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THE OSCULATORY PACKING OF A 
THREE DIMENSIONAL SPHERE 

DAVID W. BOYD 

1. Introduction. Packings by unequal spheres in three dimensional space 
have interested many authors. This is to some extent due to the practical 
applications of such investigations to engineering and physical problems (see, 
for example, [16; 17; 31]). There are a few general results known concerning 
complete packings by spheres in iV-dimensional Euclidean space, due mainly 
to Larman [20; 21]. For osculatory packings, although there is a great deal of 
specific knowledge about the two-dimensional situation, the results for higher 
dimensions, such as [4], rely on general methods which do not give particularly 
precise information. For example there has not been, up to this time, even an 
heuristic estimate for the exponent of any packing in a space of dimension 
higher than two, because the packing process is not well enough understood 
to generate large numbers of spheres in such a packing. 

In this paper we shall give a precise description of osculatory packings of 
the three dimensional unit sphere. That is, we describe a process, quite 
analogous to the well-known two-dimensional process, which generates all 
the spheres in the osculatory packing of a unit sphere. The analogue to the 
two and three-dimensional processes can be described in dimensions higher than 
three but in higher dimensions it does not lead to a packing since the generated 
spheres, in general, intersect one another. Infinite packings of iV-dimensional 
spheres can, by inversion, be related to packings of (N — 1)-dimensional 
space by equal spheres, and since, for N — 1 > 2, there are many unsolved 
problems in this area of study it is not surprising that the higher dimensional 
packings should be more difficult to understand. 

We shall be making much use of the notion of the "separation" between 
two spheres. The separation between two spheres JV, Y with radii r, s and 
whose centres are at distance d apart, is defined by the formula 

A(X, Y) = (d2 - r2 - s2)/2rs 

This inversive invariant seems to have been first systematically used by 
Darboux [11] and Clifford [8]. It is simply related to the "inversive distance" 
of Coxeter [10, p. 116], and is the negative of the "inclination" used by 
Mauldon [22]. 

The key to our proof that, for N = 3, the generated spheres do not inter-
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sect, is the observation that the separation between any two generated 
spheres is an odd integer (Corollary 4). A special case of this result, for a 
subset of the circles in the two-dimensional packing, was proved by Coxeter 
in [10, p. 117]. His proof used rather specific knowledge concerning the 
sequence of circles in question. Our original proof of Corollary 4 used inversion 
quite extensively. However the proof we present here uses "polyspherical 
coordinates" and seems to be more transparent. In § 3 we present a brief 
but complete introduction to this coordinate system, basing our account on a 
fundamental formula due to Darboux [11] and Frobenius [14]. In this system 
a sphere is represented as a point on a hyperboloid of one sheet in (N + 2)-
dimensional space (formula (9)), showing that there are non-Euclidean 
aspects to the packing problem. We do not pursue these further here. 

In § 4, we describe the sphere generating procedure in all dimensions and 
give a formula for the separation of any two generated spheres. This leads, 
for N = 3, to the important result, Theorem 5, which proves that the spheres 
form a packing. 

The next section, § 5, contains the proof that our procedure gives osculatory 
packings of the unit sphere. We present this in two parts, Theorem 10 and 
Theorem 11. The proofs of these results are more geometrical than the others 
in this paper. We also describe how to produce complete packings of all of 
Euclidean three-space from the packings of the unit sphere. 

Although the spheres generated by our process do not intersect, the same 
sphere will be generated more than once (in fact, infinitely often). It is this 
occurrence that distinguishes the two and three-dimensional situations. For 
practical and aesthetic reasons, one would like an algorithm which gives each 
sphere exactly once. We have developed such an algorithm but, because a 
complete description of it here would unduly lengthen this paper, we shall give 
this elsewhere [7]. The algorithm is well-adapted to practical computation 
because of its "tree-like" structure. We have used it to generate the penta-
spherical coordinates of the 305594 spheres whose curvatures are at most 300 
in a packing of the unit sphere which we call the "Soddy" packing, since it 
contains all the spheres in Soddy's "bowl of integers" [28]. Using the method 
suggested by Melzak [24], we have obtained the heuristic result that the 
exponent of this packing is approximately 2.42. This is consistent with the 
known result for the two-dimensional packing exponent S, that 1.300197 < 
5 < 1.314534, see [6], since one suspects that these exponents are the minimal 
exponents tN, and it can be shown by an analysis similar to that of [19] that 
tN = ÏN-1 + 1-

Although we are principally concerned with the three-dimensional case, 
we have proved most of the results for general N, in the hope that these will 
be useful in investigating packings in higher dimensions. 

I would like to thank the referee J. B. Wilker for pointing out that I had 
failed to treat all possibilities in the original proof of Theorem 5 and for 
numerous other helpful remarks. 
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2. Preliminary definitions. By sphere we shall mean an TV-sphere (or 
iV-ball). We write, for a 6 EN and r ^ 0, if £ = (£i, . . . , %N), 

S(a r)(= l « : l € - a | < r } if r > 0, 

The curvature of a sphere is the reciprocal of its radius. We shall also consider 
a half-space to be a sphere with curvature zero. 

If we let U be an open set in EN, then a complete packing of £/ is a sequence 
of disjoint open spheres of positive radius each contained in U and such that 
the set U\USn has Lebesque measure zero. An osculatory packing of an open 
set U of finite measure is a packing in which, for some integer ni, Sn has the 
largest radius of spheres contained in [ / \ ( 5 i U . . . U 5 M _ i ) for n = ra, 
m + 1, . . . . An osculatory packing is known to be complete [2]. 

The exponent of a complete packing of an open set of finite measure is defined 
by 

(1) e(C, U) = sup{t: £ rn
l = oo } = inf{* : £ r»1 < oo}f 

where rw is the radius of Sn. This exponent was first introduced in these terms 
by Melzak [23], but had also been used by Gilbert [15]. 

Given two spheres X = S(a, r) and Y = S(b, s), we define the separation 
between X and F to be 

(2) A(X, Y) = (\a - b\2 - r 2 - s2)/2rs. 

If X = S (a, r) and F is a half-space, let d be the distance from a to the 
bounding hyperplane of F, measured so that d ^ 0 if a (£ Y and d < 0 if 
a 6 F. Then, we define 

(3) A(X, Y) = d/r. 

