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The landscape paradigm

Genotypes are DNA or RNA sequences that – together with epigenetic and
environmental influences – determine the unfolding of the phenotype. Commonly,
this process is extremely complicated and – at least for the time being – escapes
rigorous mathematical analysis and serious computer modeling. Nevertheless, the
relations between genotypes and phenotypes play a fundamental role in biology
and in its applications to pharmaceutical research and medicine. In particular, many
questions concerning evolution and its mechanisms cannot be answered without an
understanding of the phenotypic consequences of changes in the genotypes.
Neglecting epigenetics and environmental change for the moment, genotypes and
phenotypes play clearly defined distinct parts in Darwinian evolution, which is
understood as the interplay of variation and selection: all variations, mutations,
recombination, and gene duplication, are changes in the polynucleotide sequences
of the genotype whereas the phenotype is the target of selection.

Historically, the idea of encapsulating genotype–phenotype relations in the pos-
tulate of a landscape in the theory of evolution is due to Sewall Wright.1 He used the
landscape metaphor to illustrate optimization in the sense of Darwin’s natural
selection: populations climb a fitness landscape through optimization of mean fitness
and in a stationary situation all species occupy local optima that correspond to the
niches in an ecosystem. In the 1930s, one major problem of Wright’s metaphor was
that it remained unclear, in essence, what was to be plotted on the horizontal axes of
the landscape given fitness is the vertical coordinate axis. A second, and even more
substantial, criticism had been raised by Ronald Fisher: the metaphor is built upon
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the assumptions of (i) constant fitness values and (ii) time invariant fitness land-
scapes, which had to be made in order to guarantee the applicability of the theorem
of natural selection (see, for example, Fisher’s ‘Fundamental Theorem of Natural
Selection’2,3 and the recent analysis of it4).

Binary sequences

AUGC sequences

Molecular biology revealed the structures of nucleic acid and proteins and provided
a basis for handling genotypes and phenotypes by means of sound theoretical
concepts. The notion of sequence space has been introduced for nucleic acids5 and
for proteins.6 The principle of sequence space construction is simple: A point ‘i’ is
assigned to every sequence Xi and the Hamming distance, dij5dH (Xi, Xj) serves
as metric. (The Hamming distance counts the number of positions in which two
aligned sequences differ.7,8. It is identical with the minimal numbers of (single)
point mutations required to convert one sequence into the other.) The properties of
sequence space are illustrated best by means of a build-up principle: the sequence
space QðkÞn fX:; dHg is the set of all strings of length n over an alphabet of k digits.
QðkÞn may be constructed recursively by joining k spaces of strings of length n21,
Q
ðkÞ
n�1 (Figure 1). The construction principle is the same for any alphabet – binary,

three-letter, four-letter – but the objects obtained are difficult to describe except in
the case of binary sequences where Qð2Þn is a hypercube of dimension n. Sequence
spaces, in general, are high dimensional objects – the dimension is n3 (k 2 1) –
and low-dimensional, in particular two-dimensional, illustrations are frequently
misleading. Two often misconceived features are: (i) all sequences in sequence
space are (topologically) equivalent and hence they have the same number of
neighbors – there are no sequences in the interior of Q; and (ii) distances in high-
dimensional spaces are small compared with those in low-dimensional spaces with
the same number of nodes. A trivial but nevertheless important feature of sequence
spaces is their connectedness. From every genotype we can reach every arbitrarily
chosen genotype through a series of successive point mutations whose number
never exceeds n or, in other words, the Hamming distance between two arbitrarily
chosen sequences fulfils: dH (Xi, Xj)rn forall (Xi, Xj)AQðkÞn (independently of k).

Genotype–phenotype relations can be viewed as mappings from sequence space
into a space of phenotypes Sn{S.; dS}, which comprises all possible phenotypes and
has some distance measure dS as metric. Fitness and other properties of phenotypes
are thought to be expressed quantitatively by some function, fk5 F(Sj) where Sj is
the phenotype formed by some genotype Xi :Sj5C(Xi). Fitness values are repre-
sented by real numbers, fk 2 R1, with the common restriction to non-negative values.

The definition of genotype or sequence space is only a minor first step
towards an understanding of genotype-phenotype relations. The complexity of
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Binary sequences

AUGC sequences

Figure 1. Sequence spaces. The properties of sequence spaces are illustrated by
means of a recursive construction principle. The sequence space for strings of
chain length n1 1, QðkÞnþ1 is constructed from two sequence spaces for strings of
chains length n, QðkÞn , which are obtained by adding one symbol, (0 or 1) or (A
or U or G or C), respectively, on the LHS to the string. Joining all pairs of
sequences with Hamming distance dH 5 1 by a straight line yields the sequence
space Q

ðkÞ
nþ1. The upper part of the figure deals with binary sequences: Qð2Þn is a

hypercube of dimension n. The lower part of the figure indicates the same
construction for natural four letter sequences. The single digit element, which is
a straight line (and one-dimensional) for binary sequences, is a tetrahedron (and
three-dimensional) in the four digit case. The sequence space Qð4Þ2 for two letter
AUGC-strings is a tetrahedron of tetrahedra (middle), a fairly complicated
looking object in six-dimensional space
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phenotypes and additional influences through epigenetics and environmental
factors is currently prohibitive for useful constructions of phenotype spaces for
whole cells or organisms. There are, however, examples of simpler mappings
from sequence spaces into phenotypes or structures that are currently accessible
by theory as well as by experiment (see also the special issue of the Journal of
Molecular Evolution, on Experimental Evolution9). We mention two of them: (i)
in vitro evolution of biomolecules with predefined functions, in particular nucleic
acid molecules10,11 and proteins12,13 and (ii) virus evolution.14 In both cases, the
genotype is a polynucleotide that is short compared with the genoms of organisms.
The numbers of possible genotypes in these relatively small sequence spaces are
nevertheless huge compared with realistic population sizes: For chain lengths
n.40 the number of possible polynucleotide sequences exceeds Avogadro’s
number, in protein sequence space this happens already at chain length n.19. The
enormous size of sequence spaces and the principal accessibility of every genotype
by mutation, in essence, set the stage for evolutionary optimization.

Molecular phenotypes

The notion of a molecular phenotype was used in the analysis and interpretation of
the first evolution experiments of RNA molecules in vitro.15,16 It is commonly
understood as the structure of biomolecules and the properties derived from the
structure. In the case of polynucleotide evolution, the situation is particularly simple
because genotype and phenotype are different features of the same molecule, the
nucleotide sequence and the molecular structures with its properties, respectively. In
directed evolution of proteins,13 the genotype is a DNA or RNA molecule and the
phenotype is the protein molecule obtained by (transcription and) translation. In
DNA display17 the sequences are coupled to small molecules from a library that can
be created, for example, by combinatorial chemistry and, in this case, the phenotype
is the small molecule and its properties.

