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Active Stokesian dynamics
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Since its development, Stokesian dynamics has been a leading approach for the
dynamic simulation of suspensions of particles at arbitrary concentrations with full
hydrodynamic interactions. Although developed originally for the simulation of passive
particle suspensions, the Stokesian dynamics framework is equally well suited to the
analysis and dynamic simulation of suspensions of active particles, as we elucidate here.
We show how the reciprocal theorem can be used to formulate the exact dynamics for
a suspension of arbitrary active particles, and then show how the Stokesian dynamics
method provides a rigorous way to approximate and compute the dynamics of dense active
suspensions where many-body hydrodynamic interactions are important.
Key words: micro-organism dynamics, active matter, Stokesian dynamics

1. Introduction

Active matter is a term used to describe matter that is composed of a large number of
self-propelled active ‘particles’ that individually convert stored or ambient energy into
systematic motion (Schweitzer & Farmer 2007; Morozov 2017). The interaction of many
of these individual active particles can lead to complex collective dynamics (Ramaswamy
2010). Natural examples include a flock of birds, a school of fish, or a suspension of
bacteria (Toner, Tu & Ramaswamy 2005), but active matter may also be composed of
synthetic active particles (Bechinger et al. 2016). These out-of-equilibrium systems are
most often in fluids, so understanding their dynamics and rheology involves a connection
between fluid–body interactions and non-equilibrium statistical physics (Marchetti et al.
2013; Saintillan 2018).

The study of active matter at small scales is complicated by the fact that the Stokes
equations, which govern momentum conservation of Newtonian fluids when inertia is
negligible, feature a long-range decay of fluid disturbances (Happel & Brenner 1965).
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Because of this, active particles interact through the fluid over distances that are long
relative to their individual size, and to properly capture the effect of the fluid in these
systems, one may need to sum hydrodynamic interactions between all bodies, particularly
at higher particle concentrations.

The difficulty of capturing accurately many-body hydrodynamic interactions is well
known from the study of suspensions of passive particles, where early efforts to sum
hydrodynamic interactions in infinite suspensions were plagued by problems of divergent
sums (see, for example, the long literature on sedimenting particles; Davis & Acrivos
1985), eventually overcome by the pioneering work of Batchelor (1972), Jeffrey (1974),
Hinch (1977), O’Brien (1979) and others. The Stokesian dynamics method that was
developed soon after facilitated the efficient dynamic simulation of passive particle
suspensions at arbitrary concentrations (Brady & Bossis 1988). The essential basis of
the Stokesian dynamics method is a mixed asymptotic approach wherein hydrodynamic
forces on particles due to interactions are computed distinctly when the particles are in
close proximity versus widely separated. When the particles are widely separated, the
method sums many-body hydrodynamic reflections between particles through inversion
of a truncated grand mobility tensor, whereas when the particles are in close proximity,
pairwise additive lubrication forces are used (Durlofsky, Brady & Bossis 1987). When
the suspension is infinite or periodic, a modification of the method introduced by
O’Brien (1979) is used to obtain absolutely convergent expressions for the hydrodynamic
interactions among all particles, suitable for the numerical simulation of a wide range
of problems from sedimentation to rheology (Brady et al. 1988). Since its inception, the
Stokesian dynamics method has served as a foundational tool for the development of our
understanding of suspension mechanics in the last several decades.

Unlike passive suspensions, in active suspensions each active particle in the fluid is
endowed with non-trivial boundary conditions due to activity, and constantly injects
energy into the fluid. Many advances have been made in understanding the dynamics
of individual swimming microorganisms (biological and synthetic), from the pioneering
work of Taylor (1951) through to several detailed reviews of microscale locomotion
research (Lighthill 1976; Brennen & Winet 1977; Lauga & Powers 2009). However,
in a fashion similar to the early development of the passive suspension literature, the
majority of research on collective locomotion of many bodies and active suspensions
has emphasized dilute suspensions where swimmer–swimmer interactions are greatly
simplified, and far-field approximations are still valid (Saintillan 2018). Interesting
phenomena, such as particle clustering (motility-induced phase separation), have been
observed for dense suspensions of active particles (Bechinger et al. 2016), but very
often numerical simulation of these suspensions is done with active Brownian particle
models that neglect hydrodynamic interactions entirely (Cates & Tailleur 2015). Others
have used approaches for active suspensions that only approximate the Stokes equations,
such as multiparticle collision dynamics (Zöttl & Stark 2014) or lattice Boltzmann
methods (Stenhammar et al. 2017) that still may not be accurate for very dense
concentrations. Results for simplified swimmers in concentrated suspensions display
qualitative differences (Ishikawa, Locsei & Pedley 2008; Evans et al. 2011; Alarcón &
Pagonabarraga 2013; Matas-Navarro et al. 2014; Zöttl & Stark 2014; Thutupalli et al.
2018). Some argue that hydrodynamic interactions act to suppress phase separation in
active matter (Matas-Navarro et al. 2014), while others have shown that hydrodynamic
interactions with boundaries can control phase separation (Thutupalli et al. 2018).
A complete understanding of the connection between individual particle activity, the
hydrodynamic interactions between many particles that arise as a consequence of this
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activity, and the role this plays in the macroscopic dynamics of concentrated active
suspensions has not been developed.

As we discuss in the following, the Stokesian dynamics methodology is easily adapted
for the dynamic simulation of suspensions of active particles at any concentration, and as
with passive suspensions, is particularly well suited for dense concentrations and periodic
boundary conditions. The mathematical structure of the dynamical equations remains
essentially unchanged between passive and active particles, so any implementation of
the Stokesian dynamics method for passive particles may be modified simply and
easily for use with active particles. By making the connection to passive suspensions
and Stokesian dynamics, we obtain directly a long-developed framework for summing
hydrodynamic interactions, adding non-hydrodynamic forces, including Brownian motion
and constructing the equivalent Smoluchowski equations, for active suspensions with full
hydrodynamic interactions (Burkholder & Brady 2018). We believe that this mathematical
structure provides an ideal formalism for theoretical analysis of active suspensions
(Burkholder & Brady 2019), much as it has for passive suspensions (Brady 1993a,b).

