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A NOTE ON A SAMPLE-PATH RATE CONSERVATION LAW AND ITS
RELATIONSHIP WITH H='AG

KARL SIGMAN*, Columbia University

Abstract

We present a simple sample-path version of the rate conservation law (of
Miyazawa) and then show that the H =).,G law (of Heyman and Stidham) is
essentially the same law, that is, either one can be derived from the other.
As a final remark we illustrate the use of both laws jointly to quickly obtain
a queueing result.

QUEUE; TIME AVERAGE

1. Introduction

Miyazawa [7], [8] gave the rate conservation law (RCL) for a time stationary stochastic
process {X(t) : t E fYl}:

(1.1) EX'(t) = AEO{X(O-) - X(O+ )},

where A denotes the intensity of an underlying stationary point process, 1jJ = {tn } , which
includes the discontinuities of X(t) and EO denotes expectation under the Palm distribution of
X with respect to 1jJ.

RCL has been used to derive a variety of useful and interesting relations between time and
customer averages in queues (see for example [7], [8], [14], [11], [4]). Recently, it has been
generalized to cover certain non-stationary stochastic processes using local martingales
(Mazumdar et al. [6]), as well as to multiple jump situations (Miyazawa [9]), where it is also
shown to imply Little's formula. It also has been shown to admit the Palm inversion formula
for stationary point processes (Bremaud [1]). The purpose of the present note is to give a
simple sample-path version of (1.1) and then show that the well-known sample-path law,
H = AG, of Heyman and Stidham [5] (originally proved by Brumelle [3] in a stochastic
setting) is really the same law: either law can be viewed as a special case of the other. Finally
we remark how the two laws can be used jointly to derive queueing results.

2. The rate conservation law and H = AG

Let x: f!Ji+~ f!Ji be a function and let 1jJ = {tn : n ~ O} denote a simple point process on f!Ji+
that contains the discontinuities (if any) of x. We assume:

(i) x is right continuous with left-hand limits.
(ii) x is piecewise continuously differentiable with a right derivative existing at all points:

on any bounded interval there exists (at most) a finite number of points where x is not
differentiable, but at any such point x is right differentiable and between any two successive
such points, x has a continuous derivative.

The above properties (which can be relaxed) are virtually always satisfied by functionals of
interest of any queueing system modeled in continuous time where 1jJ typically (but not
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necessarily) represents the arrival and or departure epochs of a queueing system. Through
out, we make no stochastic assumptions: (x, 1jJ) is assumed a fixed sample path (from perhaps
some underlying probability space). Let N(t) denote the corresponding counting process. Let
-In~x(tn+ ) - x(in-) denote the nth jump size. We define (when the limits exist)

A~f lim N(t) ,
t__

oo
t

(2.1) E(J) ~f lim! i In ,

n--oonj=l

( )
def. 1 it ()E x' = lim - x' x ds.

t__oo t 0

Here, x'(t) denotes the right derivative at time t. Even though no stochastic set-up is
assumed, we use the expectation notation, E, for convenience.

Theorem 2.1. If A and E (J) exist and are finite and x (t) / t~ 0 as t~ 00 then E (x') exists and

(2.2) E(x') = AE(J).

Proof. Using Assumptions (i) and (ii) we can rewrite any interval [0, t] as the finite union
of disjoint subintervals within each of which x has a continuous derivative. From elementary
integration theory, we thus have

i
t N(t)

o x'(s)ds=x(t)-x(O)+ f;/n o

Dividing by t and taking the limit as t~ 00 gives the result.

Deriving H = AG from RCL. We consider H = AG in the set-up found in Wolff [13],
Theorem 5, p. 290. We have non-negative functions fn (non-negativity is not essential) defined
on the interval In ~~t [tn, tn + In)(fn(t) = 0 for t f In and the technical condition l.fn~ 0
is assumed), Gn~f~fn(s)ds, H(t)~E:=lfn(t), Hd~tlimt__001/tf~H(s)ds, G~f
limn __ oo l/nf/;=l Gj, and A is defined as in (2.1) using 1jJ ~f {tn}. The theorem states that
H = AG if both A and G exist and are finite. To use our Theorem 2.1 RCL to prove this, let
Gn(t) d:! J~ fn(s) ds; t E In (0 otherwise), and x(t)~ E:=l Gn(t). The discontinuities of x are
contained in 1jJ and G~(t) = -fn(t) so that x'(t) = -H(t). Moreover, -In = Gn; thus, we need
only verify the technical condition that x(t)/t~O. To this end, let t~ = t; + In and let 1jJd, Nd(t)
denote the corresponding point process (with the points put in ascending order). Then

def dO) - -x(t) ~ y(t) = E~!:l Gn - E~=lt) Gn where the Gn denote the reordering of the Gn with respect to
the order of the points in 1jJd. The technical assumption In/n~ 0 implies that Nd(t)/t~A,
thus (since both A and G are assumed finite), we obtain x(t)/t ~y(t)/t~AG - AG = O.

