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SEMI-EQUATIONAL THEORIES

ARTEM CHERNIKOV AND ALEX MENNEN

Abstract. We introduce and study (weakly) semi-equational theories, generalizing equationality in
stable theories (in the sense of Srour) to the NIP context. In particular, we establish a connection to
distality via one-sided strong honest definitions; demonstrate that certain trees are semi-equational, while
algebraically closed valued fields are not weakly semi-equational; and obtain a general criterion for weak
semi-equationality of an expansion of a distal structure by a new predicate.

§1. Introduction. Equations and equational theories were introduced by Srour
[38–40] in order to distinguish “positive” information in an arbitrary first order
theory, i.e., to find a well-behaved class of “closed” sets among the definable sets, by
analogy to the algebraic sets among the constructible ones in algebraically closed
fields. We recall the definition:

Definition 1.1. (1) A partitioned formula ϕ(x, y), with x, y tuples of vari-
ables, is an equation (with respect to a first-order theory T) if there do not
exist M |= T and tuples (ai , bi : i ∈ �) in M such that M |= ϕ (ai , bj) for
all j < i and M |= ¬ϕ (ai , bi) for all i.

(2) A theory T is equational if every formula ϕ(x, y), with x, y arbitrary finite
tuples of variables, is equivalent in T to a Boolean combination of finitely
many equations ϕ1(x, y), ... , ϕn(x, y).

It is immediate from the definition that every equational theory is stable. Structural
properties of equational theories in relation to forking and stability theory are
studied in [19–22, 33]. Many natural stable theories are equational; [19] provided the
first example of a stable non-equational theory. More recently it was demonstrated
that the stable theory of non-abelian free groups is not equational [28, 34], and
further examples are constructed in [25]. It is demonstrated in [24] that all theories
of separably closed fields are equational (generalizing earlier work of Srour [37]).
See also [29] for an accessible introduction to equationality.

We propose a generalization of equations and equational theories to the larger
class of NIP theories (see Section 1.2 for a more detailed discussion):
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2 ARTEM CHERNIKOV AND ALEX MENNEN

Definition 1.2. Let T be a first-order theory and M |= T a monster model of T.

(1) A partitioned formula ϕ(x, y) is a semi-equation (in T) if there is no
sequence (ai , bi : i ∈ �) with ai ∈ Mx, bi ∈ My such that for all i, j ∈ �,
|= ϕ (ai , bj) ⇐⇒ i �= j.

(2) A (partitioned) formulaϕ (x, y) is a weak semi-equation if there are no b ∈ My

and an (∅-)indiscernible sequence (ai : i ∈ Z) with ai ∈ Mx such that the
subsequence (ai : i �= 0) is indiscernible over b, |= ϕ (ai , b) for all i �= 0, but
|= ¬ϕ (a0, b).

(3) A theory T is (weakly) semi-equational if every formula ϕ(x, y) ∈ L, with
x, y arbitrary finite tuples of variables, is a Boolean combination of finitely
many (weak) semi-equations �1(x, y), ... , �n(x, y) ∈ L.

Semi-equations are in particular weak semi-equations, every weakly semi-
equational theory is NIP, and in a stable theory all three notions coincide (see
Proposition 2.10). Some parts of the basic theory of equations naturally generalize to
(weak) semi-equations, but there are also some new phenomena and complications
appearing outside of stability. In particular, weak semi-equationality provides
a simultaneous generalization of equationality and distality, bringing out some
curious parallels between those two notions (see Section 4). In this paper we develop
the basic theory of (weak) semi-equations, and investigate (weak) semi-equationality
in some examples. We view this as a first step, and a large number of questions remain
open and can be found throughout the paper.

In Section 1.2 we provide some equivalent characterizations of (weak) semi-
equationality in terms of indiscernibles. We discuss closure of (weak) semi-
equations under Boolean combinations (Proposition 2.3), reducts and expansions
(Proposition 2.6). In Section 2.2 we discuss how (weak) semi-equationality relates
to the more familiar notions: all weakly semi-equational theories are NIP, distal
theories are weakly semi-equational, and in a stable theory a formula is an equation
if and only if it is a (weak) semi-equation (Proposition 2.10). In Section 2.3
we introduce some quantitive parameters associated with semi-equations. This
parameter is related to breadth (Definition 2.15) of the family defined by the
instances of a formula, and we observe that a formula is a semi-equation if and only
if the family of its instances has finite breadth (Proposition 2.16). The case when
this parameter is minimal, i.e., 1-semi-equations, provides a generalization of weakly
normal formulas characterizing 1-based stable theories (Proposition 2.19). Hence 1-
semi-equationality can be viewed as a form of “linearity,” or “1-basedness” for NIP
theories. We discuss its connections to a different form of “linearity” considered in
[5], namely basic relations and almost linear Zarankiewicz bounds (see Proposition
2.23 and Remark 2.24), observing that (2, 1)-semi-equational theories do not define
infinite fields.