The Stokesian dynamics method was first adapted for use with self-propelled active
particles by Mehandia & Nott (2008). In their work, they introduced spheres each with
a prescribed virtual propulsive force, that interact through a prescribed stresslet whose
magnitude sets the size of the virtual propulsive force, and an induced stresslet caused
by particle rigidity in a bulk flow. The dynamics of these active spheres was then solved
numerically using the Stokesian dynamics framework. The authors found that near-field
interactions appeared important even at low concentrations, as particles tended to cluster,
and they found qualitative differences in the dynamics between low- and high-volume
fractions. Despite the novelty, the authors did not specify how the propulsive force
arises from the surface boundary conditions, or how to generalize this approach. Shortly
afterwards, Ishikawa et al. (2008) adapted the Stokesian dynamics framework for use with
spherical particles with a prescribed tangential slip velocity, so-called squirmer particles
(Ishikawa et al. 2008). Using their own previous results for two-body hydrodynamic
interaction between squirmer particles (Ishikawa, Simmonds & Pedley 2006), Ishikawa
et al. (2008) were able to incorporate both near-field interactions and many-body far-field
interactions for the study of dense suspensions of (2-mode) squirmer particles. This
framework was then used to study the rheology (Ishikawa & Pedley 2007b), diffusion
(Ishikawa & Pedley 2007a) and coherent structures (Ishikawa & Pedley 2008) of these
active suspensions. The Stokesian dynamics framework was then extended for use with
passive and active spherical particles that had a fairly general surface velocity field (but
were individually immotile), which could be linked together to form complex swimming
assemblies (Swan et al. 2011). That machinery was then used to simulate a number of
model swimming microorganisms, from pusher and puller swimmers to helical flagella,
by using assemblies of spherical particles (Swan et al. 2011). Recently, a higher-order
Stokesian-dynamics-like approach (without lubrication), namely constructing mobility
tensors by a higher-order moment expansion of the boundary integral equations (Ichiki
2002), was developed for suspensions of squirmer particles by using tensorial spherical
harmonics (Singh, Ghose & Adhikari 2015). Here, we show that this previous literature
may all be synthesized into a fairly general theory for the dynamics of suspensions of
arbitrary active particles. This work illustrates the similarity of hydrodynamic interactions
in ‘passive’ colloidal suspensions versus active suspensions and how particle activity can
be incorporated directly into the Stokesian dynamics approach.

Alternative approaches to the Stokesian dynamics methodology for the numerical
simulation of passive and active suspensions have also been developed recently. An
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approach known as the force-coupling method (FCM) (Maxey & Patel 2001) instead
uses regularized (Gaussian) force distributions in the fluid and integrals over the entire
fluid domain (rather than just particle boundaries) to construct (far-field) mobilities. The
FCM was extended to incorporate fluctuating hydrodynamics for passive suspensions
(Keaveny 2014; Delmotte & Keaveny 2015) and then to squirmer active particles, up
to the stresslet level (Delmotte et al. 2015). Similarly, a fluctuating immersed boundary
method (FIBM) was also developed to simulate suspensions of Brownian particles (Delong
et al. 2014). Like the FCM, the FIBM uses an explicit (fluctuating) solvent but uses
kernels developed by Peskin (2002) for the immersed boundary method to mediate the
fluid–particle interactions. This immersed boundary approach has also been extended to
simulate rigid assemblies of particles and active particles (at the monopole level) (Balboa
Usabiaga et al. 2016). A key benefit of these approaches is that exact Green’s functions
need not be found, which for complex boundaries may not be feasible at all. The method
used to construct mobilities can be chosen depending on the boundary conditions, and this
is the approach taken in the rigid multiblob method with exact Green’s functions (at the
Rotne–Prager level) for unbounded or half-space simulations, while using the FIBM for
confined geometries (Balboa Usabiaga et al. 2016; Sprinkle et al. 2017). These methods
are both fast and have well-supported code bases, and although they generally include
only far-field hydrodynamic interactions, in principle, lubrication could also be added.
Finally, rather than forming the mobilities by expanding in tensorial spherical harmonics
as done by Singh et al. (2015) and also shown here, a recent approach (for non-Brownian
suspensions) uses instead vector spherical harmonics (Corona & Veerapaneni 2018; Yan
et al. 2020), which seems to lead to simpler formulas for higher-order terms, allowing
simulation of the near field without resorting to a lubrication approximation.

We begin by developing a general kinematic description of an arbitrary active particle
in § 2. Next, we show how the reciprocal theorem can be used to yield the exact dynamics
for a suspension of N arbitrary active particles in § 3. We then show how the Stokesian
dynamics technique is used for the approximation and dynamic simulation of these exact
equations in § 4.

2. Kinematics of an active particle

Consider an active particle identified with the region B as shown in figure 1. Changes in the
spatial configuration of the active particle can be described by a map χ from a reference
configuration B0 such that x = χ(X , t) for x ∈ B and X ∈ B0. The motion of the body can
be decomposed into shape change χ s, which represents the swimming gait of the active
particle, and rigid-body motion χ r, which arises as a consequence of interaction with the
fluid, so that

χ(X , t) = xc(t) + Θ(t) · (χ s(X , t) − χ s(X 0, t)), (2.1)

where xc is the translation, and Θ is the rotation (about χ s(X 0, t)) of the body under the
action of χ r. Upon differentiation, we obtain the velocity of the body,

u(x ∈ B) = U + Ω × r + us, (2.2)

where the translational velocity is U = dxc/dt, while the rotational velocity Ω is defined
by dΘ/dt = Ω × Θ and r = Θ(t) · (χ s(X , t) − χ s(X 0, t)). The deformation velocity

952 A19-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

90
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.909


Active Stokesian dynamics

X

X0

χs (X0, t) r

O

χ (X, t)
χs (X, t)

xc = χ (X0, t)χs

χr
χ

B0

B

Figure 1. Schematic of a deforming active particle.

due to shape change is

us = Θ · d(χ s(X , t) − χ s(X 0, t))
dt

, (2.3)

where the last term is the deformation velocity in the unoriented configuration,

d(χ s(X , t) − χ s(X 0, t))
dt

= Θ−1 · us ≡ ũs. (2.4)

In a purely kinematic description of the activity of the particle, we would consider the
shape change χ s to be prescribed and then solve for the rigid-body translation and rotation
of the active particle such that momentum (of the particle and of the fluid) is conserved.
Often, in the process of modelling an active particle, the details of the deformation are
coarse-grained away and one simply prescribes a surface velocity on a suitable reference
configuration, ũ(X ∈ ∂B0), such as ciliary beating on the surface of a microorganism that
is represented as a slip velocity over a fixed geometry (Blake 1971).

3. Dynamics of active particles

Consider a suspension of N particles, each labelled Bi where i ∈ [1, N], immersed in an
arbitrary background flow denoted u∞. The disturbance velocity field generated by the
particles is

u′ = u − u∞. (3.1)

Neglecting the inertia of the active particles and of the Newtonian fluid in which they
are immersed, the rigid-body dynamics of active particles is governed by an instantaneous
force balance

F + F ext = 0, (3.2)

where F and F ext are respectively 6N-dimensional vectors of hydrodynamic and external
(or interparticle) forces/torques on all N particles.