Note that if X and F intersect, then A(X, F) = — cos 6 where 6 is the 
dihedral angle between the outward normals at a point of intersection. This 
allows one to define the separation between two half-spaces consistently. 
Observe that if X and F have positive radii, then A(X, F) = 1 if and only if 
X and F are externally tangent, and that A (X, Y) = — 1 if and only if X and F 
are internally tangent. If |A(X, F) | ^ 1, Coxeter [10] defines 5, given by 
cosh ô = |A(X, F) | to be the inversive distance between X and F. 

By inversion in the sphere S (a, r), we mean inversion in its boundary. Note 
that under inversion in S(a,r), the sphere S(a,r) becomes S (a, —r). The 
separation A(X, Y) is an inversive invariant. One can show that if X has 
finite radius r, if F has radius 5 and if Y', the image of F under inversion in X 
has radius sf, then 

(4) A(X, Y) =i(?~y 
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3. Polyspherical coordinates. The most natural description of the sphere 
generating process to be described in the next section is in terms of poly
spherical coordinates. These seem to have been used first by Darboux [11] 
and Clifford [8] and are described (for 2 and 3 dimensions) by Lachlan [18]. 
They are also used in the treatises of Coolidge [9, pp. 254-261] and Woods 
[32, p. 138, p. 282, p. 418]. We shall give a brief but complete development 
of the results we need, beginning with a fundamental result due to Darboux [11] 
and, independently, Frobenius [14]. 

LEMMA 1. (Darboux-Frobenius Formula). Let Xi, . . . , XN+z, Yx. . .YN+z be 
2N + 6 spheres in EN. Then det(A(X,, Y,)) = 0. 

Proof. We assume, by a preliminary inversion, if necessary, that all the 
spheres have finite radii. If X has centre c = (cu . . . , cN) and radius r, let 
u(X) be the following column vector (T denoting transpose) 

u(X) = ( l / r ) ( i |c|2 - r\ - cu . . . , -cN)T. 

And, if Y has centre d and radius s, let 

v(Y) = (l/s)Qd\*-s*,i,d1,...,dN)T. 

Then, A(X, Y) = v(Y)Tu(X). Since u(Xx), . . . , u(XN+3) are N + 3 vectors 
in R^"1-2, their linear dependence implies 

det(A(X„ Yj)) = detMYjyuiXi)) = 0. 

We shall be interested in the special case of this formula in which we choose 
N + 2 spheres Xly . . . , XN+2 common to both sets of spheres. Lemma 1 was 
apparently discovered by Clifford [8, p. 335] for this special case in 1868 but 
was not published until after his death. Suppose that Y and Z are two spheres. 
Let c(Y) denote the (N + 2)-vector 

(5) c{Y) = (A(Y,X1),...,A(Y,XIf+2))
T. 

Let A denote the matrix (A(Xt, X3)). Then, Lemma 1 gives 

Expanding by the first row and column, and letting adjA be the matrix of 
cofactors of A (A is symmetric), we have 

(7) A(F, Z) det A - c (F) r (ad j A)c(Z) = 0. 

Hence, if det A =̂  0, we have 

(8) A ( F , Z ) = C (F) r A-i C (Z) , 

and in particular, 

(9) c (F) r A- 1 c(F) = - 1 . 
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Now, in (8), suppose Xi, . . . , XN+2, Y are finite spheres and let Z be a plane 
at distance d from the centre of F and at distance dt from the centre of Xu so 
that, if ei, . . . , €#+2, 7] are the curvatures of X\, . . . , X^+ 2 , F, we have 

A(F, Z) = J77 and A(Z, Xt) = ^e*. 

Letting Z recede to infinity, di/d—*l for each i, so (8) implies that 

(10) 77 = cCF) 2 ^-^ , 

where e = (ei, . . . , eN+2)
T. By continuity (10) holds if some of the spheres 

have curvature zero (i.e. are half spaces). Now in (10), letting F be a plane 
which recedes to infinity we have 

(11) eTA-h = 0. 

We define the poly spherical coordinates of F with respect to X\, . . . , XN+2 

by 

(12) a(Y) = A -^ (F ) . 

Then (10) takes the form 

(13) v =a(Y)Te, 

and (8) becomes 

(14) A(F, Z) = a(F)2 'Aa(Z) = a(Y)Tc(Z). 

One can obtain the Cartesian equations of F quite simply from a(Y). 
First, we define the canonical equation of a sphere as follows: if X has finite 
radius r, and centre c, and if £ = (£1, . . . , £N), let 

(15) x(t) = (|£ - c|2 - r2)/2r 

If X has infinite radius, so is a half-space with boundary passing through the 
point b, say, and with outward unit normal n, then 

(16) *({) = » • ( £ - & ) . 

Now, if #i(£) < 0, ;y(£) < 0 are the canonical equations of Xt and F, then 

(17) y(Z) = E { ^ ( F ) * ^ ) : i = 1, . . . , N + 2}. 

To see this, let Z be a sphere with centre £ and radius 1. Then, it is easy to see 
that 

(18) A(F,Z) =;ytt) -n/2. 

But, from (14), and then (13), 

(19) ytt) = ^ / 2 + A(F,Z) 
= v/2 + Y,tat(Y)A(Z,Xt) 
= i?/2 + E , a , ( F ) (*«(*) - €,/2) 

= E«a«(r)*<(£)-
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We will be interested in the special case that Xi, . . . , XN+2 are mutually 
tangent so that A{XuXj) = 1, if i ?^ j , and A{XuXt) = — 1 . In this case 
A = J — 21, where / is the matrix all of whose entries are 1, and I is the 
identity matrix. Since J2 = (N + 2 ) / , one sees by inspection that 

A"1 = (2N)~1(J - NI). 

Then, (11) becomes 

(20) (ei + . . . + eN+2y = 7V(€1
2 + . . . + e^+2

2). 