Most of the currently adopted attempts to predict function for DNA, RNA or
protein sequences try to split the genotype–phenotype relation into two parts
represented by mappings from sequence to structure and from structure to function:

sequence �!
S:¼CðX:Þ

structure �!
f: ¼FðS:Þ

function ð1Þ

The rationale underlying the two-step approach is that both, prediction of
structure from known sequence and prediction of function from known structure
are less hard problems than the one-step prediction of function from sequence.
Indeed, folding biopolymer sequences into molecular structures and inferring
functions from structures follow principles from molecular physics, which are, in
principle, known from structural chemistry and chemical kinetics, and thermo-
dynamic stability.
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Protein structures

Historically, the concept that protein folding follows a straightforward and rever-
sible downhill process and ends at the thermodynamically stable (and therefore
uniquely characterized) conformation of the molecule was derived from early work
on the protein bovine pancreatic ribonuclease A.18,19 The sequence of the small
protein with a chain length of 124 amino acids was determined by Stanford Moore
and William Stein20,21 and only four years later the three-dimensional molecular
structure of the protein had been determined.22–25 The major breakthrough in
understanding folding of ribonuclease A came from the work by Christian
Anfinsen:26–29 the protein was denatured through breaking four disulfide bonds by
reduction and complete unfolding. On oxidation with air the molecule returned to
its native conformation in extremely high yields. Anfinsen cast the findings on
ribonuclease A folding and unfolding into three criteria called the thermodynamic
hypothesis of protein structure: (i) uniqueness – the sequence has only one con-
formation of minimum free energy (m.f.e.) and no other energetically nearby lying
state; (ii) stability – small changes in the surrounding environment cannot result in
substantial changes in the m.f.e.-conformation; and (iii) kinetic accessibility – a
smooth free energy path leads from the unfolded random coil to the folded state. In
essence, a two-state model considering a folded and an unfolded state of the
molecule is sufficient to describe the observations. In more recent years the kinetics
of the catalytic mechanism of ribonuclease A has been studied in detail.30 The
most beautiful results obtained for ribonuclease suffer from the fact that biomo-
lecules behaving like ribonuclease are rather a small minority in the universe of
proteins. As a matter of fact, the majority of natural and artificial proteins behave
differently and all three criteria of the thermodynamic hypothesis are rarely ful-
filled. A stable protein structure requires a subtle balance between hydrophilic and
hydrophobic interactions and, accordingly, the sequences from large sections of
protein sequence space fail to from structures, because the polypeptides aggregate
and the aggregates are insoluble in aqueous solution. Membrane proteins are an
exception because they adopt their structures in a natural hydrophobic environment
(for a review of the state of the art in membrane protein structure analysis see, for
example, Ref. 31). Understanding protein structure and prediction of structures
from known sequences turned out to be extremely hard, remained a major issue of
biophysics for more than 30 years, and is still one of the hot topics.

In the late 1980s a new concept for the interpretation of protein folding was
developed, which made use of an energy landscape.32,33 The energy of the
protein is plotted upon conformation space of the protein sequence. Conforma-
tion space is commonly continuous in chemistry; the coordinates are all bond
lengths, bond angles, and dihedral angles that determine the structure of the
molecule.34 The notion of an energy landscape describing energy as a function of
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the coordinates of a molecule is a result of the Born–Oppenheimer approximation
in quantum mechanics, which separates the motions of fast-moving electrons and
slow nuclei. Accurate energy landscapes are accessible through computation for
small molecules and small molecular aggregates. As more and more data become
available, the empirical reconstruction of free energy landscapes of proteins at
atomic resolution becomes within reach.35 The numbers of degrees of freedom in
conformation space are also hyperastronomical: considering only dihedral angles
– in other words keeping bond lengths and bond angles constant – we estimate
for a the chain length of ribonuclease A, n5 124, some 1090 angular degrees of
freedom leading to about 10150 local minima of the energy landscape. Levinthal36,37

formulated a paradox in view of these huge numbers of degrees of freedom: how can
a protein manage to find the native conformation in a time interval as short as a
millisecond when sequential sampling of conformation, one every picosecond,
would take longer than the age of the universe? The answer is sketched in Figure 2:
the folding landscape has the shape of a funnel, under folding conditions (almost) all
random coil conformation have conformations of lower free energy in the neigh-
borhood, a enormous large number of trajectories leads to the target conformation,
and hence only a negligibly small fraction of conformation space is sampled along
an individual trajectory. The Anfinsen funnel (Figure 2, left-hand side) describes the
idealized case of a fast folding protein such as ribonuclease A, whereas most proteins
are characterized by a rugged folding landscape with a great number of local (free)
energy minima (Figure 2, right-hand side). Many proteins need assistance for folding
that is provided in vivo by chaperonins being large protein assemblies with cavities,
inside which the unfolded protein finds its way into the native conformation.38

In essence, the mechanism of protein folding is understood by now.32,33,39,40

Conventionally, protein structure is described at four hierarchical levels: primary,
secondary, tertiary, and quaternary structure. The primary structure is the amino
acid sequence of the polypeptide chain, the secondary structure consists of
regular structural elements formed through closure of hydrogen bonds of the
polypeptide backbone, the tertiary structure is the 3D structure of a protein or a
protein subunit and the quaternary structure, eventually, provides information on
the numbers and spatial arrangement of protein subunits.41 Two notions of
structural units of proteins are used in addition to the presented classification of
structure: (i) A protein domain consists of a part of protein sequence that can
fold, exist, function, and evolve independently of the rest of the protein. Domains
are highly variable with respect to chain lengths, which are typically lying
between 25 to 500 residues. (ii) A structural motif is a structural 3D element or
fold within the polypeptide chain, which is transferable from one protein to other
proteins. In folding, the polypeptide chain passes a series of stages: (i) local
interactions, in particular nuclei of a-helices and b or reverse turns, are intro-
duced into the random coil at one of many – more or less equivalent – positions;
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(ii) secondary structures grow until about 30% of the contacts in the native state
have been established and the molecules form a so-called molten globule – a
partially ordered structure with still substantial flexibility; (iii) further loss of
conformational freedom induces transitions to more rigid states – sometimes

Figure 2. Energy landscapes of protein folding. The sketch of the landscape on
the LHS corresponds to the Anfinsen dogma of protein folding: The unfolded
random coil of the polypeptide sequence is converted smoothly into the unique
and stable native structure as observed with ribonuclease A. The sketch of the
folding funnel on the RHS represents the more common case as observed with
most proteins [Onuchic et al., 1997]: The native structure is reached via various
intermediates that are represented by molten globules, sometimes long lived
glassy states and (discrete) suboptimal conformations, which act as folding
traps. The abscissa axis in both sketches is an appropriate cross section of
conformational space. The factor Q is the fraction of native like contacts.
Typically Q5 0.3 for molten globules, Q5 0.6 in the transition region and
Q5 0.7 in the range of glass transitions. ‘Entropy’ and ‘energy’ are put in
quotation marks because they are just illustrations implying that a wide funnel
sustains a larger ensemble of trajectories leading to the target state, and the
depth of the funnel is a measure of the stability of the native state. The majority
of entropic contributions is not encapsulated in the width of the funnel and
commonly the quantity on the ordinate axis is not pure energy but Gibbs’ free
energy lacking entropy contributions from these degrees of freedom that are
illustrated on the abscissa axis
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of glassy nature; and (iv) confinement to one of the narrow deep values corre-
sponding either to the native structure or to one of the suboptimal conformations,
which are usually inactive and therefore addressed as misfolded states. Con-
version from a suboptimal state to the native conformation may be fast or slow
depending on the barrier separating the valleys. In is commonly assumed that an
ordered and rigid structure is required for efficient catalysis, a recent protein
engineering study, however, produced a molten globule with perfect catalytic
performance that is practically the same as that of the natural counterpart.42

Prediction of protein structure from a known sequence is still a very hard task.
Progress is regularly monitored every two years by Critical Assessment of
Techniques for Protein Structure Prediction (CASP) contests: the two latest
prediction evaluation meetings of the committees were CASP 6 and CASP 7.43,44

The progress within the last two years has been modest but two changes were
significant: (i) the gap between human prediction groups and automatic servers
has been closed, and (ii) an improvement has been observed with template-based
models resulting from the usage of multiple templates, template free modeling in
regions where no template is available, and refinement.

