ON LATTICES OF VARIETIES OF METABELIAN GROUPS

M. S. BROOKS

(Received 25 July 1969)

To Bernhard Hermann Neumann on his 60th birthday

 Communicated by G. E. WallThis paper presents an example to show that the lattice of subvarieties of $\mathfrak{A}_{3} \mathfrak{A}_{9} \wedge \mathfrak{R}_{11}$ is non-distributive. The example is used further to show that a certain 'canonic'" description for non-nilpotent subvarieties of $\mathfrak{A}_{p} \mathfrak{A}_{p^{2}}, p$ prime, is generally not unique.

1. Introduction

The notation and terminology used follows Hanna Neumann [4] with the addition of lat \mathfrak{B} and lat G to denote respectively the lattice of subvarieties of a variety \mathfrak{B} and the lattice of verbal subgroups of a group G.

Recently, Kovács and Newman [3] showed that lat $\left(\mathfrak{A}_{p^{\alpha}} \mathfrak{H}_{p}\right)$ is distributive for all primes p and all positive integers α. In contrast to this however, in some unpublished work the same authors demonstrated non-distributivity in lat $\left(\mathfrak{U}_{2} \mathfrak{A}_{8} \wedge \mathfrak{R}_{6}\right)$, thereby showing that lat $\left(\mathfrak{U}_{p} \mathfrak{U}_{p^{\alpha}}\right)$ is generally not distributive. In $\S 2$ of this paper another example of non-distributivity in lat $\left(\mathfrak{U}_{p} \mathfrak{A}_{p^{\alpha}}\right)$ is given, in this case with α as small as it can be, namely $\alpha=2$, and with $p=3$. The result is:

Theorem 1. The lattice of subvarieties of $\mathfrak{H}_{3} \mathfrak{X}_{9} \wedge \mathfrak{R}_{11}$ is not distributive.
Note that since lat \mathfrak{U}^{2} has minimum condition (Cohen [2]) every metabelian variety \mathfrak{B} can be expressed as the irredundant join of finitely many join-irreducible subvarieties, and in this context non-distributivity means precisely that not every \mathfrak{B} has a unique expression of this kind. However, in lat $\left(\mathscr{U}_{p} \mathfrak{U}_{p^{2}}\right), p$ prime, a weaker form of uniqueness persists, namely that described in the second part of Theorem 2 below. This theorem, the proof of which occupies the bulk of the author's Ph.D. thesis (Australian National University, 1968), is stated here without proof; it is hoped that a proof will be published at a later date.

Theorem 2. The varieties $\Im_{k}, k=1,2, \cdots$, defined by

$$
\Im_{k}= \begin{cases}\mathfrak{A}_{p} \mathfrak{A}_{p^{2}} \wedge \mathfrak{M}_{k} \mathfrak{A}_{p} \wedge \mathfrak{B}_{p^{2}}, & \text { if } 1 \leqq k \leqq p-1 \\ \mathfrak{A}_{p} \mathfrak{A}_{p^{2}} \wedge \mathfrak{M}_{k} \mathfrak{A}_{p}, & \text { if } p \leqq k\end{cases}
$$

form a properly ascending chain of subvarieties of $\mathfrak{A}_{p} \mathfrak{H}_{p^{2}}$, and this chain, with $\mathfrak{A}_{p} \mathfrak{H}_{p^{2}}$ itself adjoined, makes up a complete list of the non-nilpotent join-irreducible subvarieties of $\mathfrak{A}_{\boldsymbol{p}} \mathfrak{A}_{p^{2}}$. Moreover, to every non-nilpotent proper subvariety \mathfrak{B} of $\mathfrak{A}_{p} \mathfrak{A}_{p^{2}}$ there exists a nilpotent variety \mathfrak{Q} and a unique $\mathfrak{\mho}_{k}$ such that $\mathfrak{B}=\mathfrak{\mho}_{k} \vee \mathfrak{Q}$.