In general, the hydrodynamic forces may be easily shown, by the reciprocal theorem of
low Reynolds number hydrodynamics, to be weighted integrals of the boundary traction
during rigid-body motion:

F =
∑

i

∫
∂Bi

u′ · (n · T U) dS, (3.3)

where n is the normal to the surface ∂Bi pointing into the fluid. The tensor field T U

connects the rigid-body motion of 6N particles to stress (see Appendix A for a detailed
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derivation). Substitution of the boundary conditions of each active particle, (2.2), into (3.3)
yields a decomposition of the hydrodynamic forces into three separate forces due to each
aspect of the boundary motion: the hydrodynamic ‘swim’ force (or thrust),

F s =
∑

i

∫
∂Bi

us
i · (n · T U) dS, (3.4)

generated by each active particle as if held fixed in an otherwise quiescent fluid; the
hydrodynamic drag force on each particle,

F∞ = −
∑

i

∫
∂Bi

u∞ · (n · T U) dS, (3.5)

as if inactive and held fixed in a background flow; and the hydrodynamic drag due to the
rigid-body motion of each particle,

F d =
∑

i

∫
∂Bi

(U i + Ω i × ri) · (n · T U) dS = −RFU · U, (3.6)

as if inactive (passive) in an otherwise quiescent fluid. The latter is written in terms of a
(6N × 6N) resistance tensor, which is the linear operator that gives hydrodynamic forces
due to rigid-body translational/rotational velocities U (another 6N-dimensional vector).

Substitution of these forces into (3.2) and inversion of the resistance tensor gives

U = R−1
FU · [F ext + F s + F∞] . (3.7)

This relationship simply states that the rigid-body motion of active particles is linearly
related to the forces exerted by or on those particles. The deterministic formula in (3.7)
is exact and completely general; it governs the dynamics of a suspension of active (and
passive) particles of arbitrary shape and activity in a general background flow. A stochastic
Brownian force may also be included in the above force balance, with the associated
thermal drift term that arises upon elimination of inertial degrees of freedom:

U = R−1
FU · [F ext + F s + F∞ + F B] + kBT ∇ · R−1

FU . (3.8)

The vector U now represents discrete changes in position and orientation over an interval
�t, and the Brownian force is F B = √

2kBT/�t R1/2
FU · Ψ , where kB is the Boltzmann

constant, T is the fluid temperature and Ψ is a vector of standard Gaussian random
variables.

Although (3.7) and (3.8) are exact, to compute the dynamics, the tensor field T U would
need to be found at each instant, and this is prohibitively expensive for suspensions of large
numbers of particles (and more so if they are changing shape). Instead, an approximate
approach used in Stokesian dynamics is to evaluate a truncated set of moments of the
traction operator n · T U on the surfaces of the particles ∂Bi. We outline this approach for
spherical active bodies below, where the approach is particularly elegant and simplified,
but the methodology can certainly be extended to anisotropic bodies (Claeys & Brady
1993a,b,c; Nasouri & Elfring 2018).

3.1. Spherical moments
In order to facilitate computation, we use the fact that one may write an arbitrary
function on a sphere in terms of an expansion in irreducible tensors of the unit normal
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n (dimensionless tensorial spherical harmonics) (Hess 2015). In this way, the deformation
velocity of each active particle may be written as

us(x ∈ ∂Bi) = C(1)
i + n · C(2)

i + nn : C(3)
i + · · · , (3.9)

where in this shorthand notation the superscript indicates the tensor order of the
coefficients, and the overbracket means the irreducible (or fully symmetric and traceless)
part of the tensor (see Appendix B for further details).

The coefficient tensors C(n) may be obtained easily by appealing to the orthogonality of
the tensorial spherical harmonics

C(n+1)
i = 1

4πa2

∫
∂Bi

wn nn us dS, (3.10)

where the weight is wn = (2n + 1)!!/n!. Hence we see that the coefficient tensors are
(weighted) irreducible moments of us. We can recast these coefficients in more familiar
terms by separating symmetric and antisymmetric parts of C(2)

i ,

U s
i = 1

4πa2
i

∫
∂Bi

us dS, (3.11)

Ωs
i = 3

8πa4
i

∫
∂Bi

ri × us dS, (3.12)

Es
i = 3

4πa4
i

∫
∂Bi

[
1
2

(rius + usri)

]
dS, (3.13)

to rewrite the surface velocity in familiar form (Swan et al. 2011)

us(x ∈ ∂Bi) = U s
i + Ωs

i × ri + ri · Es
i + · · · . (3.14)

We can likewise express the background flow in terms of a moment expansion, and in
this way write in a consistent fashion for the disturbance field

u′(x ∈ ∂Bi) = U i + U s
i − U∞

i + (Ω i + Ωs
i − Ω∞

i ) × ri + ri · (Es
i − E∞

i ) + · · · ,

(3.15)

where U∞
i , Ω∞

i and E∞
i are defined as in (3.11)–(3.13) in terms of moments of the

background flow u∞. If the background flow is linear, then Ω∞
i = Ω∞ and E∞

i = E∞
are constants everywhere in the flow (but still may be arbitrary functions of time).

Using the expansion (3.15) in (3.3), one may write the hydrodynamic forces in terms
of a set of moments of the traction operator n · T U on the surfaces of the particles ∂Bi
(forming resistance tensors):

F = −RFU · (U + Us − U∞) − RFE : (Es − E∞) + · · · . (3.16)

Now using the above expression for the hydrodynamic forces, together with Newton’s
second law (3.2), we obtain the translational and rotational velocities of the spherical active
particles:

U = −Us + U∞ + R−1
FU · [

F ext − RFE : (Es − E∞) + · · · ] . (3.17)

These equations have the same functional form as the governing equations of motion for
passive particles, except with active particles one takes the difference in moments of the
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background flow to surface velocity, e.g. E∞ → E∞ − Es. If the particles are passive,
us = 0, then we recover equations of motion for passive particles in a background flow
(Brady & Bossis 1988); however, computing the far-field hydrodynamic interactions of
active spherical particles is no more difficult than for passive spherical particles, assuming
that the velocities on the boundaries of the active particle, us

i , are prescribed.
If hydrodynamic interactions are completely neglected, then the particles all move

with their respective single-particle velocities U = −Us + U∞ (higher-order moments
do not contribute to self-propulsion for isolated spherical particles by symmetry), and
we recover the classic result for single active spheres (Anderson & Prieve 1991; Stone
& Samuel 1996; Elfring 2015). It is technically possible to devise a perfect stealth
swimmer that does not disturb the surrounding fluid by setting us = U s, for example by
the jetting mechanism proposed by Spagnolie & Lauga (2010), but this is an extreme case,
and in general, higher-order moments lead to hydrodynamic interactions. We emphasize
that hydrodynamic interactions due to moments of the particle activity enter in exactly
equivalent form to interactions due to moments of the background flow. For example, the
leading-order change in the dynamics of the particles due to hydrodynamic interactions
is given by U + Us − U∞ = −R−1

FU · RFE : (Es − E∞), where the resistance tensors
R−1

FU · RFE act to couple the particles in precisely the same fashion for active particles
as passive particles. In Appendix D, we give the leading-order hydrodynamic interactions
(a dilute approximation) in the mobility formulation more commonly employed in the
literature.