Nucleic acid structures

Folding of random coil polynucleotide chains into DNA and RNA structures has
been studied less frequently by far than protein folding – there are more than 40,000
protein-only structures in the Protein Data Bank compared with 575 deposited
RNA-only structures. Nevertheless, the current understanding of nucleic acid
structures is not far behind our knowledge on proteins. This has mainly three
reasons: (i) nucleic acids are polyelectrolytes and hence almost always soluble in
water; (ii) the structures of nucleic acids fall into two distinct classes, double helical
duplexes and single stranded structures; and (iii) the dominant contribution to
the stability of structures is the interaction of base pairs in double helical stacks.
Indeed, formation of stacked base pairs is the major driving force for folding single
stranded nucleic acid molecules into structures as it is for the formation of duplexes.
Although DNA in nature is almost always double stranded and RNA mostly
single stranded, both nucleic acids can and do exist in both forms. Examples are
deoxyribozymes that are single-stranded catalytically active DNA molecules,45

double-strand RNAviruses, and double-stranded RNA in regulation of gene expres-
sion through RNA interference.46 The most important issue of double stranded
DNA is the sequence dependence of double helical (B-DNA) structures, which is
the key to protein recognition. Empirical data based duplex structure prediction
from known local DNA sequences has been successful.47–49 Important issues of
higher order structures in cyclic DNA concern supercoil, catenation, and other
topological properties.50 In this review, we shall not discuss duplex structures
further but concentrate on conformations of single strand (RNA) molecules.
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Polyelectrolytes require counter ions, which influence structure, and accord-
ingly the structures of nucleic acids depend on ionic strength as well as the nature
of the ions. This has been known from the early days of modeling DNA double
helical structures from fiber diffraction data, and turned out to be particularly
important for most full RNA structures, which are formed only when divalent
Mg2" is present in the solution. Metal ions are also known to occur as elements
of protein structure – a well known example is Zn2" in zinc fingers51,52 – but
more frequently they play an essential part in the catalytic function of proteins.
Like in proteins, RNA structures can be partitioned into primary, secondary,
tertiary, and quaternary structure elements. The primary structure is the nucleo-
tide sequence, the secondary structure, in essence, is a listing of Watson-Crick
and GU wobble base pairs and consists of a small number of motifs that can be
combined with few restrictions only, the tertiary structure comprises additional
interactions in RNA structure, which place the secondary structure elements in
3D space. These interactions are often characterized as tertiary structural motifs.
Commonly, the introduction of tertiary interactions keeps secondary structures
unchanged but in rare cases tertiary structure formation causes secondary
structure rearrangements.53 The quaternary structure is defined as in proteins but
plays only a minor role except in RNA protein complexes, for example in virions
or cellular complexes like the ribosome.

RNA structure analysis and prediction is facilitated by the existence of motifs
at all structural levels.54–56 Secondary structure motifs fall into four classes
(Figure 3): (i) stacks, (ii) loops, (iii) joints, and (iv) free ends. In essence, the
stacks provide the (only) stabilizing contributions to RNA structure, whereas the
other elements are accompanied with positive free energy contributions. Loops
are single-stranded elements attached to stacks, a hairpin loop to a single stack, a
bulge or an internal loop to two stacks and a multi-loop to three or more stacks.
Small hairpin loops commonly lead to large positive free energy contributions,
because several degrees of freedom are frozen when the loop is closed. Excep-
tions, among others, are especially stable tetraloops, where a favorable geometry
allows for additional base stacking.57,58 Joints are single strands combining two
otherwise independent motifs – in case the joint is cut the RNA is partitioned into
two unconnected molecules. Free ends, eventually, are single stranded stretches
at the 50-end or the 30-end of the RNA molecule. Joints and free ends are
characterized by high conformational flexibility. As in proteins, composite motifs
are also found in RNA. As an example we mention the kink-turn motif,59 which
is a combination of two stacks and a bulge or an internal loop between them. For
certain constraints on loop size and RNA sequence the result is a sharp turn of the
ribose-phosphate backbone and an acute angle formed by the axes of the double
helices. The conventional definition of RNA secondary structure excludes
pseudo-knots (see Figure 4 and the next section). RNA secondary structures are
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Figure 3. Modules of RNA secondary structures. Stacks (blue) consist of base
pairs combined in Watson-Crick-type double helices. Hairpin loops (red) terminate
stacks, bulges and internal loops (pink and magenta) are adjacent to two stacks, and
multiloops (violet) combine three or more stacks. A joint (brown) is an element
joining two otherwise independent parts of the structure and free ends (orange)
are mobile single strands at the 50- and/or the 30-end of the RNA. Below the
conventional representation of the secondary structures we show an equivalent
representation of structures by parentheses and dots: parentheses symbolize base
pairs – the opening parenthesis is nearer to the 50-end, the closing parenthesis is
nearer to the 30-end – and the dots stand for unpaired nucleotides. As with
sequences the 50-end is on the LHS, the 30-end on the RHS of the parentheses
string. The assignment of parentheses to base pairs follow the mathematical notation
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much more important than protein secondary structures, because every nucleo-
tide is contained in a secondary structure motif and secondary structure formation
commonly covers the major part of the free energy of folding.

Tertiary motifs are larger in number and richer in diversity than secondary
structure motifs.56 A systematic nomenclature of base pairs allows for a classi-
fication of non-Watson-Crick type nucleotide-nucleotide interactions60 The
search for tertiary RNA motifs has been very successful so far61–63 and is still
continued on a worldwide basis.64 The most common and overall structure
dominating motif is end-to-end base pair stacking of helices, also called con-
tinuous interhelical base stacking (COIN stacking). It combines stacks into
elongated double helical stretches. A well known example is found in tRNAs –
the 3D structure was first determined for phenylalanyl-tRNA (tRNAphe)65 –
where the stacks terminated by the dihydro-U-loop and the anticodon loop form
one extended helix and so do the stack of the TC-loop and the terminal stack
carrying the CCA-end. The ‘L’-shaped tRNA structure is stabilized by four
Mg2" ions binding to specific sites and a number of tertiary interactions
involving a pseudo-knot, non-Watson-Crick base pairs, base intercalation, and
binding to 20-OH of the ribose moieties (Figure 5). Studies on randomized
genes have shown that the reverse-Hogsteen base pair bridging the TC-loop
(T545A58) is essential for the rigid and strong contact between the dihydro-U-
and the TC-loop, and that the base pair is needed together with other interactions
for the maintenance of the ‘L’-shape.66

Figure 4. Pseudo-knots in RNA structures. Pseudo-knots are structures with
Watson–Crick base pairs that cannot be cast into the parentheses representation
without violating the mathematical notation. Parentheses cannot be assigned
unambiguously to the base pairs without usage of colors. The figure sketches
hairpins from two classes: (i) an hairpin-type (H-type pseudo-knot) (LHS)
where a hairpin is involved in downstream base pairing, and (ii) the kissing
loops motif (RHS) involving two hairpin loops forming a stack. Colored
parentheses representations are shown below the figures