In $\S 3$ a closer examination of the example used to establish Theorem 1 will yield the following demonstration of the non-uniqueness, in a strong sense, of the nilpotent component \mathcal{L} mentioned in Theorem 2.

Theorem 3. There exists a subvariety \mathfrak{B} of $\mathfrak{A}_{3} \mathfrak{A}_{9}$ such that $\mathfrak{B}=\mathfrak{F}_{3} \vee \mathfrak{Z}=$ $\Im_{3} \vee \mathfrak{L}^{\prime}$, where $\mathfrak{\Im}_{3}$ is the non-nilpotent join-irreducible subvariety of $\mathfrak{U}_{3} \mathfrak{A}_{9}$ defined in Theorem 2 and $\mathfrak{L}, \mathfrak{L}^{\prime}$ are distinct nilpotent varieties both minimal with respect to the property that their join with $\mathfrak{\mho}_{3}$ is \mathfrak{B}.

It is natural to ask whether Theorems like 1 and 3 hold for all primes p, and, in relation to Theorem 1, whether the class can be reduced, and if so, how far. Towards an answer to these questions, I have obtained the following information (the proofs will be omited): An example very similar to that in $\S 2$ can be constructed to show that lat $\left(\mathscr{H}_{3} \mathfrak{N}_{9} \wedge \mathfrak{R}_{9}\right)$ is non-distributive, but this smaller class example does not yield the additional result of Theorem 3. Further, essentially the same constructions work for $p=5$, giving that lat $\left(\mathfrak{H}_{5} \mathfrak{X}_{25} \wedge \mathfrak{R}_{25}\right)$ is not distributive and that there exists $\mathfrak{B} \in$ lat $\left(\mathfrak{A}_{5} \mathfrak{M}_{25}\right)$ such that $\mathfrak{B}=\breve{\mho}_{5} \vee \mathfrak{Z}=\mathfrak{\Im}_{5} \vee \mathbb{Z}^{\prime}$ with $\mathfrak{R}, \mathbb{Z}^{\prime}$ both nilpotent and minimal but distinct. Almost certainly these examples generalise to cover all primes $p \geqq 3$ but the length of the calculations seems to increase with the prime. For $p=2$ the construction definitely fails, so that whether or not lat $\left(\mathscr{H}_{2} \mathfrak{U}_{4}\right)$ is distributive remains very much an open question. Note however that neither lat $\left(\mathfrak{A}_{2} \mathfrak{H}_{8}\right)$ nor lat $\left(\mathfrak{U}_{4} \mathfrak{H}_{4}\right)$ is distributive, the former on account of the Kovács and Newman example previously mentioned, and the latter on account of a result of Bryce [1], who shows that lat $\left(\mathfrak{A}_{p^{2}} \mathfrak{A}_{p^{2}} \wedge \mathfrak{R}_{p+2}\right)$ is not distributive for any prime p.

2. Proof of theorem 1

There is a more-or-less standard method of proving results like Theorem 1; it consists of demonstrating bad behaviour among the verbal subgroups of some suitably chosen relatively free group G and then drawing conclusions about var G. Part of the reason for requiring that G should be relatively free is to ensure that lat G is a sublattice of the lattice of normal subgroups of G, so that in lat G the join and meet of any pair of verbal subgroups of G is respectively their product and set-theoretic intersection. The method is summed up in the following:

Lemma 4. Let G be a relatively free group. If lat G is not distributive then neither is lat (var G). In fact, if for some $C, D_{1}, D_{2} \in$ lat G

$$
\begin{equation*}
C \cap D_{1} D_{2} \neq\left(C \cap D_{1}\right)\left(C \cap D_{2}\right), \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathfrak{U} \vee\left(\mathfrak{W}_{1} \wedge \mathfrak{W}_{2}\right) \neq\left(\mathfrak{U} \vee \mathfrak{W}_{1}\right) \wedge\left(\mathfrak{U} \vee \mathfrak{W}_{2}\right), \tag{2}
\end{equation*}
$$