We see that the leading-order hydrodynamic interactions due to activity are given by the
symmetric first moment of activity, Es

i , of each active particle. This is not a surprise as
the term Es sets the active component of the stresslet S (Ishikawa et al. 2006; Lauga &
Michelin 2016; Nasouri & Elfring 2018) of individual spherical active particles, where

S = 1
2

∫
∂B

[rσ · n + σ · nr − 2η(un + nu)] dS = 20πηa3

3

(
E∞ − Es) . (3.18)

The ‘active strain rate’ Es can be zero, but then the leading-order term will generally arise
at the second-moment level for self-motile active particles (that is, ones with non-zero
surface averaged velocity). This is the case for so-called neutral squirmers (see § 3.2
below) or symmetric phoretic particles (Michelin & Lauga 2014). This illustrates why
it is particularly important to incorporate higher-order moments to capture accurately
hydrodynamic interactions between active particles (Singh et al. 2015). Active particles
may also be immotile (not self propelling), meaning that U s = 0 but higher-order
moments are non-zero. A canonical example of immotile active particles is extensile
microtubule bundles that are driven by kinesin motors (Sanchez et al. 2012). Immotile
active particles, sometimes called ‘shakers’ in contrast to ‘movers’ that are motile
(Hatwalne et al. 2004), still interact hydrodynamically through higher-order active
moments in much the same way as motile active particles.

These equations, above all, simply reflect the linear relationship between velocity
and force moments. Using still more compact notation for all disturbance velocity
moments U ′ = [U + Us − U∞, Es − E∞, . . .]T and hydrodynamic force moments
F = [F , S, . . .]T, we may write, more generally, the linear relationship

F = −R · U ′, (3.19)

where R is the grand resistance tensor, an (unbounded) linear operator that maps velocity
moments to force moments. In this notation, the hydrodynamic force is written compactly
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as

F = −RFU · U ′. (3.20)

In order to capture the dynamics of active particles, we seek an effective and efficient
way to form RFU . The grand resistance tensor is a purely geometric operator, depending
only on the position (and orientation if they are anisotropic) of each active particle (Happel
& Brenner 1965). Perhaps less obvious is that the grand resistance tensor does not depend
on the prescribed surface activity of the particles, and is thus identical to the case when
they are passive. This also applies to particles in a bounded geometry – R is a function of
geometry only (Swan & Brady 2007, 2010). We have assumed here that the surface activity
of the particles is prescribed; however, the surface activity may depend on the traction
on the boundary, as it would, for example, for biological particles that have power-limited
surface actuation, but the linear relationship between force moments and velocity moments
makes it straightforward to prescribe force moments (Swan et al. 2011).

We focus here on spherical particles, as is common in the literature for colloidal
suspensions; however, the method described above can be generalized to other geometries.
We formed moments of forces and velocities by projection onto tensorial spherical
harmonics, but for other geometries, a more suitable basis for the vector fields on the
particle surfaces ∂Bi would be used. Alternatively, and more generally, one may perform
Taylor series expansion of the boundary integral equations about the centre of each
particle, which naturally projects tractions onto force moments for particles of arbitrary
geometry (see recent work by Swan et al. (2011) and Nasouri & Elfring (2018) for details
of this method applied to active particles). A problem with this approach is that the particle
activity us might be defined only on the particle surfaces (in the form of surface slip as in
§ 3.2), but this difficulty can be ameliorated by lifting us to a suitably continuous function
defined in R

3. Despite this complication, fundamentally, the linear relationship between
velocity and force moments remains, regardless of geometry.

3.2. Squirmers
A squirmer is a spherical particle whose surface slip velocity is tangential to the surface
(Pedley 2016). Most often, the slip velocity is taken to be axisymmetric; here, the
direction of the axis of symmetry of the particle is denoted by p (the particle director).
A purely tangential slip velocity is of course an idealization, but one that arises quite
naturally, for example in the limit of small-amplitude deformations that are projected onto
a time-averaged spherical manifold (Lighthill 1952; Blake 1971), or as the outer solution
of phoretic flow due to chemical concentrations confined to a thin layer near the sphere
surface (Anderson 1989; Golestanian, Liverpool & Ajdari 2005). The slip velocity is
typically written as an expansion in Legendre polynomials:

us =
∑

n

2
n(n + 1)

P′
n (p · n)p · [Bn(I − nn) + CnI × n] , (3.21)

where Pn is the Legendre polynomial of degree n, and P′
n(x) = (d/dx)Pn(x). The polar

slip coefficients Bn are often called ‘squirming’ modes, while the azimuthal slip (or
‘swirl’), with coefficients Cn, is not often considered but can lead to particle spin, for
instance (change Cn to Cnn(n + 1)/2an+1 for the coefficients used by Pak & Lauga 2014).
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Recasting the slip velocity in terms of irreducible tensors of the surface normal such that

us(x ∈ ∂B) = U s + Ωs × r + r · Es + r2 : Bs + r3 � Cs + · · · , (3.22)

we obtain

U s = −2
3 B1p, (3.23)

Ωs = 1
a3 C1p, (3.24)

aEs = −3
5 B2 pp, (3.25)

a2Bs = B1Δ
2 · p − 5

7 B3 ppp −C2(Δ
2 · p) × p, (3.26)

a3Cs = B2Δ
3 : pp −35

36 B4 pppp −5
4 C3(Δ

3 : pp) × p, (3.27)

where Δn is an isotropic 2n-order tensor that when applied on a tensor of rank n, projects
onto the symmetric traceless part of that tensor (see Appendix B for further details).
By symmetry, each coefficient is necessarily composed only of products of the particle
director p. We see that the swimming speed is given by the first squirming mode B1
as U = −U s = (2/3)B1p for an isolated squirmer, but note that the first mode also
contributes a higher-order term to hydrodynamic interactions between particles embedded
in Bs. The stresslet due to surface activity of a particle is given by the second squirming
mode, S = 4πηa2B2 pp. This determines if a squirmer is a pusher or a puller, but can
easily be zero – a so-called neutral squirmer – and in that case, the leading-order term
contributing to hydrodynamic interactions is necessarily given by B1 (and B3 if non-zero).
Azimuthal slip leads naturally to rotation given by the C1 mode, Ω = −Ωs = −(C1/a3)p
for an isolated squirmer, while the C2 mode leads to a rotlet dipole contribution in the far
field (Pak & Lauga 2014).