Formula (20) is quite often called "Soddy's formula", after the popular 
poems [26; 27] for the cases N = 2 and 3. There is an extensive literature on 
this formula, it having been rediscovered many times. Pedoe [25] is a good 
reference. There, he proposes the name, the "generalized Descartes formula", 
since Aeppli has traced (20) back to Descartes for N = 2. I have not seen it 
mentioned in any of these papers that the result for TV = 3 appears in the 1886 
paper of Lachlan [19, p. 498], and is reproduced in Coolidge [9, p. 258]. 
Coxeter [10] gives a non-computational proof of (20). Observe that the con
vention concerning the sign of the et has been handled by our assumption 
A(XuXj) = 1 if i ^ j . Notice that if (ei, . . . , e^+2) is a solution of (20), 
then so is ( — ei, . . . , — e^+2); exactly one of these solutions corresponds to a 
set (Xi, . . . , XN+2) of disjoint spheres with (A(Xiy X3)) = J — 21 and 
having curvatures €1, . . . , e^+2. This solution will have either all components 
non-negative or else one negative component. At most two of the components 
can be zero as can be seen geometrically or else by the Schwarz inequality 
applied to (20). Henceforth, we shall consider only those solutions of (20) 
which correspond to disjoint spheres. 

One can also derive Mauldon's formula given in [22], for the case 
A(Xi, Xj) = — 7 for i y£ j , from formula (11). By an imitation of the analysis 
given there, we can show that if D is any symmetric matrix with all diagonal 
elements equal to — 1, which has (N + 1) negative and one positive eigenvalue, 
then there are spheres X1} . . . , XN+2 with (A(XuXj)) = D. In this case 
eTD~1e = 0 has real solutions and one can choose Xt to have curvature e* 
for i = 1, . . . , N + 2. The set of such D exhausts the set of non-singular A. 
We shall not pursue this line of investigation here as we shall not need these 
results. 

We should perhaps note that Coolidge [9] and Woods [32] generally choose 
their spheres to be orthogonal so that (A(XU X3)) = —I. As one can see 
from (11), this necessitates choosing one sphere with an imaginary radius, 
which we do not allow here. 

4. The sphere generating process. We now describe a process for generat
ing a collection of spheres ^ in EN. As motivation for the process, the reader 
should consider the packing, in E2, of a curvilinear triangle bounded by 
mutually tangent circular sides which is described for example in [3; 13; 15]. 
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We shall be using the results of § 3, and throughout this section we define 

A = J - 21. 

Given (N + 1) mutually tangent spheres in EN there are exactly two spheres 
which are tangent to all N + 1. We shall begin with an (N + 2)-tuple of 
disjoint spheres M = (Xi, . . . , XN+2) such that A(XuXj) = 1 for i ^ j . 
We shall apply N + 2 operations to M, denoted 0i, . . . . 6N+2. The operation 
6i applied to M produces the (N + 2)-tuple 

M{i) = (Xu . . . , X^u Xi+1, . . . , XN+2l F), 

where Y is the unique sphere which is tangent to all the spheres in M except 
X u and is not the sphere Xt. We shall write 

M{i) = (*x(t) XN+2(i)), 

so that 

(X,(i) = X„ j S i - l 
(21) \x,(i) =Xj+ui^j^N+l 

[XN+2(i) = Y. 

We thus obtain (N + 2) "new" (N + 2)-tuples M(l), . . . , M(N + 2). We 
can repeat this procedure with these new (N + 2)-tuples obtaining (N + 2)2 

new (N + 2)-tuples M(i,j), (i = 1, . . . , N + 2), (j = 1, . . . , N + 2). 
Proceeding in this way, at the mth stage, we have (N + 2)m new (N + 2)-
tuples which we shall index by a parameter a = (ii, . . . , im), where each ik 

runs independently over the integers 1, 2, . . . , N + 2. We shall let Gm denote 
the set of such a, and Go will denote a set consisting of a single vector with no 
components. Then, define G = U {Gm : m = 0, 1, . . .} . By the above process, 
we can thus produce, for each a G G, an (N + 2)-tuple of spheres 

M(a) = ( X i ( a ) , . . . , ^ + 2 ( a ) ) . 

We should point out that we are interested in generating the spheres 
XN+2(a). Thus, the ordering of the spheres in M (a) implied by (21) is purely 
a conventional device, which seems appropriate since the "new" sphere 
XN+2(OL) occupies a special position. Another attractive choice would be to 
order M(i) as (Xi, . . . , I M » Y, Xi+i, . . . , XN+2). The same set of spheres 
will be generated but with different labels. These remarks should make it 
clear that if we begin with any (N + 2)-tuple ( J i ( a ) , . . . ,^^+2(0:)) and 
apply the above procedure, we generate the same set of spheres as if we begin 
with (Xlt . . . ,XN+2). 

We shall denote the collection of all the spheres Xt(a)} (i = 1, . . . , iV + 2), 
a e G by &. 

Our next object is to obtain an expression for the curvature €*(«), and the 
polyspherical coordinates of Xt(a)y in terms of X\, . . . , XN+2. We refer the 
reader to Coxeter [10] who considered the curvatures of the sequence XN+2(l

m), 
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where lm — (1, 1, . . . , 1) Ç Gm. We first treat the curvatures. Let us find the 
curvature eN+2(i) of XN+2(i), given that the curvatures X\, . . . , XN+2 are 
€i, . . . , eN+2. Since (20) is quadratic in each curvature and since the sets 
jei(i), . . . , eN+2(i)}, {ei, . . . , €N+2\ differ in exactly one element, we must 
have that the two numbers tu eN+2(i) are the two roots of (20) considered as 
an equation for et-, so that 

2 
(22) eN+2(i) = — €i + „ _ • (ei + . . . + €*_i + ei+i + . . . + €^+2). 

(see [10, p. 111]). That is, the relation between the curvatures of the spheres 
in Mia), and those in M(a, i) is linear. (Here, if a = (ii, . . . ,im), then 
(a, i) = (ii, . . . , im, i ) ) . Thus, there are matrices Ai such that 

(23) (€i(a, i) , . . . , €iv+2(a, i)) = («i(«)i • • • » €jv"+2(a))i4<. 

Thus, with a = (ii, . . . , im), and A (a) = Atl . . . A im1 we have 

(24) (ei(û:), . . . , e ^ a ) ) = (€1, • • • , eN+2)A (a). 

The matrix At can be described as follows: Let ei, . . . , eN+2, e denote the 
column vectors for which et has all components zero except for a 1 in the ith 
position, and e has all components 1. Then 

(25) , / 2 N+l \ 
1 i = \ei, . . . , ^i_i, ei+i, . . . , eN+2, ^ _ e — ^ _ e* I . 