where $\mathfrak{W}_{i}=\operatorname{var}\left(G / D_{i}\right)$ for $i=1,2$ and \mathfrak{U} is any variety for which $U(G)=C$.
Proof. The proof is by contradiction. Let F be an absolutely free group of the same rank as G and let $\gamma: F \rightarrow G$ be the natural epimorphism. As is easily checked, the map μ : lat $X_{\infty} \rightarrow$ lat F, given by $V \mu=V(F)$ for all $V \in$ lat X_{∞}, is a lattice epimorphism, and consequently the negation of (2) implies that

$$
U(F) \cap W_{1}(F) W_{2}(F)=\left(U(F) \cap W_{1}(F)\right)\left(U(F) \cap W_{2}(F)\right)
$$

Since $W_{i}(F) \supseteq \operatorname{ker} \gamma, i=1,2$, the modular law in lat F implies further that

$$
\begin{align*}
U(F)(\operatorname{ker} \gamma) \cap & W_{1}(F) W_{2}(F) \\
& =\left(U(F)(\operatorname{ker} \gamma) \cap W_{1}(F)\right)\left(U(F)(\operatorname{ker} \gamma) \cap W_{2}(F)\right) \tag{3}
\end{align*}
$$

Now if Λ denotes the lattice of verbal subgroups of F which contain ker γ then the $\operatorname{map} \bar{\gamma}: \Lambda \rightarrow$ lat G induced by γ is a lattice isomorphism (cf. 13.32 in [4]) and therefore an application of $\bar{\gamma}$ to (3) yields

$$
U(G) \cap W_{1}(G) W_{2}(G)=\left(U(G) \cap W_{1}(G)\right)\left(U(G) \cap W_{2}(G)\right)
$$

which contradicts (1). This completes the proof.
Remark. The assumption in Lemma 4 that G is relatively free cannot in general be dispensed with. For if $\{a, b, c\}$ is a free generating set for $H=F_{3}\left(\mathfrak{A}_{3} \mathfrak{A}_{9} \wedge \mathfrak{R}_{3}\right)$ and $G=H / K$, where K is the (central) cyclic subgroup of H generated by $a^{9}[a, b, c]$, then lat ($\operatorname{var} G$) is distributive whereas lat G is not even modular.

In consequence of Lemma 4, it is sufficient for the proof of Theorem 1 to demonstrate non-distributivity in lat G, where $G=F_{2}\left(\mathfrak{A}_{3} \mathfrak{A}_{9} \wedge \mathfrak{R}_{11}\right)$. The example to be exhibited occurs among the verbal subgroups of G contained in $G_{(11)}$, where $G_{(11)}$ is the last non-trivial term of the lower central series of G and is clearly an elementary abelian 3-group. With $\{a, b\}$ a free generating set for G, set $c_{i}=[b, i a,(10-i) b]$ for $i=2, \cdots, 9$. Then:

The set $\left\{c_{2}, \cdots, c_{9}\right\} \mathfrak{A}_{3}$-freely generates $G_{(11)}$.
This may be proved as follows: Let $\left\{a^{*}, b^{*}\right\}$ be a free generating set for $G^{*}=$ $F_{2}\left(\mathfrak{A}_{3} \mathfrak{H} \wedge \mathfrak{H}_{11}\right)$, let $c_{i}^{*}=\left[b^{*}, i a^{*},(10-i) b^{*}\right]$ for $i=1, \cdots, 10$, and let K be the subgroup of G^{*} generated by $\left\{\left(a^{*}\right)^{27},\left(b^{*}\right)^{27}, c_{1}^{*}, c_{10}^{*}\right\}$. It may be shown by routine commutator calculations that $\left[x, y^{27}\right]=1$ and $\left[x, y, z^{9}\right]=[x, y, 9 z]$ are laws in G^{*}, so that K is contained in both the centre and the $\mathfrak{H}_{3} \mathfrak{H}_{9}$-subgroup of G^{*}. Moreover it is a straightforward matter to check that G^{*} / K satisfies the laws $x^{27}=1,\left[x^{9}, y^{9}\right]=1$ and $\left[x, y, z^{9}\right]=1$, and since these laws define $\mathfrak{H}_{3} \mathfrak{H}_{9} \wedge \mathfrak{n}_{11}$ within $\mathfrak{H}_{3} \mathfrak{A} \wedge \mathfrak{R}_{11}$ this means that $G^{*} / K \in \mathfrak{H}_{3} \mathfrak{A}_{9} \wedge \mathfrak{R}_{11}$. Thus K contains, and therefore is, the $\mathfrak{U}_{3} \mathfrak{A}_{9}$-subgroup of G^{*}, and so it is the kernel of the natural epimorphism $\phi: G^{*} \rightarrow G$ given by $a^{*} \mapsto a, b^{*} \mapsto b$. Now it follows from Theorem
36.32 in [4] that the set $\left\{c_{1}^{*}, \cdots, c_{10}^{*}\right\}$ is an \mathfrak{Q}_{3}-free generating set for $G_{(11)}^{*}$, and since $G_{(11)}=G_{(11)}^{*} \phi$ it only remains for the proof of (1) to show that $G_{(11)}^{*} \cap K$ is generated by $\left\{c_{1}^{*}, c_{10}^{*}\right\}$. But, modulo the derived group $G_{(2)}^{*}$ of $G^{*},\left\{a^{* 27}, b^{* 27}\right\}$ freely generates a free abelian group and consequently $G_{(2)}^{*}$, and, a fortiori, $G_{(11)}^{*}$ does not contain any element of the form $\left(a^{* 27}\right)^{m}\left(b^{* 27}\right)^{n}$. Since K is abelian, and trivially $c_{1}^{*}, c_{10}^{*} \in G_{(11)}^{*} \cap K$, this completes the proof of (4).

The knowledge of this \mathfrak{A}_{3}-free generating set for $G_{(11)}$ enables the subgroups of $G_{(11)}$ to be easily described and distinguished; the next task is to obtain a usable criterion for determining which of them are verbal, or equivalently fully invariant, in G.

Let α, β, γ be the automorphisms of G given by

$$
\begin{aligned}
& \alpha: a \mapsto a b, \quad b \mapsto b ; \\
& \beta: a \mapsto b, \quad b \mapsto a ; \\
& \lambda: a \mapsto a^{-1}, b \mapsto b .
\end{aligned}
$$

Let M denote the \mathfrak{A}_{3}-subgroup of G and for any endomorphism η of G denote by η / M the endomorphism of G / M induced by η. Then, as is readily checked, $\{\alpha / M$, $\beta / M, \gamma / M\}$ is a generating set for the automorphism group of G / M. (Use the fact that Aut $(G / M) \cong G L(2,3)$.) To make use of this information the following two facts are required:
(i) if η_{1}, η_{2} are endomorphisms of G such that $\eta_{1} / M=\eta_{2} / M$ then η_{1} and η_{2} agree on $G_{(11)}$;
(ii) if η is an endomorphism of G such that $\operatorname{ker}(\eta / M) \neq\{1\}$ then ker $\eta \supseteq G_{(11)}$.
Both (i) and (ii) follow easily from the fact that $G_{(12)}=\{1\}$. Now suppose that S is a subgroup of $G_{(11)}$ which admits the automorphisms α, β, γ and let η be an arbitrary endomorphism of G. Either ker $\eta \supseteq G_{(11)}$ in which case S certainly admits η, or, by (ii), $\eta / M \in$ Aut (G / M). In the latter case $\eta / M=\nu / M$ for some $v \in g p(\alpha, \beta, \gamma)$ and since S admits v it follows fom (i) that S admits η. Thus a subgroup S of $G_{(11)}$ is fully invariant in G if (and trivially only if) it admits α, β, γ.