As an example of the framework developed here, consider an active squirmer particle,
labelled B1, in the presence of a freely suspended passive sphere, labelled B2, as shown in
figure 2. Using (3.17), we obtain the velocities of the two particles in terms of moments of
the surface activity of the active particle:

U1 = −Us
1 − (M11

UF · R11
FE + M12

UF · R21
FE) : Es

1 + · · · , (3.28)

U2 = −(M21
UF · R11

FE + M22
UF · R21

FE) : Es
1 + · · · , (3.29)

where the superscripts, for example Rαβ
FE , indicate the linear relationship between particle α

and particle β, while MUF = R−1
FU . The first term on the right-hand side of (3.28) represents

the self-propulsion of the active particle, while the second term represents the change in
the velocity due to hydrodynamic interactions induced by the surface strain rate of the
active particle Es

1 (and higher-order moments). Hydrodynamic interactions also induce
the motion of the passive particle. In essence, the moments of us on the active particle
result in a ‘swim’ force on both particles, which must then be balanced by drag due to
rigid-body motion. The trajectories of both active and passive particles are illustrated in
figure 2.
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B2

B

p

B

p

p

us

B 2

B
1

B1

Figure 2. Trajectory of a (pusher) active particle (labelled B1) in the presence of a passive particle
(labelled B2).

(a) (b) (c)

Figure 3. An illustration of dynamics mediated by hydrodynamic interactions between immotile active
particles (shakers). (a) 512 shaker particles are initially randomly oriented on a cubic lattice. Hydrodynamic
interactions alone drive particle dynamics and mixing (b,c). Images are snapshots in time from left to right.

As another example, consider a suspension of immotile ‘shaker’ particles. Using (3.17),
the velocities of the particles are

U i = −
∑

j

∑
k

(M ij
UF · Rjk

FE) : Es
k + · · · . (3.30)

Here, there is no self-propulsion, only the effects of hydrodynamic interactions induced by
the surface strain rate of the active particles Es

k (and higher-order moments), as illustrated
in figure 3.

3.3. Assemblies
As detailed by Swan et al. (2011), assemblies of active (or passive) particles can be dealt
with easily within the Stokesian dynamics framework, and in what follows we outline the
presentation given in that work.
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A set of particles may be constrained to move as a rigid body, that is, particle α in a
rigid assembly A will move as

Uα = UA + ΩA × (xα − xA), (3.31)

Ωα = ΩA, (3.32)

where xA is a convenient point on the assembly. Following the notation in Swan
et al. (2011), this may be written compactly in terms of six-dimensional vectors as
Uα = ΣT

αA · UA, where ΣT
αA projects the translational and rotational velocity of the

assembly onto particle α. The rigid-body translational and rotational velocities of all N
particles in an assembly may then be written in terms of 6N-dimensional vectors and
tensors as

U = ΣT
A · UA. (3.33)

The forces and torques that enforce the rigid constraints on the assembly, F c, must be
included in the sum of forces on the particles:

F + F c + F ext = 0. (3.34)

These constraint forces are internal forces, and as such exert no net force or torque on the
assembly. This may be written as

ΣA · F c = 0, (3.35)

where the operator ΣA, the transpose of the projection above, sums forces and torques
(about xA) on the assembly. In this way, the force balance on the assembly is

ΣA · F + ΣA · F ext = 0. (3.36)

Substitution of the relevant hydrodynamic forces and the kinematic constraint in (3.33)
into this force balance leads to the rigid-body motion of the assembly given by

UA = [
ΣA · RFU · ΣT

A
]−1 · ΣA · (F ext + F s + F∞) , (3.37)

where ΣA · RFU · ΣT
A = RA

FU is the hydrodynamic resistance of the assembly.
Equation (3.37) is an exact description of the dynamics of an assembly of active or passive
particles; no approximation has yet been made. In particular, we note that while (3.37)
yields the instantaneous rigid-body motion of the assembly, it does not mean that the
assembly cannot deform. Indeed, through the prescription of the activity of each particle,
by way of us, we may construct an assembly of virtually any shape and kinematics. This
approach is also extended straightforwardly to multiple assemblies through an extended
operator Σ that sums forces on each assembly as shown by Swan et al. (2011). As discussed
above, a natural method of solution is to use Stokesian dynamics to resolve hydrodynamic
forces as a truncated set of moments.

As an illustrative example of a deforming assembly, consider a simple reciprocal
two-sphere (or dumbbell) swimmer (see figure 4a). In this model swimmer, two spheres
labelled B1 and B2 (where BA = B1 ∪ B2), of radii a and λa, respectively, have a
prescribed distance between their centres, L(t), that changes periodically in time. We
describe the shape change of this swimmer as the motion of sphere B1 relative to
sphere B2; in this way, us is non-zero only on B1. Written in terms of an expansion in
moments as in (3.22), us(x ∈ B1) = U s

1 = L̇p, with all other terms exactly zero, while
us(x ∈ B2) = 0. The total velocity of B2 is then due solely to the rigid-body motion
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L(t)

p

aγa

γa a

L p

us = Lp

us

.B1

B1

B2

B2

(a)

(b)

Figure 4. (a) Schematic of a reciprocal dumbbell swimmer. (b) Schematic of a dumbbell squirmer swimmer.

of the assembly u(x ∈ B2) = UA, while B1 has an additional component due to shape
change, u(x ∈ B1) = UA + U s

1. By symmetry, this swimmer does not rotate, ΩA = 0.
The choice of reference is not unique and affects what is delineated as rigid-body motion
versus shape change at any particular instant; however, typically we are concerned with
the time-averaged motion of the body, which is invariant to the choice of reference for
periodic gaits, and the flexibility allows one to take advantage of simplifications implied
by a particular choice.

Due to the lack or rotation or torque, only the force–velocity resistance tensor of the
assembly, RA

FU , and the linear operator that gives stress due to translation, T U , are required.
Substitution of the swim force (3.4) into (3.37) and simplification leads to

UA = −(RA
FU)−1 ·

(
R11

FU + R21
FU

)
· U s

1, (3.38)

where the resistance tensors R11
FU + R21

FU and RA
FU = R11

FU + R12
FU + R21

FU + R22
FU are

functions of the length L(t), and hence depend on time. We may further simplify by noting
that the propulsive force and velocity will be collinear with the axis of symmetry, so only
a scalar coefficient for each resistance is required. A symmetric swimmer with λ = 1 has
UA = −1

2 U s
1 = −1

2 L̇p, so the dumbbell moves opposite to the deformation with half the
speed, as expected. This reciprocal motion clearly leads to zero net displacement over a
period when L(t) is periodic. Less obvious, but also true, is that this holds for any λ, by
the scallop theorem (Purcell 1977).