Note that 4̂ * has integer entries only in case N = 2 or 3. This fact is of con
siderable significance as we shall see. 

LEMMA 2. For any a £ G, a = (ii, . . . , im), let 

A (a) = Atl. . .A im, 

where At is the matrix of (25). Let a(Xi(a)) denote the column vector of penta-
spherical coordinates of Xi(a) with respect to Xi, . . . , XN+2. Then, a(Xt(a)) 
is the ith column of the matrix A (a). 

Proof. Let Y be any sphere. Let a G G and k Ç {1, . . . , N + 2}. The 
vectors d(Y) with components A(Y, X{(a)) and c" (Y) with components 
A(F, Xi(a, k)) satisfy the same equation (9), and have (N+l) components 
in common (although the order is different). Hence, by the same reasoning 
as used to obtain (22), we have 

(26) c"(Y)T = c'(Y)TAk. 

Letting Y be successively Xi, . . . , XN+2 we see that (26) implies that 

(27) (A(XU Xj(a, k))) = (A(XU Xj(a)))Ak. 

Hence, by induction, 

(28) (A(Xi9X ,(<*))) = AA(a). 
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Finally, using the definition (12) of a(Xj(a))1 we see that 

(29) (a i (J i («)) a ( Z w ( a ) ) ) = A-i(A(Xt, X,(a))) = A (a). 

COROLLARY 3. Let a, 0 G G audi, j G {1, . . . iV + 2}. Then A(Xi(a), XjiP)) 
is the (i, j)th entry of the matrix A (a) TAA (J3). 

Proof. This follows immediately from Lemma 2 and equation (14). 

COROLLARY 4. Suppose that N = 2 or 3, J&a£ a, 0 G G, awd 

i , i € {1,2, . . . , # + 2 } . 

77ze?z A(Xi(a), Xj(P)) is an odd integer. 

Proof. Since A t and A have integer entries, it follows from Corollary 3 that 
A(Xi(a), Xj((3)) is an integer. Computing modulo 2, we have A = / , and 
since the column sums of each A { are odd integers, we have, by induction on 
the number of components in a and 0, 

A(a)TAA(t3) = / (mod 2). 

Remark. Coxeter [10, p. 117] proved a special case of Corollary 4, when 
N = 2 and a, ft have all components equal to 1. His proof is quite different 
from the above, using more specific knowledge concerning the sequence of 
disks in question. This result was what suggested to us that Corollary 4 might 
be valid. 

THEOREM 5. Let & be the collection of all spheres Xt(a), a £ Gf 

i Ç {1, . . . , N + 2}. If N = 2 or 3, then & is a packing of EN. That is, & is 
a collection of disjoint spheres. 

This is false for all N > 3. 

Proof. We first consider N = 2 or 3. We must show that if a, fi G ^ , 
i,j e {1, . . . , N + 2}, and if X = Xi{a), Y = Y,(p) then either X = Y 
or else X and Y are disjoint. Let us suppose then that X ^ Y but that 
X Pi Y is non-empty. We may assume in addition that the total number of 
components in a and ft is minimal under the condition that the preceding 
sentence holds since our initial configuration Xi, . . . , XN+2 consists of disjoint 
spheres. Then we must have X = XN+2(a) and Y = XN+2(P), while 
Z i (a ) , . . . , XN+i(a) are disjoint from Y and Xi(fi), . . . , XN+i(fi) are disjoint 
from X. By Corollary 4, \A(X, Y)\ ^ 1 so the boundaries of X and Y can 
intersect in at most one point; otherwise the boundaries would coincide and 
then the fact that X and Y are not disjoint would imply that X = Y. Also, 
it is clear that X \J Y is properly contained in EN or else XUa) would not be 
disjoint from both X and F. The only remaining possibility is that one of X, Y 
is properly contained in the other, say X £ Y. But Z i (a ) , . . . , XN+i(a) do 
not intersect Y and yet they have N + 1 distinct points of contact with X. 
This is clearly impossible. 
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For N > 3 we need only produce an example. Note that the spheres pro
duced by the iteration of yljv+i form a sequence of spheres each mutually 
tangent to the previous sphere and to N fixed spheres. This sequence has been 
studied by Wilker [30] who showed that the points of successive contact lie 
on a circle and that the sequence is eventually self-intersecting. 

We can also prove this independently by computing the separations 
dn = A(X^+i, XN+2((N + 2)n)). These satisfy the following recurrence in 
which b = 2/(N - 1), 

(d-i = - 1 
(30) <d0 = 1 

[dn = 2 + b - dn-2 + bdn-i 
since 

(31) (1, . . . , 1, c, d)AN+1 = (1, . . . , 1, d, 2 + b - c + bd). 

By a simple computation using (30), 

(32) dz = - 1 + 462 + 2bz = - 1 + 167V(N - l ) " 3 , 

so, if N > 4 it follows that 0 < |d3| < 1, and (32) shows that the two spheres 
XN+1 and XN+2((N + l)3) intersect. For N = 4, one finds that 0 < \d*\ < 1, 
which completes the proof. 

Remarks. 1. It is possible to use the algorithm of [7] to give a completely 
computational proof of Theorem 5 for N = 3. One shows first that if 
Y Ç &\{Xi, . . . , Xs\ =J4? then the vector c(Y) has components which are 
positive integers. Choosing curvatures for X\, . . . , X5 as —1,2, 2, 3, 3, one 
can then show that e(F) ^ 1 for all Y G ^ . Using these facts Y is shown to 
be disjoint from Xly . . . , X5. By invariance under inversion, this is now true 
if Xi, . . . , X5 have any curvatures ei, . . . , es satisfying (20). Since any 
quintuple Xi(a), . . . , Xb(a) can be used as the initial quintuple, this proves 
Theorem 5. 

2. The paper of Wilker [30] mentioned above showed that the sequence of 
spheres generated by the iterates of ^4^+1 is self-intersecting. This can be 
shown to be true for iterates of A t for any i > 3 and N > 3, by investigating 
the spectra of the various A t which is rather easy since the characteristic 
polynomial can be explicitly computed. The only matrix of finite order (other 
than AN+2 for all N) is the 3-dimensional A 4 for which AA

6 = I. This fact is 
the basis of Soddy's beautiful "hexlet" described by him in [27] and [28] 
and also investigated in more detail by Wilker [30]. 