Genotypes and Phenotypes in the Evolution of Molecules 291

https://doi.org/10.1017/S1062798709000787 Published online by Cambridge University Press

https://doi.org/10.1017/S1062798709000787


Kinetic folding of RNA molecules follows similar principles as does kinetic
protein folding. The process is initiated by local folding of structural nuclei of
stacks at several positions of the RNA sequence, then the stacks grow until they
form the still flexible secondary structure. The introduction of tertiary contacts
and the addition of Mg2" cations result in the full 3D structure of the molecule.
Although the kinetic details of hairpin formation are quite involved,67 the overall
kinetics can be described well as a cooperative process68–70 and modeled by
straightforward algorithms71 or computed by Arrhenius kinetics.72 It is worth
mentioning the highly promising single molecule techniques, which are steadily
providing additional information on biopolymer structures and structure forma-
tion. Techniques successfully applied to RNA and protein folding are atomic
force microscopy and fluorescence techniques.73,74

The RNA model

The landscape metaphor introduced in the first section requires either empirical
data or a realistic model in order to test its applicability to RNA evolution and
optimization of molecular properties. The RNA model is based on two different

Figure 5. Tertiary interactions in tRNA structures. The figure on the LHS
shows the conventional cloverleaf secondary structure of phenylalanyl transfer
RNA (tRNAphe). Continuous interhelical base (COIN) stacking shapes of the
molecule into an ‘L’. The stack closed by the dihydro-U-loop (green) associates
end-on-end with the anticodon stack (red), the nucleotide between the two
stacks, G26, forms a non-Watson-Crick base pair with A44. Similarly, the stack
of the TC-loop (blue) is coaxial with the terminal stack (violet) with one regular
AU base pair in between. Other tertiary interactions further stabilizing the
‘L’-structure are shown as broken grey lines
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inputs: (i) the kinetic theory of molecular evolution5,75–77 provides the tool for the
analysis of evolutionary dynamics at the molecular level, and (ii) the folding of
RNA sequences into secondary structures yields simplified biomolecular structures
that are suitable for the computation of parameters.78 The relation between RNA
sequences and secondary structures is used for modeling fitness landscapes of
evolutionary optimization since secondary structures are physically well defined
and meaningful and, at the same time, accessible to rigorous mathematical ana-
lysis.79 In particular, RNA secondary structures allow for the introduction of most
features of real structures in a straightforward and analyzable way.

RNA replication and mutation

The evolution of RNA molecules in the test tube represents the simplest system that
fulfils the criteria for Darwinian evolution: (i) multiplication, (ii) variation, and (iii)
selection. Evolutionary studies of RNA molecules in the test tube were initiated in
the 1960s by Sol Spiegelman and his group15,16 and has remained a highly active
field ever since.10,80 The kinetics of RNA replication by means of viral replicases
has been studied in great detail.81–83 Although RNA replication follows a com-
plicated multistep reaction mechanism, the overall kinetics under suitable conditions
consisting of excess replicase and nucleotide triphosphates can be described by
simple exponential growth (Figure 6). In this phase, complementary replication

Figure 6. RNA replication by viral replicases. The growth curve of RNA
concentration in a closed system with polymerase and excess nucleotide
triphosphates is shown.81 In the exponential phase the total concentration of
RNA is smaller than the total concentration of replicase, in the linear phase
RNA is present in excess and, eventually at high RNA concentration the growth
curve levels off, since the enzyme is bound in inactive RNA-replicase
complexes and RNA synthesis is blocked by product inhibition
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sketched in Figure 7 can be represented by a simple two-step mechanism

Xþ �!
fþ

X� þ Xþ and

X� �!
f�

Xþ þ X�

ð2Þ

The solution of the kinetic equations leads to two modes that describe fast
internal equilibration and growth of the plus-minus ensemble with a rate para-
meter, f ¼

ffiffiffiffiffiffiffiffiffi
fþf�
p

, that is the geometric mean of the two rate constants:

ZðtÞ ¼ Zð0Þe�ft; Z ¼
ffiffiffiffiffi
fþ
p

xþ �
ffiffiffiffiffi
f�
p

x�
f

and

zðtÞ ¼ zð0Þeþft; z ¼
ffiffiffiffiffi
fþ
p

xþ þ
ffiffiffiffiffi
f�
p

x�
f

ð3Þ

with x1 5 [X1] and x2 5 [X2] being the concentrations of plus and minus
strands, respectively. Variation is introduced into ensembles of replicating RNA
molecules by unprecise copying or mutation. Three classes of mutations are
distinguished: (i) single nucleotide mismatch in the replication duplex leading to
a point mutation (Figure 8), (ii) duplication of part of the RNA sequence leading
to insertion of nucleotides, and (iii) deletion of nucleotides.

A molecular theory of evolution based on the kinetics of replication and
mutation has been formulated by Manfred Eigen.5 The concept is based on the
reaction network,

Xj�!
Qij fj

Xi þ Xj; i; j ¼ 1; 2; . . . ;N ð4Þ

which is considered under the idealized conditions of excess nucleotide tripho-
sphates and replicase. The rate parameter fj refers to replications – correct and
incorrect – of template Xj and the factor Qij represents the frequency of pro-
duction of Xi as a copy of Xj. Since every copy has to be either correct or a
mutant the conservation relation

PN
i¼1Qij ¼ 1 holds. The kinetic differential

equations resulting from equation (4) with xi 5 [Xi] are linear

dx

dt
¼W � xwith x ¼

x1

x2

..

.

xN

0
BBBBBBB@

1
CCCCCCCA

ð5Þ

and can be solved in terms of eigenvalues and eigenvectors of the selection-
mutation matrix W, which can be factorized into a product of the mutation matrix
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Q and the diagonal matrix of replication rate parameters, F:

W ¼ Q � F with Q ¼

Q11 Q12 . . . Q1N

Q21 Q22 . . . Q2N

..

. ..
. . .

. ..
.

QN1 QN2 . . . QNN

0
BBBBBB@

1
CCCCCCA

and

F ¼

f1 0 . . . 0

0 f2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . fN

0
BBBBBB@

1
CCCCCCA
:

Since all sequences Xi can be reached from everywhere in sequence space by a chain
of successive point mutations, the matrix Wm has only strictly positive entries for
sufficiently large m and the Perron-Frobenius theorem84 holds: The eigenvector f0
corresponding to the largest eigenvalue l0 has exclusively strictly positive compo-
nents and all mutants Xi are present in the population after some time: xi(t).0 for
t..0. The eigenvalue l0 is positive and all components of the eigenvector are
growing exponentially. The mutant distribution determined by the eigenvector f0 is
called quasi-species since it represents the genetic reservoir of an asexually repli-
cating species. It is straightforward to introduce a constraint into equation (5) that
limits population size

PN
i¼1 xi ¼ c asymptotically to limt-Nc(t)5 c0:

dx

dt
¼W � x�

�f

c0
x ¼ ðW�

�f

c0
EÞ � x ð5aÞ

Here, E is the unit matrix and �f ¼
PN

i¼1 fixi=c represents the mean replication
rate parameter of the population. In the solutions of equation (5a) the population
approaches indeed the stable stationary state limt!1

PN
i¼1 xiðtÞ ¼

PN
i¼1 �xi ¼ c0,

which is determined by the components of the eigenvector f0. Choosing c0 5 1
yields relative or L1 normalized concentrations:

PN
i¼1 x1 ¼ 1 (which will be used

in the rest of this section).
All entries of the mutation matrix Q can be derived from three parameters, the

mutation rate p, the Hamming distance dH (Xi, Xj), and the sequence length n,
provided the uniform mutation rate model is adopted. This model is based on the
assumption that mutation rates are independent of the position on the RNA sequence:

Qij ¼ ð1� pÞn � �dH ðXi;XjÞwith � ¼
p

1� p
ð6Þ

The rate parameters fi are derived from the mappings C and F from sequence
space into shape space and into real numbers as formulated in equation (1).
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In the absence of neutrality, the stationary distribution of sequences contains a
master sequence, XM, which is characterized in terms of the largest replication
rate parameter: fM 5max{fi8i5 1,y, N}. At sufficiently small mutation rates
p, the stationary concentration of the master sequence is largest, �xM ¼
maxf�xi8i ¼ 1; . . . ;Ng. A simple expression for stationary concentrations can be
derived from the single peak model landscape. In this landscape, a higher
replication parameter is assigned to the master and identical values to all others
sequences: fM 5 sM � f and fi 5 f for all i 6¼M.85–87 The (dimensionless) factor sm

is called the superiority of the master. The assumption leading to the single
peak landscape is in the spirit of mean field approximations, since all mutants
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Figure 7. Complementary replication of RNA. Complementary replication
consists of (i) duplex formation from single strands by template induced
synthesis and (ii) dissociation of the duplex into a plus and a minus strand. The
dissociation of the completed duplex is highly unfavorable because of the large
negative free energy of duplex formation. Complex dissociation is facilitated by
the enzyme, which separates the two strands on the fly in order to allow for
independent structure formation and prevention of the formation of the
complete duplex
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are lumped together into a single molecular species with average fitness. The
concentration of the mutant cloud is simply xc ¼

Pm
j¼1; j 6¼M xj ¼ 1� xM and the

replication–mutation problem boils down to an exercise in a single variable,
xM, the frequency of the master. A mean-except-the-master replication rate
parameter is defined �f ¼

P
j6¼M fjxj=ð1� xMÞ and then the superiority is of the

Figure 8. Point mutation in replication of RNA. Point mutation results from a
mismatch in the replication duplex. The figure sketches the result of a U-G
mismatch that leads to a point mutation of transition type: A-G and U-C
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form: sM ¼ fM=�f . Neglecting mutational backflow we can readily compute the
stationary frequency of the master sequence,

�xM ¼
fMQMM � �f

fM � �f
¼

sMQMM � 1

sM � 1
ð7Þ

Non-zero frequency of the master requires QMM5 sM
21.Qmin. Within the uniform

error rate model an error threshold, defined by �xM ¼ 0 in the no mutational
backflow approximation, occurs at a minimum single digit accuracy of

qmin ¼ 1� pmax ¼
ffiffi
½

p
n�Qmin ¼ s�1=nM or pmax ¼ 1� s�1=nM ð8Þ

Figure 9 shows the stationary frequency of the master sequence, �xM, as a function
of the error rate. The exact solution of (5a) approaches the uniform distribution
at mutation rates above error threshold. In other words, the concentrations of all
molecular species in the population become identical. Such a state can never be
achieved in real populations since population sizes N are always many orders of
magnitude smaller than the numbers of sequences in sequence space – for a rather
very large population size of N51015 the chain length at which sequence space
matches population size is about n525. Accordingly, the no mutational backflow
approximation as well as the exact solution of the differential equation (5a) fail to
describe replication–mutation dynamics at mutation rates above the error thresholds
because of finite population size effects (see later). The error threshold phenomenon
is used in virology for the design of new antiviral drugs.14,88

RNA secondary structures

An RNA secondary structure S of the sequence X5 (a1, a2,y, an) where the
nucleotides are chosen from an alphabet, e.g. aiA{A, U, G, C}, is a planar graph
with the nodes being the individual nucleotides ai. The edges, i � jAS, are defined
by the following criteria:

(i) for all nodes ir(n2 1) holds i � i1 1A S (backbone),
(ii) for all nodes i exists maximal one k 6¼ {i1 1, i2 1} such that

i � kA S (base pairs),
(iii) from i � jA S and k � lA S with k, l, and i, k, j follows i, k,

l, j (no pseudo-knot rule), and
(iv) a criterion for structure formation, commonly minimization of free

energy.

The backbone (i) represents the polynucleotide chain consisting of alternating
phosphate and ribose moieties. The rule for base pairs (ii) defines all base pairs in
structure S and excludes base triplets and other interaction involving more than
two bases. The no pseudo-knot rule (iii) excludes structures shown in Figure 4.
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The m.f.e. condition, finally, defines the conditions under which S is as a possible
structure of X. Thanks to these criteria the search for RNA secondary structures
can be performed by means of dynamic programming.89–93 Introducing the
search for pseudo-knots into the search for optimal structures is possible in
principle, but raises the computational demands enormously.94 The situation with
other tertiary motifs is similar. The currently used approach to predict tertiary
structures starts from secondary structures and introduces tertiary contacts where
sequence and structure make it possible.

Secondary structures can be represented as strings consisting of dots, and left
and right parenthesis related by mathematical convention (Figure 3) without
losing information. This fact provides an upper bound for the number of possible

Figure 9. Error threshold in replication. The figure sketches the (relative)
stationary concentration of the master sequence in the population as a function of
the mutation rate �xMðpÞ. It vanishes at the error threshold in the ‘no mutational
backflow’ approximation. The insert shows curves obtained as the exact solution
derived from the largest eigenvector of the matrix W (red), by an approximation
based on equal concentrations of all mutants that corresponds to the population at
mutation rates p.pmax and becomes exact at p5 0.5 (blue), and by the no
mutational backflow approximation (equation (7), black). The red curve and the
blue curve approach each other above the error threshold and converge to the
uniform distribution. The deterministic equation (5a) and its approximations fail to
describe population dynamics at mutation rates above threshold. In addition, all
replication processes in reality are bound by a minimum error rate, pmin, that
represents the physical accuracy limit of replication
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secondary structures: Ns(n),, 3n since acceptable mathematical parentheses
notation is a severe restriction. Application of combinatorics yields a remarkably
good approximation for sufficiently long sequences:78,95

NSðnÞ � 1:4848� n�3=2ð1:84892Þn

Accordingly, the number of sequences, N5 4n, is always larger – commonly
much larger – than the number of secondary structures and we are dealing
therefore with neutrality.

Folding RNA sequences into conventional secondary structures with minimal
free energies provides a suitable model system for studying realistic sequence-
structure maps of biopolymers for several reasons: (i) almost all RNA sequences
form some base pairs and structures are found everywhere in sequence space, (ii)
RNA folding follows a simple base pairing logic and hence it is accessible by
mathematics and computation, and (iii) RNA secondary structures are physically
meaningful and provide a basis for discussing RNA function. These three
properties that are not fulfilled in the case of proteins, and the capability of
multiplication in simple replication assays make RNA a suitable model for
studies of evolution in vitro and in silico.

Neutrality and its consequences

The mappings defined in equation (1) provide the theoretical basis for both,
rational and evolutionary design of biomolecules. Since we are dealing with
orders of magnitude, more sequences than structures and a multitude of structures
serving the same task, both mappings C and F are non-invertible in the sense
that many sequences form the same m.f.e. structure and many different structures
may have the same function. The mapping C is sketched in Figure 10. The
inversion of the mapping S5C(X) generally results in a set of sequences G(S)
defining the pre-image of structure S in sequence space:

GðSÞ ¼ W�1ðSÞ _¼fX jWðX Þ ¼ Sg ð9Þ

It is a subset of the compatible set of structure S:96 GðSÞ � CðSÞ. Since every
sequence Xk maps onto some structure Sk, the union of all neutral sets covers the
entire sequence space:

S
k GðSkÞ ¼ Q.

