a}^{p,q}$. But the polar of the \mathscr{C} -point, being given by $c_{\delta}x_{\delta} = x_{q-1}$, has identical intersections with $\tilde{D}_{b,a}^{p,q}$ and $\tilde{D}_{b,c}^{p,q}$. So (the polar of the \mathscr{C} -point) $\cap A$ lies on $\tilde{D}_{b,c}^{p,q}$; but it is not a chordal Π_{p-3} of ρ^n , since K is not an edge of $\mathscr{T}(\mathscr{A}_1)$.

We have shown that K contains $\binom{q-1}{p-2} + \binom{q-1}{p-1}$, that is $\binom{q}{p-1}$, distinct $\prod_{p=3}$'s lying on $\tilde{D}_{b,c}^{p,q}$.

The dimension of $\bar{D}_{b,c}^{p,q}$ is 2p-4, and its order is $\binom{q}{p-1}$; dim K = q-2; and n = p+q-3. Moreover, $K \cap \bar{D}_{b,c}^{p,q}$ includes not only the $\binom{q}{p-1} \Pi_{p-3}$'s found above but also a point which does not lie in of any these; for, none of the chordal Π_{p-3} 's of ρ^n which lies in K meets H_1 ; and $K \cap H_1 \notin$ the polar of the \mathscr{C} -point. It follows that dim $(K \cap \bar{D}_{b,c}^{p,q}) > p-3$.

Using this information, together with the fact that K is a space K_i in a configuration $C\bar{D}_{b,a}^{p,q}$ with $a_{\delta}x_{\delta} \equiv c_{\delta}x_{\delta} + k(c_{\delta}x_{\delta} - x_{q-1})$ for some k, so that dim $(K \cap \bar{D}_{b,a}^{p,q}) > p-3$ (cf. [4] p. 40), we show that K is a space K_i in $C\bar{D}_{b,q}^{p,q}$.

Let us suppose $k \neq 0$. Then $K \cap \bar{D}_{b,c}^{p,q} = K \cap$ the locus

$$\begin{vmatrix} \lambda_{\alpha} x_{\alpha} & \cdots & \lambda_{\alpha} x_{\alpha+q-2} & \lambda_{0} \mu_{q-1} k(x_{q-1} - c_{\delta} x_{\delta}) \\ x_{1} & \cdots & x_{q-1} & 0 \\ \vdots & \vdots & \vdots \\ x_{p-1} & \cdots & x_{n} & 0 \end{vmatrix}_{p-1} = 0,$$

where $\lambda_{\alpha} x_{\alpha+\varepsilon} = 0$ ($\alpha = 0, \dots, p-1$; $\varepsilon = 0, \dots, q-2$) are the equations of the polar H of K, and $\mu_{\beta} x_{\beta+\phi+1} = 0$ ($\beta = 0, \dots, q-1$; $\phi = 0, \dots, p-2$), with $x_{n+1} \equiv b_{\delta} x_{\delta}$, are the equations of K. Since K is not an edge of either $\mathscr{T}(\mathscr{A}_1)$ or $\mathscr{T}(\mathscr{A}_2)$, $\lambda_0 \mu_{q-1} \neq 0$. Also $c_{\delta} x_{\delta} \neq x_{q-1}$, and $k \neq 0$. So $K \cap \tilde{D}_{b,c}^{p,c} = K \cap$ the prime $c_{\delta} x_{\delta} = x_{q-1} \cap$ the locus \mathscr{L} given by

$$\begin{vmatrix} x_1 & \cdots & x_{q-1} \\ \vdots & & \vdots \\ x_{p-1} & \cdots & x_n \end{vmatrix} = 0.$$

Since \mathscr{L} is generated by those chordal Π_{p-2} 's of ρ^n which pass through the \mathscr{C} -point A_0 , and $K \neq$ the \mathscr{C} -point, dim $(K \cap \bar{D}_{b,c}^{p,q}) \leq p-3$. But dim $(K \cap \bar{D}_{b,c}^{p,q}) > p-3$. So k = 0.

P. B. Kirkpatrick

5. The construction

Suppose we are given a \mathscr{C} -related pair r^n , ρ^n whose common points are distinct, and a g_1^{n+1} , on ρ^n , one of whose simplexes is the \mathscr{C} -simplex. Then, in general, the g_1^{n+1} determines a non-singular quadric S such that any set of the g_1^{n+1} gives the n+1 vertices of a simplex \mathscr{A}' of the \mathscr{C} -triple r^n , ρ^n , S (cf. the proof of Theorem 2 and [4] pp. 227-8). S is not needed in the construction.

Let K_1 be a (q-2)-edge of one of the simplexes \mathscr{A}' , say \mathscr{A}'_{K_1} . Then we can construct the edge, say H_1 , of $\mathscr{T}^{-1}(\mathscr{A}'_{K_1})$ which lies opposite the (q-2)-edge $\mathscr{T}^{-1}(K_1)$. For if Q is any point on ρ^n then $\mathscr{T}^{-1}(Q)$ is the point in which the line joining Q to the \mathscr{C} -point meets r^n again.

We have shown (cf. Theorem 3) that, for general choice of K_1 , any \mathscr{K}_{q-2} -space (i.e. edge of a simplex of the given g_1^{n+1}) which meets H_1 , but is not an edge of \mathscr{A}'_{K_1} , is a space K_i $(i \neq 1)$ of the configuration $C\bar{D}_{b,c}^{p,q}$ (associated with r^n , ρ^n) in which H_1 , K_1 is a pair.

Given K_i , H_i can be constructed in the manner used to construct H_1 (given K_1).

We leave unsettled the question: is any space K_i $(i \neq 1)$ an edge of \mathscr{A}'_{K_i} ?

References

[1] W. L. Edge, Ruled surfaces (Cambridge U.P., 1931).

- [2] P. Kirkpatrick, 'Self-polar double configurations defined by certain pairs of normal rational curves', J. Aust. Math. Soc. 6 (1966), 210.
- [3] T. G. Room, 'Self-polar double configurations, I and II', J. Aust. Math. Soc. 5 (1965), 65.
- [4] T. G. Room, The geometry of determinantal loci (Cambridge U.P., 1938).

University of Sydney

[8]