5. Oscillatory packings in three dimensions. Suppose that N = 2 or 3, 
that Xi is a sphere of curvature — 1 , say S (a, —1), and that U = S (a, 1). 
Let X2, . . . , XN+2 be spheres such that Xu . . . , XN+2 are mutually tangent. 
By Theorem 5, the collection &' = ^\{Xx\ forms a packing of U. It is 
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well-known, and easily proved t ha t for N = 2, <^t is an osculatory packing 
of U, and hence a complete packing. In this section, we prove the analogous 
result for N = 3. There is a natura l division into two cases depending on 
whether or not the centre of U lies in the interior of the convex hull of the 
centres of X2, . . . , X 5 . In the first case the packing <3' is the only osculatory 
packing of U which begins with X2, . . . , X 5 whereas in the second case there 
may be m a n y osculatory packing with this property. These cases correspond 
to Theorems 9 and 10 respectively. 

For the proof of these theorems we need a number of lemmas. Since the 
proofs of two of these are by induction we have proved these for general N 
although they are needed only for N = 3. 

L E M M A 6. Let X\, . . . , XN, (N ^ 3) be mutually tangent N-spheres with 
curvatures ei, . . . , eN. Let rj denote the maximum curvature for a sphere Y 
tangent to all X u (i = 1, . . . , N). Then TJ is the larger root of 

(33) (ex + . . . + eN + rjY = (N - 1)(6!2 + . . . + eN* + r?2), 

so the centre of Y is in the hyper plane which contains the centres of Xly . . . , XN 

Proof. Let Z, with curvature f, touch Xi, . . . , XN and Y. Then, by (20) 

(34) (ex + . . . + eN + r, + r ) 2 = N(e1' + . . . + e„2 + T? + f2). 

Since (34) has a real root for f, the discriminant of (34) considered as a poly
nomial in I, mus t be non-negative, so 

(35) (€i + . . . + eN + 7))* ^ (N - l)(ex2 + . . . + eN* + ry2). 

T h e largest TJ satisfying (35) is the largest solution of (33). 

L E M M A 7. Let Xt = S(au r t ) , (i = 1, . . . , N + 1) be mutually tangent 

N-spheres with positive radii. Let L denote the convex hull of their centres. Let r 
be the radius of the smaller sphere tangent to all X t. Then 

(36) L C U {S-(ai9 ti + r) : i = 1, . . . , N + 1} = T 

Proof. W e use induction on N. T h e case N = 1 is trivial. Note t h a t 

(37) O {S-(at, ri + r):i = l,...,N+l} = {p}, 

where p is the centre of the tangent sphere of radius r. Since each S~(au rt + r) 
is convex, (37) implies t h a t the set T is starlike with respect to the point p. 
We claim t h a t the boundary of L is covered by T. Once this has been shown, 
it will follow t h a t L C T, for otherwise there would be an open set 0 C L 
which is excluded by T. Bu t T also excludes the complement of a large sphere, 
so the complement of T would be disconnected, contradict ing the fact t h a t T 
is starlike. 

T o see t ha t T does contain the boundary of L, consider a face L' of L, the 
hull of ai , . . . , aN, say, and let II be the hyperplane containing L'. Let / be 
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the radius of the smaller (N — 1)-sphere tangent to II P\ Xi, . . . , II P\ XN. 
Then, by Lemma 6, r' ^ r. Hence 

T = U {S-(aurt + r) : i = 1, . . . , N + 1} 

D U {S-(atj rt + r') C\ n : i = 1, . . . , N} D L', 

where the last step uses the induction hypothesis. 

We need an analogue to Lemma 7 in case one sphere Xi has negative 
radius. In this case, the analogue of the convex hull of the centres of the 
spheres is the following set L : L is the closure of the set difference K\H, 
where K is the polyhedral cone with vertex at a\ generated by the convex hull 
of a2, . . . , aN+i, and H is the convex hull of ai, . . . , aN+i. 

LEMMA 8. Let X{ (i = 1, . . . , N + 1) be spheres as in Lemma 7, except that 
Y\ < 0. Suppose that a\ is not in the convex hull of a2, . . . , aN+\. Let r be as in 
Lemma 7, and let L be the set described in the previous paragraph. Then 

(38) L C U {S-(ai9 rt + r):i = l,...,N+l}. 

Proof. This is similar to the proof of Lemma 7 except that 5~(ai, r\ + r) 
is not starlike. We note that a proof of (38) amounts to proving 

(39) M = LC\ S~(au -n - r) C TN 

= U {S-(ai9rt + r) : i = 2, . . . , N + 1} 

(N.B. the index i ^ 2 in the right member of (39)). Note that TN is starlike 
with respect to p, the centre of the smaller sphere tangent to all X t. As in 
Lemma 7, we show that TN contains the boundary of M, and for this we use 
induction on N and Lemma 7. Note that the boundary of M consists of some 
planar faces (from L) and a spherical face (from S~(ai, —r\ — r)). The planar 
face containing a2, . . . , aN+i is covered by TN by Lemma 7, and the faces 
containing a\ and (N — 1) of a2, . . . , a^+i are covered by TNl by induction. 
As for the spherical face F, we see that5 - (a^ , rt + r) C\ 5~(ai, — r\ — r) = Ct 

is a spherical cap for i = 2, . . . , TV + 1, and 

H {Ci :i = 2, ...,N+ 1} = {p). 

Each d is starlike as a subset of 5~"(ai, — r\ — r), (considering great circles 
as lines) ; hence to show Ct covers F, we need only show it covers the boundary 
of F. But this follows by induction since the boundary of F is a union of 
intersections of 5~(ai, — r\ — r) with the plane faces of L. 