Global properties of neutral networks can be derived from random graph theory.97

The characteristic quantity for a neutral network is the degree of neutrality �l, which
is obtained by averaging the fraction of Hamming distance-one neighbors that fold
into the same m.f.e. structure, lX ¼ nð1Þntr=ðn � ðk� 1ÞÞ – with nð1Þntr being the number
of neutral single nucleotide exchange neighbors – over the whole network, G(S):

�lðSÞ ¼
1

jGðSÞj

X
X2GðSÞ

lX ð10Þ
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where |G(S)| is the number of sequences forming the neutral network. Con-
nectedness of neutral networks, among other properties, is determined by the
degree of neutrality:98

With probability one a network is
connected if �l � lcr
not connected if �lolcr

(
ð11Þ

where lcr ¼ 1� k�
1

k�1. Interestingly, this threshold value depends exclusively
on the number of digits in the nucleotide alphabet. Calculation yields the critical
values lcr 5 0.5, 0.423, and 0.370 for two, three, and four letter alphabets,
respectively. Random graph theory predicts a single largest component for non-
connected networks, i.e. networks below threshold, which is commonly called
the giant component.

Real neutral networks derived from RNA secondary structures sometimes
deviate significantly from the prediction of random graph theory. In particular,
they can have two or four equally sized largest components. This deviation is
readily explained by non-uniform distribution of the sequences belonging to
G(Sk) over sequence space, which is caused by specific properties of the structure
Sk.

99,100 For example, structures that allow for closure of additional base pairs at
the ends of stacks are more likely to be formed by sequences that have an excess
of one of the two bases forming a base pair than by those with an ideally
balanced distribution (nG 5 nC and nA 5 nU). For GC sequences the neutral
network of such a structure is less dense in the middle part of sequence space

Figure 10. Neutral networks and compatible sequences. The set of sequences
folding into the same m.f.e. structure S is denoted by G(S). It defines the nodes
of the neutral network of structure S in sequence space. Connecting all pairs of
sequences with Hamming distance dH 5 1 yields the neutral network G(S) (the
graph drawn in red). A neutral network is embedded in the set of compatible
sequences C(S), GðSÞ � CðSÞ. A compatible sequence of structure S, XC(S),
forms S either as its m.f.e. structure or as one of its suboptimal conformations
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(nG 5 nC) than above (nG . nC) or below (nG , nC), and we find two equally
sized largest components, one at excess G and one at excess C.

Neutrality in sequence space has consequences for the selection process. The
scenario of neutral evolution has been investigated in great detail by Motoo
Kimura.101,102 In the absence of differences in fitness values the distribution of
neutral genotypes or sequences drifts randomly in sequence space until one
particular genotype becomes fixed. Kimura’s theory yields two highly relevant
results: (i) the average time of replacement of one genotype by another is the
reciprocal rate of mutation, tsubst 5 1/p, and hence independent of population
size, and (ii) the time of fixation of a mutant is proportional to the population
size, tfix 5 4Ne (with Ne being the effective population size). Neutrality can be
introduced into model fitness landscapes, the corresponding selection-mutation
equation (5a) is solved straightforwardly, and yields at the limit of small mutation
rates for two sequences depending on the Hamming distance:103

dH ðXi;XjÞ

¼ 1 : limp!0 xi ¼ 0:5 and limp!0 xj ¼ 0:5

¼ 2 : limp!0 xi ¼ a and limp!0 xj ¼ 1� a

� 3 :
limp!0 xi ¼ 0 and limp!0 xj ¼ 1 or

limp!0 xi ¼ 1 and limp!0 xj ¼ 0

(
8>>>><
>>>>:

ð12Þ

A pair of fittest neutral nearest neighbor sequences appears in the stationary
mutant distribution strongly coupled at equal concentrations; two sequences, Xi

and Xj, with Hamming distance dH (Xi, Xj)52 form a strongly coupled pair with a
concentration ratio a/(12 a); and for Hamming distance dH (Xi, Xj)Z 3 the
Kimura scenario holds: either of the two sequences is selected depending on
initial conditions (and/or random fluctuations). The group of two or more neutral
sequences that is selected is called the core of the quasi-species and replaces the
master sequence of the non-neutral case. For more than two neutral nearest
neighbor sequences the core of the quasi-species is derived straightforwardly: we
consider the selection-mutation matrix W and neglect all terms O(e2). Without
changing the eigenvectors of W we set f5 f (12 p)n and e5 11, and obtain the
adjacency matrix A. The core is then computed as the largest eigenvector of A.
An example is shown in Figure 11. Increasing mutation rates p. 0 lead to small
or moderate changes in the relative concentrations of sequences in the core, in
fortunate cases ratios of concentrations hold almost up to the error threshold.

Stochastic effects in RNA evolution

Stochasticity becomes important when particle numbers are small and this is
certainly the case for rare mutations in evolution. For RNA molecules the
number of possible single-point mutations is 3n, and this increases like binomial
coefficients with the Hamming distance. A related source of stochastic effects
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concerns the smallness of all real populations compared to sequence space: in
molecular evolution experiments, the numbers of RNA molecules in an experi-
ment can hardly exceed 1015, which is practically nothing compared to
1.63 1060, the number of sequences in Q

ð4Þ
100 and therefore quasi-species are

always truncated at a certain distance from the population center.

Figure 11. Neutral networks and quasi-species. An example of a quasi-species
core for a degree of neutrality l 5 0.1. Fitness values fi were assigned randomly
to all 1024 binary (GC) sequences of chain length n5 10 with the constraint of
10% having the highest fitness value. The numbers on the sequences represent
the decimal equivalent of the binary sequence, e.g. the two sequences
X184�CCGCGGGCCC and X248�CCGGGGGCCC with Hamming distance
dH (X184, X248)5 1. The selected neutral network (upper part, LHS) comprises
seven sequences. The relative concentrations in the limit of vanishing mutation
rates, lim p-0, are given by the largest eigenvector of the adjacency matrix A
(upper part, RHS): e0 ¼ ð�x184; �x248; �x504; �x600; �x728; �x729; �x760Þ ¼ ð0:1; 0:2; 0:1;
0:1; 0:2; 0:1; 0:2Þ. As the computed curves �xiðpÞ show, the ratio of the
individual stationary in the limit is also a good approximation for finite mutation
rates almost up to the error threshold
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Therefore, stochastic effects are particularly important in molecular evolution
under several conditions:

(i) In the regime of sufficiently accurate replication the master
sequence or the core of a quasi-species is surrounded by a cloud
of mutants. Near the truncation distance from the population center
mutations become very rare and the mutants cannot reach
stationarity but remain fluctuating elements.

(ii) At mutation rates above threshold mutations to distant sequences
gain sufficiently high probability to destroy inheritance and all
mutants become equally frequent in the deterministic approach.
Since the population cannot cover the whole sequence space, it
spreads and starts to migrate through the sequence space.

(iii) Populations on neutral networks drift in the sense of Kimura’s
neutral evolution. In particular, the population spreads and breaks
up into different clones, which migrate through sequence space.