The previous example was particularly straightforward because us was uniform, hence
only the zeroth moment, U s, was non-zero. In contrast, consider a dumbbell swimmer
with a fixed length L = const., but where sphere B1 is a squirmer particle (see figure 4b),
namely us(x ∈ B1) = U s

1 + r · Es
1 + · · · , with the moments of the surface velocity given

by the squirming modes. In this case, the velocity of the assembly is given by

UA = −(RA
FU)−1 ·

[(
R11

FU + R21
FU

)
· U s

1 +
(

R11
FE + R21

FE

)
: Es

1 + · · ·
]
, (3.39)

and when the spheres are equal in size, λ = 1, we have simply UA = −1
2 U s

1 − (RA
FU)−1·[

R1
FE : Es

1 + · · · ]. Note that this swimmer can self-propel even when U s
1 = 0 due to

hydrodynamic interactions with the second sphere.
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4. Stokesian dynamics

The configuration-dependent N-body resistance tensors may be formed indirectly by first
constructing the grand mobility tensor M = R−1. In the Stokesian dynamics approach,
one takes irreducible moments of the velocity field, as given by the boundary integral
equation, over the surfaces of all the particles, yielding Faxén’s laws for the velocity
moments of the active particles (Batchelor 1972). If the boundary integral equations are
also expanded in irreducible moments (Durlofsky et al. 1987), then we obtain a linear
relationship between force and velocity moments:

U ′ = −M · F . (4.1)

For active particles, the force moments contain contributions from the double-layer kernel
due to the surface activity (see Appendix C for details). The grand mobility tensor is then
inverted to obtain the grand resistance tensor R = M−1, thereby summing many-body
hydrodynamic interactions among the particles (Durlofsky et al. 1987). In principle, to
capture near-field lubrication effects, the entire unbounded set of moments would need to
be computed, and in practice this is unfeasible. The coupling between the mth moment of
velocity and nth moment of force scales as r−(1+m+n), so higher-order moments decay
quite quickly with separation distance r between two particles, and a reasonable and
common far-field approximation of the mobility is to truncate at the first moment level
– we label this truncated mobility Mff (Swan et al. 2011). This level of approximation
is inappropriate for particles that are nearly touching, and the compromise used within
Stokesian dynamics is to use a mixed asymptotic approach wherein close interactions are
computed separately using pairwise exact solutions (Durlofsky et al. 1987). In this manner,
the hydrodynamic forces on the particles are decomposed,

F = F ff + F 2B,exact − F 2B,ff , (4.2)

into far-field interactions between many bodies F ff , and two-body interactions computed
exactly for nearby bodies F 2B,exact. Note that the last term arises because the far-field
interactions must be removed between any two bodies where the interactions are computed
exactly, to avoid double counting.

To render exact solutions for active two-body hydrodynamic interactions, one needs
to obtain the tensor field T U from the two-particle rigid-body motion problem. The
general passive two-sphere problem for arbitrary separations may be constructed from
a basis of four simplified two-sphere problems that have all been solved in the
literature and are nicely summarized by Sharifi-Mood, Mozaffari & Córdova-Figueroa
(2016) and Papavassiliou & Alexander (2017) in the context of two-body interactions
between diffusiophoretic Janus particles and spherical squirmers, respectively. Asymptotic
solutions for lubrication interactions, which are valid strictly only when the particles are
very close, may be used alternatively and are given by Ishikawa et al. (2006) for spherical
squirmers.

It is important to note that unlike passive particles in a linear background flow, active
particles can have higher-order velocity moments due to surface activity. In § 3.2, we
showed that even two-mode squirmer particles contribute third- and fourth-order velocity
moments. For far-field interactions, these higher-order moments may not be significant
due to the decay of the associated flow disturbances. However, for near-field interactions
there is no rationale, other than the convergence of the series of tensorial spherical
harmonics, to discard the contributions of higher-order velocity moments in the swim
force. If higher-order moments are nonetheless discarded, then the approach for active
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particles is virtually identical to that of passive particles in Stokesian dynamics; the
dynamics are given by (3.17), and the resistance tensor used is modified to include both
exact two-body interactions R2B,exact and a truncation of the moment expansion valid for
far-field interactions, (Mff )−1, such that

R = (Mff )−1 + R2B,exact − R2B,ff , (4.3)

where the two-body interactions that are captured by the near-field approach must be
subtracted in the far-field solution to avoid double counting (Swan et al. 2011).

More accurately, the exact two-body swim force contributions may be computed entirely
separately, as done by Ishikawa et al. (2006), by integrating (3.4) directly. In this way, (3.7)
is written as

U = U∞ + R−1
FU · [

F ext + RFE : E∞ + · · · ]
+ R−1

FU ·
[
F 2B,exact

s − R′
FU · Us − R′

FE : Es + · · ·
]
. (4.4)

Here, the terms on the first line represent the dynamics of passive spheres exactly as in
conventional Stokesian dynamics, while the second line accounts for the contribution of
activity, separated into two-body and far-field contributions. The primed resistance tensors
contribute only far-field interactions

R′ = (Mff )−1 − R2B,ff . (4.5)

If Brownian motion is included, then it is RFU from the total resistance (4.3) that sets the
magnitude of the Brownian force.

4.1. Infinite suspensions
The method described above was for a finite system of N active particles for which the fluid
can be assumed to decay in the far field. For an infinite or periodic suspension of particles
(active or passive), no such assumption can be made, and indeed naively extending N →
∞ leads to divergent integrals, a problem that plagued the earlier suspension literature
(Batchelor 1972). Brady et al. (1988) adapted the method of O’Brien (1979) wherein
the fluid domain for a set of particles is bounded by a large macroscopic surface over
which suspension averages can be performed. Specifically, U∞, Ω∞ and E∞ become
the average values of the suspension – particle plus fluid. Individual particle motion
is then relative to the volume-averaged quantities. Suspension-averaged terms serve to
regularize the formulas leading to absolutely convergent expressions for fluid and particle
velocities. Periodic boundary conditions may then be employed easily, and as Brady
et al. (1988) showed, the far-field mobility matrix Mff may be simply replaced by the
appropriated Ewald-summed mobility matrix Mff ∗. As discussed above, the mobility
matrix is unchanged if particles are active or passive; only the force and velocity moments
are altered by activity, and mobility is unchanged whether or not the suspension averaged
quantities are non-zero. Therefore, the Ewald-summed mobility matrix used for periodic
passive suspensions is unchanged for active suspensions (Ishikawa et al. 2008). It is
important to note that for self-propulsion there is no net volume displacement of material
as the body moves: as the body advances, an equal volume of fluid moves in the opposite
direction. In contrast, a body moving in response to an external force drags fluid along
with it, and to have no net flux of mass, an external pressure gradient must be imposed.
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Figure 5. Simulation of a suspension of 4000 identical active particles using the fast Stokesian dynamics
method (warmer colours indicate faster speeds).