The action of these automorphisms on c_{2}, \cdots, c_{9} is easily calculated, and is tabulated below.

c_{i}	c_{i}^{α}	c_{i}^{β}	c_{i}^{γ}
c_{2}	c_{2}	$c_{9}{ }^{-1}$	c_{2}
c_{3}	$c_{2}{ }^{-1} c_{3}$	c_{8}^{-1}	c_{3}^{-1}
c_{4}	c_{4}	c_{7}^{-1}	c_{4}
c_{5}	$c_{2} c_{4} c_{5}$	c_{6}^{-1}	c_{5}^{-1}
c_{6}	$c_{2}^{-1} c_{3} c_{4} c_{5}^{-1} c_{6}$	c_{5}^{-1}	c_{6}
c_{7}	$c_{4}^{-1} c_{7}$	c_{4}^{-1}	c_{7}^{-1}
c_{8}	$c_{2} c_{4}^{-1} c_{5}^{-1} c_{7} c_{8}$	c_{3}^{-1}	c_{8}
c_{9}	$c_{2}^{-1} c_{3} c_{4}^{-1} c_{5} c_{6}^{-1} c_{7} c_{8}^{-1} c_{9}$	c_{2}^{-1}	c_{9}^{-1}

From this table it is a purely routine matter to verify that the subgroups

$$
\begin{aligned}
& D_{1}=g p\left(c_{2}, c_{3} c_{5} c_{7}, c_{4} c_{6} c_{8}, c_{9}\right) \\
& D_{2}=g p\left(c_{2} c_{4}, c_{3} c_{5} c_{7}, c_{4} c_{6} c_{8}, c_{7} c_{9}\right) \\
& C=g p\left(c_{4}, c_{7}\right)
\end{aligned}
$$

each admit α, β, γ and are therefore fully invariant, so verbal, in G. However, $C \cap D_{1}=\{1\}=C \cap D_{2}$ and $C<D_{1} D_{2}$, and hence

$$
\begin{equation*}
\{1\}=\left(C \cap D_{1}\right)\left(C \cap D_{2}\right) \neq C \cap D_{1} D_{2}=C \tag{5}
\end{equation*}
$$

which gives the required non-distributivity.

3. Proof of theorem 3

Continuing with the example of non-distributivity in lat G discussed in $\S 2$, it should now be observed that $\left.C=M_{(4)}=\left\{\left[x_{1}, x_{2}, x_{3}, x_{4}\right]\right)\right\}(M)$. This can be checked by routine commutator expansion calculations making appropriate use of the laws of $\mathfrak{A}_{3} \mathfrak{A}_{9} \wedge \mathfrak{R}_{11}$ and the fact that M is generated by all commutators and cubes in G. Thus $C=I_{3}(G)$, where \Im_{3} is the non-nilpotent join-irreducible subvariety of $\mathfrak{A}_{3} \mathfrak{A}_{9}$ defined in Theorem 2. Consequently, if $\mathfrak{M}_{i}=\operatorname{var}\left(G / D_{i}\right)$ for $i=1,2$, then by (5) and Lemma 4

$$
\mathfrak{Y}_{3} \vee\left(\mathfrak{W}_{1} \wedge \mathfrak{W}_{2}\right) \neq\left(\mathfrak{F}_{3} \vee \mathfrak{W}_{1}\right) \wedge\left(\mathfrak{F}_{3} \vee \mathfrak{W}_{2}\right),
$$

and since the \mathfrak{W}_{i} are both nilpotent subvarieties of $\mathfrak{A}_{3} \mathscr{A}_{9}$ Theorem 3 is an immediate corollary to the following more general, and presumably well-known, result:

Lemma 5. If $\mathfrak{U}, \mathfrak{W}_{1}, \mathfrak{W}_{2}$ are varieties of groups, and

$$
\begin{equation*}
\mathfrak{U} \vee\left(\mathfrak{W}_{1} \wedge \mathfrak{W}_{2}\right) \neq\left(\mathfrak{U} \vee \mathfrak{W}_{1}\right) \wedge\left(\mathfrak{U} \wedge \mathfrak{W}_{2}\right), \tag{6}
\end{equation*}
$$

then there exist varieties of groups $\mathfrak{B}, \mathfrak{R}_{1}, \mathfrak{Q}_{2}$, with $\mathfrak{Q}_{1} \neq \mathfrak{Q}_{2}$ and $\mathfrak{R}_{i} \in \mathfrak{W}_{i}$ for $i=1,2$, such that each \mathfrak{Q}_{i} is minimal with respect to the property that its join with \mathfrak{U} is \mathfrak{B}.