Scenarios (ii) and (iii) are similar but arise from two completely different origins:
Scenario (ii) results from low accuracy that manifests itself in the elements of the
Q-matrix and gives rise to migration of the population because of frequent
mutations. The error threshold has been interpreted also as a localization
threshold of the quasi-species in sequence space.104 Scenario (iii) is tantamount
to random drift in sequence space because of a degeneracy of the largest entries
of matrix F.105

In order to simulate selection-mutation dynamics of RNA at the stochastic
level, a realistic model based on chemical reactions in a flow reactor was con-
ceived.106–108 The sequence-structure map is an integral part of this model in the
sense that sequences are converted into m.f.e. secondary structures by means of
an RNA folding mechanism. Structures are evaluated to yield replication rate
parameters or fitness values fi. The simulation tool starts from a population of
RNA molecules and simulates chemical reactions corresponding to replication
and mutation in a continuously stirred flow reactor (CSTR) by using Gillespie’s
algorithm.109–111 In target search the replication rate parameter of a sequence Xi,
fi, is chosen to be a function of the distance between the m.f.e. structure formed
by the sequence, Si 5 f(Xi) and the target structure ST,

112

fiðSi; ST Þ ¼
1

aþ dH ðSi; ST Þ=n
ð13Þ

which increases when Si approaches the target structure ST (a is an adjustable
parameter that was chosen to be 0.1). A trajectory is completed when the
population reaches a sequence that folds into the target structure. Accordingly,
the simulated stochastic process has two absorbing barriers, the target and the
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state of extinction. For sufficiently large populations (N. 30 molecules) the
probability of extinction is very small; for population sizes reported here, N
Z 1000, extinction has been never observed.

A typical trajectory is shown in Figure 12. In this simulation, a homogeneous
population consisting of N molecules with the same randomly chosen sequence is
applied as an initial condition. The target structure is the well-known secondary
structure of phenylalanyl-transfer RNA (tRNAphe, see Figure 5). The distance to
target averaged over the entire population decreases stepwise until the target is
reached.78,107,108 The process occurs on two timescales: Short adaptive phases are
interrupted by long quasi-stationary epochs. Transitions between two structures Si
and Sj can be classified according to the nearness of their neutral networksG(Si) and
G(Sj).

113,114 Inspection of the sequence record during a quasi-stationary epoch on a
given plateaus provides hints for the distinction of two scenarios:

(i) The structure is constant because of neutrality in the map C and we
observe neutral evolution. In particular, the number of neutral
mutations accumulated is proportional to the number of replications
on the population level. Evolution is a random walk of the
population on a neutral network.

(ii) The process during the stationary epoch involves several structures
with the same replication rate parameters. Because of neutrality in
the map from structure to function, F, the population performs a
kind of random walk in the space of neutral structures.

The random walk or the diffusion of the population on neutral networks is
illustrated by the plot in the middle of Figure 12 showing the width of the
population as a function of time.78 The population width increases during the
quasi-stationary epoch and sharpens almost instantaneously after mutation has
created a sequence that allows for the start of a new adaptive phase. The scenario
at the end of the plateau corresponds to a ‘bottleneck’ of evolution. The bottom
part of the figure shows a plot of the migration rate or drift of the population
center in sequence space and confirms this interpretation: the drift is almost
always negligibly slow unless the population center jumps from one point in
sequence space to another point in sequence space where the molecule initiating
the new adaptive phase is located. A closer look at the figure reveals the coin-
cidence of three events: (i) collapse-like narrowing of the population width, (ii)
jump-like migration of the population center, and (iii) beginning of a new
adaptive phase.

In Table 1 numerical data obtained from sampling evolutionary trajectories
under identical conditions115 are presented. The individual trajectories show
enormous scatter in the time or the number of replications required to reach the
target. Mean values and the standard deviations were obtained from statistics of
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Figure 12. A trajectory of evolutionary optimization. The topmost plot presents
the mean distance to the target structure of a population of 1000 molecules. The
plot in the middle shows the width of the population in Hamming distance
between sequences and the plot at the bottom is a measure of the velocity with
which the center of the population migrates through sequence space. Diffusion
on neutral networks causes spreading on the population in the sense of neutral
evolution.105 A remarkable synchronization is observed: at the end of each
quasi-stationary plateau a new adaptive phase in the approach towards the target
is initiated, which is accompanied by a drastic reduction in the population width
and a jump in the population center (the top of the peak at the end of the second
long plateau is marked by a black arrow). A mutation rate of p5 0.001 was
chosen, the replication rate parameter is defined in equation (13), and initial as
well as target structure are shown Table 1
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Table 1. Statistics of the optimization trajectories. The table shows the results of sampled evolutionary trajectories leading from a random initial
structure SI to the structure of tRNAphe, ST as target.

* Simulations were performed with an algorithm introduced by Gillespie.109,110,125 The time
unit is here undefined. A mutation rate of p5 0.001 per site and replication was used. The mean and standard deviation were calculated
under the assumption if a log-normal distribution that fits well the data of the simulations

Population size Number of runs Real time from start to target Number of replications [107]

Alphabet N nR Mean value s Mean value s

AUGC 1000 120 900 113802 542 1.2 13.12 0.9
2000 120 530 18802 330 1.4 13.62 1.0
3000 1199 400 16702 250 1.6 14.42 1.2

10000 120 190 12302 100 2.3 15.32 1.6
30000 63 110 1972 52 3.6 16.72 2.3

100000 18 62 1502 28 – –
GC 1000 46 5160 1157002 3890 – –

3000 278 1910 151802 1460 7.4 135.82 6.1
10000 40 560 116202 420 – –

*The following structures SI and ST were used in the optimization:
SI: ((.(((((((((((((............(((....)))......)))))).))))))).))...(((......)))
ST: ((((((...((((........)))).(((((.......))))).....(((((.......))))).)))))).....
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trajectories under the assumption of a log-normal distribution. Despite the scatter
three features are unambiguously detectable:

(i) The search in GC sequence space takes about five time as long as
the corresponding process in AUGC sequence space in agreement
with the difference in neutral network structure.

(ii) The time from initial conditions to target decreases with increasing
population size.

(iii) The number of replications required to reach the target from initial
conditions increases with population size.

Combining items (ii) and (iii) allows for a clear conclusion concerning require-
ments in time and resources of the optimization process: fast optimization requires
large populations whereas economic use of material and/or energy suggests
working with small population sizes just large enough to avoid extinction.

Systematic studies on the parameter dependence of RNA evolution were
reported in a recent simulation.116 Increase in mutation rate leads to an error
threshold phenomenon that is closely to one observed with quasi-species on a
single-peak landscape as described above.77 Evolutionary optimization becomes
more efficient117 with increasing error rate until the error threshold is reached. A
further increase in the error rate leads to an abrupt breakdown of the success in
optimization. As expected, the distribution of replication rates or fitness values fi
in sequence space is also highly relevant: a steep decrease of fitness with the
distance from the fittest master sequence (forming the target structure) leads to
the sharp error threshold behavior as observed with single-peak landscapes,
whereas flat landscapes show a broad maximum of optimization efficiency
without an indication of threshold-like behavior.