Remark. The reader should not get the impression, from Lemma 7, that if 
Xi, . . . , XN+2 are spheres with curvatures ei ^ . . . ^ e^+2, then the centre 
of XN+2 lies in the convex hull of the centres of X\, . . . , XN+i since this is, in 
general, false if TV 7e 2. The next lemma gives the true state of affairs when 
N = 3. These results will be used in the proof of Theorem 10. 
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LEMMA 9. Let Xi, . . . , X*> be mutually tangent spheres with centres ai, . . . , a5 

and curvatures 0 < e i ^ . . . ^ e 5 . Suppose that e?> is the larger curvature of the 
two spheres tangent to Xi, . . . , X4. Then a5 lies in the convex cone with vertex 
at a± and generated by the convex hull of ai, a2 and a3. Furthermore a5 lies in the 
convex hull of ai, . . . , a4 if and only if 

(40) 6! + . . . + €5 è 3€4. 

77z£ condition ei + . . . + e5 < 3e4 is equivalent to 

(41) f < €4 ^ €5 < r? 

(42) 7] = €i + €2 + €3 + 2(ei€ 2 + €2€3 + €3€i)* 

(43) f = €l + €2 + €3 + (€l€2 + €2€3 + e 3 € l ) l 

Proof. Let a = ei + . . . + e4 and 5 = €i2 + . . . + e4
2 so that 

(44) €5 = (a + (3a2 - 66)*)/2. 

Our proof will use Xi, . . . , X5 as a basis for pentaspherical coordinates. 
Thus if F is a sphere with c(Y) = (A(F, Xi))> then its curvature y is given 
by (10) as 

(45) 7 = c(Y)TA-1e. 

Let us introduce 

(46) Oci,.. . ,JC5) r = A-Kei, . . . , 6 5 ) r 

so that 

(47) K< = (ex + . . . + 65 » 3e<)/6. 

Let Yj be the plane orthogonal to {Xiy . , . y XA}\{Xj} for j = 1, . . . , 4. 
Then by (45) and (46) since the curvature of Yj is 0, 

(48) 0 = A ( Y„ X,)Kt + A ( Y» X 5 K 

Now observe that, since e4 ^ «3 and a è €3, we have 

(49) /ci ^ K2 g: KI = («1 + e2 - 2«3 + «4 + «B)/6 

è (ei + «0/6 > 0. 

Also, «4 ^ «5 implies that a2 > 2b so (44) implies 

(50) K,= (a- 2e6)/6 < 0. 

The equation (48) with (49) and (50) shows that A(Y}, Xt) and A(YjtX6) 
have the same sign for j = 1, 2, 3 and the same or opposite sign for j = 4 
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according to whether K4 ^ 0 or /c4 < 0. Since (40) is just the condition K4 =t 0 
and /c4 < 0 is easily seen to be equivalent to (41), this completes the proof. 

THEOREM 9. Let U = S(a0, 1) be a unit sphere, and let Xi = S(a0, —1). 
Let X2, . . . , X5 be spheres contained in U such that X\, . . . , X5 are mutually 
tangent. Suppose that ao lies in the interior of the convex hull of the centres of 
X2, . • . , X5. Let & be as in Theorem 5. Then &' = &\{Xi] is an osculatory 
packing of U, and, moreover, is the unique osculatory packing which begins with 
S\ = X2, . . . , 5 4 = X&, (unique, apart from the order in which spheres of equal 
radii are listed). 

Proof. Let C = {Sn} be an osculatory packing of U with Sn = Xn+i for 
n = 1, . . . , 4. We must show that Sn 6 &1 for all n. This will prove the 
theorem since if C were a proper subcollection of the packing &', then C could 
not be complete. The proof will use induction, and since it is rather compli
cated we shall explain the strategy first. By definition, Sn+i (for n ^ 4) has 
the largest radius of spheres contained in Rn+i = U\(Si U . . . U 5 J ; that is, 
given any x Ç Rn+u if we let dn+i(x) = dist(x, dRn+i), then rn+i, the radius 
of Sw+i satisfies rn+i = ma.x{dn+i(x) : x Ç Rn+i}- We shall inductively intro
duce a subdivision of EN into polyhedra L\, . . . , Lk so that 

(51) max{dn+i(x) : x € Rn+i Pi Lt) = Pi 

is attained at a unique point p{ in Lt and the sphere S (pi, pt) is one of the 
spheres in &''. 

Formally, our induction assumption contains the following assertions at 
the nth stage: 

(i) Su...,Sn are in ^ ' . 
(ii) For n =t 5, if S is in &' and the curvature of S is strictly less than the 

curvature of Sn, then S is one of Si, . . . , Sn-i. 
(iii) Ez can be partitioned into polyhedra L\, . . . , Lk each of which has 

vertices at the centres a\, . . . , an of Si, . . . , Sn. Certain of the Lt are frustra 
of polyhedral cones with vertex at a0 the centre of U and in this case we 
consider ao to be one of the vertices of Lt. 

(iv) Each Lt is starlike with respect to a point pt which is the centre of a 
sphere Yt in &' tangent to all Sm with m ^ n whose centres are the vertices 
of L^ We say that these spheres determine Lx. 

(v) The vertices of Lf are the centres of all spheres U and Sm with m S n 
which touch F^. 

(vi) The faces of Lt are triangles. The vertices of these triangles are the 
centres of spheres which are mutually tangent. If W\, W2, W% are three such 
spheres then there is a sphere W\ such that the centre of W± is a vertex of Lu 

and Wi, . . . , WA are in some order Xi(a), . . . , X\(a) for some a £ G, and 
Yt = X6(a). 

(vii) The radius of Yt is pt, given by (51). 
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We begin the induction with n = 4. Then (i) and (ii) are trivial. For (iii), 
there are five sets Li, . . . , L5 which are respectively the convex hull of 
ai, . . . , <24 and the frustra of the polyhedral cones with vertex a0 generated by 
three of &i, . . . , a4 (as in the paragraph preceding Lemma 8). These form a 
partition of £ 3 since a0 is in the interior of L\ by assumption. For (iv), let Yt 

denote the sphere of smaller radius tangent to the spheres which determine Lt. 
Then Yt Ç (3'. The centre pi of Yt can be shown to be in Lt using arguments 
like those in the proof of Lemma 9 and the fact that a0 £ L]. Parts (v) and 
(vi) are clear, and (vii) follows from Lemmas 7 and 8. 

Now we assume (i)-(vii) for n — 1 and proceed to n. By (iv), (v) and (vii) 
(for n — 1), we have 

max{dn(x) : x G Rn} = max(pi, . . . , p t ) = pt say. 