def def [ )Deriving RCL from H = AG. Let In = T; = tn+ 1- tn and In = tn, tn+ 1 and assume the
hypothesis of Theorem 2.1; we shall also assume that A> 0 (to help our derivation proceed
at top speed) so that in particular, In/n~O. Define fn(s)~fx'(s), seIn (0 other
wise), G~ ~ f~ f,,(s) ds = f~:+l f,,(s) ds = x(tn+ 1-) - x(tn) = I n+ 1+ x(tn+ 1)- x(tn) and H(s) ~f
E:=lfn(s) = x'(s). From H = AG we thus obtain our result if we can show that
1/nEj=1x(tj+ 1)- x(tj) =x(tn+ 1) - x(t1)/n~ O. But this follows from the assumption that
x(t)/t~0 because

and tn/n --+ A-I< 00.

Remark 1. We can also get an iff version of Theorem 2.1, as follows. Assume that A exists
and 0 < A< 00 and that x(t)/t--+ 0 as t-+ 00. Then E(x') exists (and is finite) if and only if E(J)
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exists (and is finite), in which case (2.2) holds. This version can be thought of as the iff
version of H = AG found in Whitt [12].

Remark 2. The connection between RCL and level-crossing methods (see for example, [2],
and [15]) for a process Y(t) (satisfying conditions (i) and (ii) say, with underlying point
process tn with rate A) can be easily realized by considering for a fixed level x, the indicator
process X(t) = I{Y(t) ~x} and then applying RCL. In this case X'(t) = 0 and we additionally
shall assume that all jumps are non-negative and that Y(t) is non-increasing between
consecutive t, (as is typically the case for queues where the s, denote arrival times). We must
therefore consider the additional point process {tm(x): m ~ I} denoting the consecutive times
at which Y(t) makes a downcrossing at level x (assumed to have rate A(X»; these additional
points are discontinuities for X. Applying RCL (and observing that jumps of X from tm(x) are
of magnitude 1) we obtain 0 = -A(X) + A(PO(y(O-) ~ x) - pO(y(O+) ~ x », where pO denotes
the empirical distribution of Y with respect to the points t; (which under stochastic
assumptions is the Palm distribution of Y). Rewriting gives

A(X) = A(PO(y(O-) ~x) - pO(y(O+) ~x».

Remark 3. Typically, in practice, one of the two laws is better suited for the problem at
hand depending on the particular model and process under consideration. Nevertheless, as
the following example illustrates, sometimes one can gain by using both laws at the same time
on the same model.

Example. Let V(t) denote total work at time t in a FIFO single-server queue with input the
(simple) marked point process {(tn' Sn); n ~ O} (assumed a fixed sample path of arrival times
and service times, to== 0). Let Wa(t) denote the attained waiting time of the customer in service
at time t (how long the customer currently in service has been in the system; set to 0 if system
is empty). It is known that the empirical distributions of V and Wa are identical:

( )
def , . 1 it {(} def , . 1 itP v>x =hm- I V s»x ds=P(Wa>x)=hm- I{Wa(s»x}ds;x~O.

t_oo t ° t_oo t °

See Sengupta [11], Sakasegawa and Wolff [10] (also see [1]). We shall now quickly prove this
result (only to illustrate the quick joint use of the two laws; a new proof of this result is
certainly not needed). On the one hand we apply H = AG to H(t) = I(Wa(t) > x) with
fn(t) = I(t - tn> x; tn + D; ~ t < s; + D; + Sn), where D; ~ V(tn-) denotes the delay in queue
of the nth customer. Then

and hence

P(Wa>x) = AE min {(D + S -x)+, S},

where the expectation denotes the empirical average of the Gn's. On the other hand, by
applying RCL to X(t)~f(V(t)-x)+, we have x'(t)=-I{V(t»x}, and -In=(Dn+Sn
x)+-(Dn-x)+=min{(Dn+Sn-x)+, Sn}=Gn from which we immediately obtain our
result.
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