Beyond the one sequence–one structure paradigm

So far it has been assumed implicitly that every RNA sequence gives rise to one
unique structure. This is almost always true when the notion of structure is
restricted to a well defined thermodynamic or process determined folding cri-
terion, m.f.e. or in situ folding during RNA synthesis. In general, the number of
structures Sk that are compatible with a given sequence X are commonly quite
large and form the set of compatible structures C(X), which consists of the m.f.e.
structure together with all suboptimal structures. Efficient algorithms for the
computation of suboptimal structures are available.118,119 Because the numbers
of suboptimal structures are almost always too large to be computed, stored and
retrieved, the computational procedures use restrictions: in Ref. 118, certain
common but less important classes of structures are neglected, and in Ref. 119 all
structures are computed that lie within an predefined energy band above the
m.f.e. (Figure 13). Alternatively, using the partition function of the states Sk,
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the superposition of all Boltzmann weighted structures can be calculated with
little more computational effort than needed for the computation of the m.f.e.
structure.91,120 Yes-or-no pairing between two nucleotides is then replaced by a
base pairing probability.

Rules defining nearest neighbors in shape space and a measure of distance
between structures are required for the construction of a free energy surface that
identifies the (meta)stable conformations as local minima and the transitions
states for conformational changes as saddle points. Such rules form the move set
of allowed elementary transitions between structures and represent individual
steps in models for folding kinetics. An acceptable move set guarantees that
every structure can be reached from every structure in shape space by a sequence
of moves.121 Opening and closing of single base pairs forms a move set fulfilling
the condition. Empirical evidence suggests also including a shift move that can
be understood as a specific combination of base pair opening and base pair
closing into one move:

� �ððð� � � � ��ÞÞÞ� ! � � ðððð� � ��ÞÞÞÞ � base pair closure;

� �ðððð� � ��ÞÞÞÞ� ! � � ððð� � � � ��ÞÞÞ � base pair opening; and

ðð� � ððð� � �ÞÞÞÞÞ� ! ððð� � ðð� � �ÞÞÞÞÞ � base pair shift:

.

Figure 13. RNA structures. The m.f.e. structure of an RNA sequence is
accompanied by a large number of suboptimal structures. The sequence
GGCCCCUUUGGGGGCCAGACCCCUAAAGGGGUC folds into a single
hairpin structure S0 with m.f.e. of 226.3 kcal/mole. The first suboptimal
structure of this molecule, S1, is a double hairpin with a free energy of
225.3 kcal/mole. The figure shows the m.f.e. structure (LHS; red), the spectrum
of suboptimal structures (middle; suboptimal conformations related to S0 are
shown in red, those related to S1 in blue), and the barrier tree of the sequence
(RHS) with two major basins for S1 (blue) and S0 (red)
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The move set defines the nearest neighbors of a given structure and allows for
classification (Figure 14): a structure that is surrounded by structures of higher free
energy represents a local minimum of the free energy surface and corresponds to a
(meta)stable conformation. The conformation Sk corresponding to a local minimum
of the free energy surface has a uniquely defined basin of attraction that is defined
by the set of all structures from which downhill walks end uniquely in Sk. In
addition to local minima, the saddle points of free energy surfaces are required for
folding kinetics. A saddle point is defined by a locally lowest point in shape space,
which has (two or more) nearest neighbors in shape space that belong to two
distinct basins of attraction. All structures except those corresponding to local
minima and saddle points are (fully) unstable structures.122 It is straightforward to
show that the inclusion of the shift move may change the nature of structures: some
local minima are turned into unstable states.

The barrier tree is a coarse-grained simplification of the free energy surface of
an RNA molecule. It discards all (fully) unstable structures and retains only
(meta)stable conformations and saddle points. The barrier tree, nevertheless,
allows for an identification of the basins of attraction (see the example shown in
Figure 13). Small basins of attraction can be united to form larger ones until we

Figure 14. Conformation space and barrier tree. RNA secondary structures
formed by one sequence fall into three classes: (i) local minima of the energy
surface (black) are surrounded exclusively by suboptimal structures with higher
free energies; (ii) saddle points (red) have two (or more) nearest neighbors in
shape space that belong to two distinct basins; and (iii) (fully) unstable
structures that are neither local minima or saddle points (green). The reaction
coordinate is a path in shape space, which leads from one local minimum
(conformation Sk) to another local minimum (conformation Sj). The barrier
tree71,126 is constructed by discarding all structures except local minima of the
free energy surface and the lowest saddle points connecting them (an example is
shown in Figure 13)
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end up with a few major conformations each defining a large basin, and this
procedure can be continued until only very few basins are retained or a single
conformation remains. RNA molecules with several dominant basins of attrac-
tion corresponding to two or more (meta)stable conformations are called ribos-
witches, can be designed in silico123 and occur also in vivo.124 Conformational
changes in natural riboswitches are commonly triggered by binding of small
molecules and have regulatory function in metabolism. The barrier tree has also
been used to compute Arrhenius-type folding kinetics of RNA molecules. The
results are in good agreement with the exact computations of the folding kinetics
on the computed conformational energy landscape unless there are many tran-
sition states whose energies lie close by.72

Finally, RNA suboptimal structures can also be considered in the context of
sequence-structure mappings.79 The set of structures that are compatible with a
given sequence, C(X) considered in Figure 15, is in a way inverse to the set of
compatible sequences (C(S) shown in Figure 10) since it deals with a non-
invertible mapping in the opposite direction, from shape space into sequence

Figure 15. Suboptimal and compatible structures. Metastable conformations
Sk(X) of sequence X are defined by two conditions: (i) DG, 0 for folding and
(ii) conformation Sk(X) is a local minimum of the free energy surface. These
conformations form the set G(X) in shape space. This set is embedded in the set
of all structures that are compatible with sequence X, GðX Þ � CðX Þ. This
compatible set C(X) contains all structures of shape space that are compatible
with sequence X. For the consideration of kinetic folding it is useful to include
the set of saddle point structures ~GðX Þ in the set of metastable structures
forming thereby the set of structures of sequence X that is needed for the
construction of barrier trees: GðX Þ ¼ GðX Þ 	 ~GðX Þ � CðX Þ
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space. A subset of the compatible structures, GðX Þ � CðX Þ, which contains all
local minima of the free energy surface and the saddle points connecting the
basins corresponding to (meta)stable conformations, provides the basis for the
construction of barrier trees. All structures that are neither local minima nor
saddle points are neglected. Local minima with positive free energies relative
to the open chain, DG. 0, and saddle points leading into their basins are
also excluded. RNA evolution on neutral networks considered as a process with
structure conservation and likewise kinetic RNA folding in conformation space is
a process with conservation of sequence.79

Conclusions and outlook

The current state of the art in computation and empirical determination of fitness
landscapes for evolution does not allow for predictions, because the accessible
data are still rudimentary. The most promising areas of application are evolu-
tionary design of molecules in vitro and virus evolution, where genotype spaces
are large but accessible through extensive data collection. The greatest challenge
for the future, presumably, is the same as in computational systems biology:
despite an enormous wealth of data, only a small fraction is comparable because
most of the currently accessible information is widely scattered in the literature
and has been measured under incomparable condition. Further progress in
reliability and predictive power of models depends, among other things, on
validation and standardization of data.

Mathematical and computational tools are nevertheless available and can be
implemented and used as soon as reliable information on the structure of land-
scapes becomes available. Evolution can be formally described and properly
modeled as a process in sequence space as kinetic folding is visualized in shape
space. The RNA model serves as a kind of tool kit that provides fundamental
insights into basic structures and dynamics, which will later also be encountered
in the real world.
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3.5 Å resolution. J. Biol. Chem., 242, 3984–3988.

24. H. W. Wyckoff, K. D. Hardman, N. M. Allewell, T. Inagami, D.
Tsernoglou, L. N. Johnson and F. M. Richards (1967) The structure of
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