Hence Sn = F* Ç S?' proving (i). To prove (ii), denote the curvature of a 
sphere S by e(S), and we see that if e(S) < e(Sw_i), the result is true by the 
induction assumption, while if e(Sn-i) ^ e(5) < e(Sn), and 5 is not one of 
Su ... j Sn-i then Sn does not have the minimal curvature of spheres contained 
in Rni which contradicts its definition. 

We now proceed to the construction (iii) which requires some care. We shall 
let Li, . . . , Ljc denote the partition at stage (n — 1), and temporarily denote 
the new partition by L/,..., Lr

r. By (iii), (iv) and (vi) for n — 1, we may 
subdivide Lt (where Yt = Sn), into a number of tetrahedra, by joining 
an = pi to the vertices of Lt. Let these tetrahedra be 7\, . . . , Ts, and let the 
smaller sphere tangent to the spheres which determine Tj be Zj. By using (vi) 
we see that the four spheres determining Tj together with Zj are Xi(($), . . . , 
X&(J3) for some /3 G G, with Zj = Xs(/3)- We examine each Tj in turn and 
ask whether or not the centre of Zj is in the interior of Tj. If so then Tj becomes 
one of the LJ. If not, then by Lemma 9, with an appropriate numbering, 
the curvature of Zj, say e5, and the curvatures of the four spheres determining 
Tj, say ei, . . . , e4, must satisfy 

ei ^ €2 ^ €3 ^ e4 ^ e5 

f S 64 ^ 65 ^ V 

where 77 and f are given by (42) and (43). Note that e4 is the curvature of Sn. 
Let Wi, W2, Wzj be the spheres of curvatures €1, e2l e3 respectively. Let W be 
the sphere which touches all of Wi, W2} Wz and Zj, but is not Sn. Then 
W £ &' using the fact established above that Wi, W2, Wz, Zj, Sn are in some 
order Xi(/3), . . . , X5(fi) for some /3 £ G. Now, if 7 is the curvature of W 
then by (22), 

7 = 61 + €2 + €3 — €4 + €5 

^ €l + €2 + €3 — f + 77 

https://doi.org/10.4153/CJM-1973-030-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-030-5


318 DAVID W. BOYD 

There are three cases. If f < e4, then by (ii), W is one of Si, . . . , Sw_i. By 
Lemma 9, f < c4 implies that the centre of Z^ is in the convex hull of the 
centres of W, W\, W2 and Wz, which is a subset of some Lr. In this case, we 
define Lr \J Tj to be one of the sets LJ. Note that since Zj is tangent to 
W, Wu W2 and Wz it follows from (iv) (for n - 1), that Zj = F r . We make 
this same construction if f = €4 = 7, in case PF is one of Si, . . . , Sw_i. In this 
case the centre of Zj is on a boundary face of Tj. Finally, if f = e4 = 7, but 
W7 is not one of Si, . . . , Sw_i, we let Tj be one of the LJ. Having done this 
for Ti, . . . , T8, we now let £ / , . . . , Uk> consist of all Lm' just constructed, 
together with the unaltered sets Lp from the previous stage. 

Having now completed the construction required by (iii), we revert to the 
notation L\, . . . , Lk for the partition of £3. The sphere Yt is the sphere of 
smaller radius tangent to any four of the spheres determining L{. It is clear 
by the construction that (iv) and (v) are valid with this choice of Yif and (vi) 
was proved during the proof of (iii). 

I t is in the proof of (vii) that we use Theorem 5 in a crucial way. Let rt be 
the radius of Yt. By (iv), Yu touches all the spheres which determine Lt so, 
by Lemma 7 or 8 applied to appropriate quadruples of these spheres, we see 
that 

(52) pi = max{dist(x, dRn) : x £ RnC\ Lt} ^ rt. 

However, Yt Ç ^' and is not one of the spheres Si, . . . , Sn, or Xiy so, by 
Theorem 5, Yt does not intersect any of these spheres. Thus equality holds 
in (52), and is attained only for x = pu the centre of Yu (see equation (37)). 

This completes the induction and the proof of the theorem. 

Remarks. 1. By inversion, given any five spheres X\, . . . , X5 which are 
mutually tangent, we can invert them into spheres X±, . . . , X5' which satisfy 
the conditions of Theorem 9, (see [10, p. 109]). Since osculatory packings are 
complete, and since inversion preserves sets of measure zero, it is thus clear 
that â^' is a complete packing of U for any choice of X2, . . . , X5. However, 
it is not clear that this packing is osculatory. Theorem 11 shows that ^' is 
osculatory, but the uniqueness aspect of Theorem 10 may not be true. 

2. We can use a construction similar to that in Remark 1 to generate 
complete packings of £3 by spheres with positive radii: Invert the configura
tion of Theorem 9 with respect to a sphere centred at the point of contact of 
Xi and X2. Then Xi and X2 invert into non-intersecting half-spaces, and the 
remaining spheres in &' form a packing of the region between the (parallel) 
boundaries of Xi and X2. This is easily seen to be a complete packing. By 
stacking together a countable number of copies of this packing, we produce 
a complete packing of all of £3. 

3. There are other ways one could imagine for packing £ 3 completely, some 
of which would undoubtedly be more efficient (or at least as efficient), than 
the one just proposed. Gilbert [15], and Hudson [17] suggest (implicitly) 
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filling the "interstices" of a close packing of £ 3 by equal spheres, by first 
placing the largest spheres possible, then the next largest, and so on. This is 
certainly a process resembling what we have done. However, on closer examina
tion, in terms of the separations of the spheres involved, this packing more 
closely resembles our four-dimensional process. 

4. The idea used in Remark 2 is equally valid in higher dimensions. That is, 
suppose we have a packing of the region between two mutually tangent 
spheres Xi and X2 in EN, where Xi has negative curvature and X2 has positive 
curvature. If we invert in the point of contact, then, considering only the 
spheres which touch both Xi and X2 (if there are any), these form a packing 
by equal iV-spheres of the region between two parallel hyperplanes. The cross 
section of these spheres, by a hyperplane midway between these two, is a 
packing by equal spheres of E^-i . In the case of our packing S?', this is the 
well-known closest packing of E2 by equal circles. 