Proof. If $\mathfrak{B}, \mathfrak{X}_{1}, \mathfrak{X}_{2}$ are defined by

$$
\begin{aligned}
& \mathfrak{B}=\left(\mathfrak{U} \vee \mathfrak{W}_{1}\right) \wedge\left(\mathfrak{l} \vee \mathfrak{W}_{2}\right) \\
& \mathfrak{X}_{i}=\mathfrak{W}_{i} \wedge\left(\mathfrak{U} \vee \mathfrak{B}_{j}\right) \quad i, j=1,2, i \neq j,
\end{aligned}
$$

then it follows from (6) by modularity that

$$
\mathfrak{B}=\mathfrak{U} \vee \mathfrak{X}_{1}=\mathfrak{U} \vee \mathfrak{X}_{2} \neq \mathfrak{U} \vee\left(\mathfrak{X}_{1} \wedge \mathfrak{X}_{2}\right) .
$$

For $i=1,2$, let $\mathscr{L}_{i}=\left\{\mathfrak{Y} \in\right.$ lat $\left.\mathfrak{X}_{i} \mid \mathfrak{U} \vee \mathfrak{Y}=\mathfrak{B}\right\}$. If $\left\{\mathfrak{Y}_{\boldsymbol{\delta}} \mid \delta \in \Delta\right\}$ is any descending chain in \mathscr{L}_{i} then since $\mathfrak{U} \vee\left(\bigwedge_{\delta \in \Delta} \mathfrak{Y}_{\delta}\right)=\bigwedge_{\delta \in \Delta}\left(\mathfrak{U} \vee \mathfrak{Y}_{\delta}\right)$ (21.26 in [4]) it follows that $\bigwedge_{\delta \in \Delta} \mathscr{Y}_{\delta} \in \mathscr{L}_{i}$. Thus every totally ordered subset of \mathscr{L}_{i} has a lower bound
in \mathscr{L}_{i} and hence, by the minimum principle, \mathscr{L}_{i} contains a minimal element \mathfrak{Q}_{i}. Moreover, $\mathfrak{L}_{1} \neq \mathfrak{L}_{2}$ for otherwise

$$
\mathfrak{B}=\mathfrak{U} \vee \mathfrak{X}_{1} \supseteq \mathfrak{U} \vee\left(\mathfrak{X}_{1} \wedge \mathfrak{X}_{2}\right) \supseteq \mathfrak{U} \vee\left(\mathfrak{R}_{1} \wedge \mathfrak{R}_{2}\right)=\mathfrak{U} \vee \mathfrak{R}_{1}=\mathfrak{B}
$$

contradicting $\mathfrak{B} \neq \mathfrak{U} \vee\left(\mathfrak{X}_{1} \wedge \mathfrak{X}_{2}\right)$. This completes the proof.

Acknowledgement

This work was carried out during my tenure of an Australian National University research scholarship and constitutes a modification of a part of my Ph. D. Thesis. It is with pleasure that I record my gratitude to my supervisors Dr. L. G. Kovács and Dr. M. F. Newman for much helpful advice and constructive criticism.

References

[1] R. A. Bryce, 'Metabelian groups and varieties', submitted to Philos. Trans. Roy. Soc. London, Ser. A.
[2] D. E. Cohen, 'On the laws of a metabelian variety', J. Algebra 5 (1967), 267-273.
[3] L. G. Kovács and M. F. Newman, 'On non-Cross varieties of groups', to appear in J. Austral. Math. Soc.
[4] Hanna Neumann, Varieties of groups, (Springer-Verlag, Berlin, 1967).
Australian National University
Canberra, ACT, 2600