4.2. Accelerated methods
Since the original development of the Stokesian dynamics method (Durlofsky et al. 1987;
Brady et al. 1988), which naively requires O(N3) computations due to the inversion of
the far-field mobility matrix, there have been several numerical implementations that
have improved the algorithmic efficiency of the method. These include an O(N ln N)

deterministic accelerated Stokesian dynamics method (Sierou & Brady 2001), an
O(N1.25 ln N) Brownian accelerated Stokesian dynamics method (Banchio & Brady 2003),
an O(N ln N) spectral Ewald accelerated Stokesian dynamics method (Wang & Brady
2016), and recently an O(N) fast Stokesian dynamics method (Fiore & Swan 2019).
In principle, because the mathematical structure shown in (3.17) remains essentially
unchanged between passive and active particles, any of these approaches may be used
to simulate active suspensions with minor modification, and we do not suggest any
particular numerical implementation here. Indeed, the recent fast Stokesian dynamics
method utilizes an imposed Brownian ‘slip’ velocity in order to obtain the stochastic
rigid-body motion of passive Brownian particles as shown in previous work (Delmotte
& Keaveny 2015; Sprinkle et al. 2017), and we have adapted the fast Stokesian dynamics
approach to include particle activity (see figure 5) but will discuss algorithmic details in a
future work.

5. Conclusions

In this work, we have given a detailed exact theoretical description of the dynamics
suspensions of active particles in fluids in the absence of inertia, including full
hydrodynamic interactions among particles. We argue that, as is done for passive particles,
hydrodynamic interactions are ideally separated into near-field and far-field forces, with
the latter expanded in a truncated set of moments. The resulting mathematical structure of
the dynamical equations remains virtually unchanged between passive and active particles
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save for the addition of velocity moments due to particle activity. Because of this, any
implementation of the Stokesian dynamics method for passive particles may be modified
simply and easily for use with active particles. Moreover, we believe that this mathematical
structure provides an ideal formalism for theoretical analysis of hydrodynamic interactions
in active matter, much as it has for passive suspensions.
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Appendix A. A reciprocal theorem for active particles

We derive here an equation for the hydrodynamic forces on active particles as shown in
(3.3) using the reciprocal theorem (see the excellent review by Masoud & Stone 2019).
The presentation here largely follows that found in our other work (Elfring & Lauga 2015;
Elfring 2017) but is also found elsewhere (Papavassiliou & Alexander 2015).

Consider N active free particles Bi with surfaces ∂Bi, where i ∈ [1, N], with boundary
conditions u(x ∈ ∂Bi) = U i + Ω i × ri + us

i , immersed in a background flow u∞ (note
that u∞ describes the background flow without the presence of the particle). As an
auxiliary problem, here denoted by a hat, consider N bodies of the same instantaneous
shape undergoing rigid-body motion û(x ∈ ∂Bi) = Û i + Ω̂ i × ri in a quiescent fluid
(although not necessary, we take the fluids to have equal viscosity). All flow fields are
incompressible, and we neglect inertia in the fluid so that we may write

∇ · (
σ ′ · û − σ̂ · u′) = 0, (A1)

where we define disturbance flow u′ = u − u∞ and disturbance stress σ ′ = σ − σ∞
We now integrate over a (sufficiently extended) volume of fluid exterior to B and apply

the divergence theorem. Provided that the fields u′ and σ ′ decay appropriately in the far
field (Leal 1980), we obtain

∑
i

∫
∂Bi

n · σ ′ · û dS =
∑

i

∫
∂Bi

n · σ̂ · u′ dS. (A2)

Here, n is the normal to the surface ∂Bi pointing into the fluid. This is a statement of the
equality of the virtual power of the motions of ∂Bi between u and û (Happel & Brenner
1965).

Applying the boundary conditions for the rigid-body motion of the particles in the
auxiliary problem, we obtain

∑
i

[
F i · Û i + Li · Ω̂ i

]
=

∑
i

∫
∂Bi

n · σ̂ · u′ dS, (A3)
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where the hydrodynamic force and torque on the active particles are, respectively,

F i =
∫

∂Bi

n · σ ′ dS, (A4)

Li =
∫

∂Bi

ri × (n · σ ′) dS, (A5)

where we drop the primes because the background flow is force- and torque-free.
Introducing a more compact notation, where

F = [F 1, L1, F 2, L2, . . .] , (A6)

Û =
[
Û1, Ω̂1, Û2, Ω̂2, . . .

]
, (A7)

we obtain

F · Û =
∑

i

∫
∂Bi

n · σ̂ · u′ dS. (A8)

Now, by linearity, we may write σ̂ = T U · Û , and substitution into (A8), upon discarding
the arbitrary Û , leads to (3.3) for the hydrodynamic forces and torques on all N active
particles:

F =
∑

i

∫
∂B

u′
i · (n · T U) dS. (A9)

This derivation extends naturally to higher-order force moments by taking the auxiliary
problem to be rigid-body motion in an arbitrary background flow, represented as a series
expansion (Elfring 2017; Nasouri & Elfring 2018).

Appendix B. Tensorial spherical harmonics

The (n-adic) tensorial spherical harmonics are a set of tensors composed of irreducible
products of the unit normal on a sphere (Brenner 1964a; Hess 2015):

n2 = nn = nn − 1
3 I, (B1)

n3 = nnn = nnn − 1
5

(
In + nI + T(nI)]

)
, (B2)[

n4
]

ijkl
= ninjnknl − 1

7

(
ninjδkl + niδjknl + δijnknl + δilnjnk + δiknjnl + niδjlnk

)
,

+ 1
35

(
δijδkl + δikδjl + δilδjk

)
, (B3)

nn = (−1)n

(2n − 1)!!
an+1 ∇n

(
1
r

)
r=a

, (B4)

where we use notation similar to Brenner (1964b) such that ∇2 ≡ ∇∇ (distinct from
∇2 = ∇ · ∇), the overbracket indicates the irreducible (or fully symmetric and traceless)
part of the tensor, and such that the transpose applies to the two adjacent indices (for
example Tabc = bac and abcT = acb).
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Active Stokesian dynamics

The tensorial spherical harmonics are orthogonal, with the relationship

1
4πa2

∫
wn nm nn dS = δmnΔ

n, (B5)

where the weight is

wn = (2n + 1)!!
n!