It would be extremely interesting to investigate the packings produced in 
this way from the osculatory packings of, say, a four-dimensional sphere, 
since one would intuitively expect these to have fairly high densities. Indeed, 
it seems clear that such a packing will contain configurations such as those 
suggested by Boerdijk [1; 12, p. 297 and 306], which have local densities 
greater than the presumed best packings, with density 7r/\/18. 

THEOREM 11. Let U, Xi, . . . , X5 be as in Theorem 10, except that the centre 
of U need not be in the interior of the convex hull of the centres of X2l . . . , X5. 
Then &' is an osculatory packing of U. 

Proof. We show that there is a choice of F2, . . . , F5 mutually tangent 
spheres in ^ ' , all touching Xly for which the centre of U lies in the convex 
hull of the centres of F2, . . . , F5 (although possibly on the boundary of this 
set). We select F2, . . . , F5 as follows: let F2 be a sphere of minimal curvature 
e2 in <S' which touches Xi, and let Y{1 (i = 3, 4, 5), be a sphere of minimal 
curvature et in &' which touches F2, . . . , F*_i and X\. We shall show that if 
II i is the half-space orthogonal to { F2, . . . , F5}\{ F*}, then the centres of 
Xi and Yi lie on the same side of the boundary of IIx. Let c = A(Xi, IIf) 
and d = A(Xi, 11*). We assume d > 0 and we wish to prove c ^ 0 (since Xi 
has negative curvature). As in equation (48), we have 

(53) 0 = c ( ( - l + e2 + . . . + e5) + 3) + d ( ( - l + 62 + . . . + €6) - 3€<). 

The coefficient of c in (53) is clearly positive. Also et is the smaller root of the 
quadratic (20) (with N = 3 and ei = —1), and hence 2et is less than the sum 
of the two roots which is — 1 + e2 + . . . + e5 — et. This shows that the 
coefficient of d in (53) is non-negative, and equals zero if and only if the two 
roots of (20) for et are equal. Thus c ^ 0. 

Since the above holds for i = 2, . . . , 5, the centre a0 of Xi lies in the 
convex hull H of the centres of F2, . . . , F5. If a0 is in the interior of H, 
Theorem 10 applies. If a0 lies in the interior of a two-dimensional face of H, 
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say the face opposite Yu then the two spheres Yu YI tangent to all of 
{Xi, F2, . . . , F5}\{FZ} have the same curvature, and we can repeat the 
proof of Theorem 10 beginning the induction at n = 6. Finally, if a0 is in the 
interior of an edge of H, then the spheres F2, F3 are tangent along a diameter 
of U and there are six spheres of equal curvature tangent to X\, F2 and F3 and 
forming a closed ring (the "hexlet" [27]). We may again repeat the proof of 
Theorem 10 starting with these eight spheres. 

6. Concluding remarks. It is quite clear that the packings of U given by 
&' have the same exponent My independent of the choice of X2, . . . , X5, 
since inversion in a suitable sphere, with centre outside U will map any of 
these packings into any other. Such mappings are Lipschitz and have Lipschitz 
inverses. An interesting choice for (ei, . . . , €5) is ( — 1, 2, 2, 3, 3) since, 
according to (24), the curvatures of all spheres in the packing are integers. 
Soddy noted this fact in [28] for certain subcollections of the packing S^', so 
we shall call the packing, beginning with spheres of these curvatures, the 
Soddy packing. Observe that, in this case, &1 is not the only osculatory 
packing which begins with the four spheres X2, . . . , X$ since there are many 
spheres of curvature 3 not in &' which will fit in U\(X2 U . . . U X5) . 

Using an algorithm described in [7], the IBM 360/65 computer at the 
University of British Columbia quickly (135 seconds) counted the number 
W(C) of spheres in the Soddy packing, with curvature C at most 300. It is 
interesting to note (and easily proved from (24)), that W(C) = 0 for C = 1 
(modulo 3). The total number of spheres with curvatures at most 300 is 
305594 and these occupy .94727 of the volume of U. Using a method suggested 
by Melzak [24] for N = 2, we obtain 

£ {W(N) :N ^ C} tt (.2988455)C~M\ 

where 

(54) Mx = 2.42009, 

suggesting that M œ 2.42. 
As an additional numerical experiment, we used the initial curvatures 

( — 1, a, a, a, a) , where a = 1 + J\A>, corresponding to the centres of 
X2j . . . , Xs being at the vertices of a regular tetrahedron. In this case, the 
computer counted the number of spheres for which the integer part of the 
curvature is C, for each C less than 600. There were 1693595 such spheres, 
and the result corresponding to (54) was 

(55) M2 = 2.41748 

again suggesting M œ 2.42. 
It should be possible to give rigorous upper and lower bounds on M analogous 

to the bounds obtained for the two-dimensional 5 in [5; 6]. However, the 
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methods developed by various authors [3; 5; 6; 13; 23; 29] for the two-dimen
sional problem depend very much on the fact that, if the largest disk is removed 
from a curvilinear triangle, then three new triangles are formed. No such 
result is true in three dimensions, where the interior of the set 

Rn = E / \ ( S i U . . . U S n _ i ) 

is connected, for all n. The best bounds we have are thus 

(56) 2.03 < M < 2.8228 . . . = (3 + V7) /2 . 

The lower bound is due to Larman [20] and the upper bound due to this 
author [4]. 

The construction used in Theorem 10 of this paper is reminiscent of the 
construction used in the proof of [4, Theorem 2], and could possibly be used 
to improve the upper bound in (56), but not by much. 

In the two-dimensional case, it is easy to see how to choose a £ G in order 
that each disk in @\{Xi, . . . , X4} shall have a unique representation as 
Xt(a). One simply uses only those a which have components in the set {1,2, 3}, 
so A 4 is unnecessary. The situation for three dimensions is more complicated. 
It is easy to see that A5 is unnecessary since the columns of A£ are a permu
tation of those of A*>. It can also be shown that if a and ft have components 
only in {1, 2, 3} then X5(a) ^ X5(fi) if a ^ 0. However, there are many 
relations of the form A (a)e5 = A (/3)e5, if a or /3 has some components equal 
to 4. The algorithm developed in [7] gets around this difficulty by replacing 
the A i by operations which are not linear, but it is still an interesting question 
as to whether all relations of the form A (a)e5 = A (Ji)e$ can be discovered. 
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