. (B6)

The isotropic tensor Δn is a 2n-order tensor that projects an n-order tensor into its
symmetric irreducible form (Hess 2015); i.e. for the n-order tensor A, Δn � A = A, where
� is a complete tensor contraction. The first several symmetrizing tensors are

Δ0 = 1, (B7)

Δ1
ii′ = δii′, (B8)

Δ2
iji′j′ = 1

2

(
δii′δjj′ + δij′δji′

) − 1
3δijδi′j′, (B9)

Δ3
ijki′j′k′ = 1

6

(
δii′δjj′δkk′ + δii′δjk′δkj′ + δij′δji′δkk′ + δij′δjk′δki′ + δik′δji′δkj′ + δik′δjj′δki′

)
− 1

15

{(
δi′j′δkk′ + δi′k′δkj′ + δj′k′δki′

)
δij + (

δi′j′δik′ + δi′k′δij′ + δj′k′δii′
)
δjk

+ (
δi′j′δjk′ + δi′k′δjj′ + δj′k′δji′

)
δik

}
, (B10)

where the primed indices are distinct from the unprimed ones.

Appendix C. Expansion of the boundary integral equation

We derive here the grand mobility relationship between velocity moments and force
moments by means of a Galerkin projection onto tensorial spherical harmonics (Singh
et al. 2015). Consider the boundary integral equation for a suspension of active particles

u(x) − u∞(x) = −
∑

i

∫
∂Bi

[
G(x, y) · f (y) + u(y) · T (x, y) · n(y)

]
dS(y), (C1)

where

G(x, y) = 1
8πη

(
I

|x − y| + (x − y)(x − y)

|x − y|3
)

, (C2)

T (x, y) = − 3
4π

(x − y)(x − y)(x − y)

|x − y|5 . (C3)

The velocities and tractions on each particle are now expressed in terms of expansions in
tensorial spherical harmonics:

u(y ∈ ∂Bi) = U i + U s
i + (Ω i + Ωs

i ) × ri + ri · Es
i + · · · , (C4)

f (y ∈ ∂Bi) = 1
4πa2

i
F i + 3

8πa3
i

Li × n + 3
4πa3

i
n · S̃i + · · · , (C5)
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where

F i =
∫

∂Bi

f dS, (C6)

Li =
∫

∂Bi

ri × f dS, (C7)

S̃i =
∫

∂Bi

rif dS. (C8)

Now taking moments of the flow over the surface of particle α, u(x ∈ ∂Bα), we
systematically obtain mobility relationships for the α particle:

Uα + U s
α − U∞

α = −Mαα
UF · Fα −

∑
β /=α

[Mαβ
UF · Fβ + Mαβ

UL · Lβ + Mαβ
US : Sβ + · · · ],

(C9)

Ωα + Ωs
α − Ω∞

α = −Mαα
ΩL · Lα −

∑
β /=α

[Mαβ
ΩF · Fβ + Mαβ

ΩL · Lβ + Mαβ
ΩS : Sβ + · · · ],

(C10)

Es
α − E∞

α = −Mαα
ES · Sα −

∑
β /=α

[Mαβ
EF · Fβ + Mαβ

EL · Lβ + Mαβ
ES : Sβ + · · · ], (C11)

where the stresslet for active particles includes a contribution from the double-layer kernel

Sβ = S̃β − 2η
4πa3

β

3
Es

β. (C12)

The mobility tensors are identical to those for passive particles:

Mαα
UF = 1

6πaαη
I, (C13)

Mαβ
UF = 1

4πa2
α

∫
∂Bα

dS(x)
1

4πa2
β

∫
∂Bβ

G(x, y) dS(y), (C14)

Mαβ
UL = 1

4πa2
α

∫
∂Bα

dS(x)
3

8πa3
β

∫
∂Bβ

G(x, y) × n(y) dS(y), (C15)

Mαβ
US = 1

4πa2
α

∫
∂Bα

dS(x)
3

8πa3
β

∫
∂Bβ

G(x, y) (n(y) + n(y)T) dS(y), (C16)

Mαα
ΩL = 1

8πηa3
α

I, (C17)
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Mαβ
ΩF = 3

8πa3
α

∫
∂Bα

dS(x)
1

4πa2
β

∫
∂Bβ

dS(y) n(x) × G(x, y), (C18)

Mαβ
ΩL = 3

8πa3
α

∫
∂Bα

dS(x)
3

8πa3
β

∫
∂Bβ

dS(y) n(x) × G(x, y) × n(y), (C19)

Mαβ
ΩS = 3

8πa3
α

∫
∂Bα

dS(x)
3

8πa3
β

∫
∂Bβ

dS(y)
(
n(x) × G(x, y)(n(y) + n(y)T)

, (C20)

Mαα
ES = 3

20πηa3
α

I, (C21)

Mαβ
EF = 3

8πa3
α

∫
∂Bα

dS(x)
1

4πa2
β

∫
∂Bβ

dS(y)
(
n(x) + Tn(x)

)
G(x, y), (C22)

Mαβ
EL = 3

8πa3
α

∫
∂Bα

dS(x)
3

8πa3
β

∫
∂Bβ

dS(y)
(
n(x) + Tn(x)

)
G(x, y) × n(y), (C23)

Mαβ
ES = 3

8πa3
α

∫
∂Bα

dS(x)
3

8πa3
β

∫
∂Bβ

dS(y)
(
(n(x) + Tn(x)

)
G(x, y)

(
n(y) + n(y)T)

,

(C24)

where I is the fourth-order identity tensor. We give the mobilities here in integral form
(Ichiki 2002; Fiore & Swan 2018), but it is much more common to see them in the
equivalent differential form, which may be found by Taylor expansion about the particle
centres (Wajnryb et al. 2013; Mizerski et al. 2014; Fiore et al. 2017).

For all N particles, we write the mobility relationships between velocity moments and
force moments in compact form as

U + Us − U∞ = −MUF · F − MUS : S + · · · , (C25)

Es − E∞ = −MEF · F − MES : S + · · · , (C26)

...

In this way, we form the grand mobility tensor (typically truncated at the E, S level shown
above in Stokesian dynamics)

U ′ = −M · F . (C27)

Appendix D. Dilute approximation

Dilute approximations are typically used throughout the literature in order to avoid the
computational expense of inverting the far-field grand mobility tensor. As shown above
in (C25), the far-field contribution to the swimming dynamics may be written in terms
of mobilities. The stresslet is not prescribed but induced, so solving (C26) for S and
substituting into (C25) yields

U = U∞ − Us − (MUF − MUS : M−1
ES : MEF ) · F + MUS : M−1

ES : (Es − E∞) + · · · ,

(D1)
and for force-free particles, we have simply

U = U∞ − Us + MUS : M−1
ES : (Es − E∞) + · · · . (D2)
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To leading order in a dilute approximation, only the single particle stresslet terms remain,
M−1

ES is diagonal, and we have

Uα = U∞
α − U s

α −
∑

β /=α

Mαβ
US : Sβ + · · · , (D3)

Ωα = Ω∞
α − Ωs

α −
∑

β /= α

Mαβ
ΩS : Sβ + · · · , (D4)

where

Sβ = (Mββ
ES )−1 :

(
E∞

β − Es
β

)
=

20πηa3
β

3

(
E∞

β − Es
β

)
. (D5)
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