In Section 3 we consider some examples of semi-equational theories. In Section
3.1 we show that an o-minimal expansion of a group is linear if and only if it
is (2, 1)-semi-equational. It remains open if the field of reals is semi-equational
(Problem 3.4). We demonstrate that arbitrary unary expansions of linear orders
(Section 3.2) and many ordered abelian groups (Section 3.4) are 1-semi-equational.
In Section 3.5 we demonstrate that the theory of infinitely branching dense trees
is semi-equational (Theorem 3.12), but not 1-semi-equational (even after naming
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SEMI-EQUATIONAL THEORIES 3

parameters, see Theorem 3.13 and Corollary 3.14). Semi-equationality of arbitrary
trees remains open (Problem 3.17). In Section 3.3 we observe that dense circular
orders are not semi-equational, but become 1-semi-equational after naming a single
constant (in contrast to equationality being preserved under naming and forgetting
constants).

In Section 4 we consider the relation of weak semi-equationality and distality
in more detail. We show that in an NIP theory, weak semi-equationality of a
formula is equivalent to the existence of a one-sided strong honest definition for
it (Theorem 4.8). This is a simultaneous generalization of the existence of strong
honest definitions in distal theories from [10] and the isolation property for the
positive part of ϕ-types for equations (replacing a conjunction of finitely many
instances of ϕ by some formula �; see Fact 4.2).

In Section 5.2 we show that many theories of NIP valued fields with an infinite
stable residue field, e.g., ACVF, are not weakly semi-equational (see Theorem 5.1 and
Remark 5.10). In Section 5.1 we provide a sufficient criterion for when a formula
is not a Boolean combination of weak semi-equations (generalizing the criterion
for equations from [28]). We then apply it to show that the partitioned formula
�(x1, x2; y1, y2) := � (x1 – y1) < � (x2 – y2) is not a Boolean combination of weak
semi-equations via a detailed analysis of the behavior of indiscernible sequences. It
remains open if the field Qp is semi-equational (Problem 5.12).

In Section 6 we consider preservation of weak semi-equationality in expansions
by naming a new predicate, partially adapting a result for NIP from [9]. Namely,
we demonstrate in Theorem 6.7 that if M |= T is distal, A is a subset of M with
a distal induced structure and the pair (M,A) is almost model complete (i.e., every
formula in the pair is equivalent to a Boolean combination of formulas which only
quantify existentially over the predicate; see Definition 6.6), then the pair (M, A)
is weakly semi-equational. This implies in particular that dense pairs of o-minimal
structures are weakly semi-equational (but not distal by [18]).

§2. Semi-equations and their basic properties. Let T be a complete theory in a
language L, and we work inside a sufficiently saturated and homogeneous monster
model M |= T . All sequences of elements are assumed to be small relative to the
saturation of M, and we write x, y, ... to denote finite tuples of variables. Given two
linear orders I, J , I + J denotes the linear order given by their sum (i.e., I < J ), and
(0) denotes a linear order with a single element. We write N = {0, 1, ...} and for k ∈
N, [k] = {1, ... , k}. Given a partitioned formula ϕ(x, y), we let ϕ∗(y, x) := ϕ(x, y).

2.1. Some basic properties of (weak) semi-equations.

Remark 2.1. By Ramsey and compactness we may equivalently replace � by
an arbitrary infinite linear order in Definition 1.2(1), and Z by IL + (0) + IR with
IL, IR arbitrary infinite linear orders in Definition 1.2(2).

By Ramsey, compactness, and taking automorphisms we also have:

Proposition 2.2. A formula ϕ(x, y) is a semi-equation if and only if there are no
b, infinite linear orders IL, IR, and an indiscernible sequence (ai)i∈IL+(0)+IR

such that
|= ϕ (ai , b) for i ∈ IL + IR, but �|= ϕ (a0, b).
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4 ARTEM CHERNIKOV AND ALEX MENNEN

Proposition 2.3. (1) If ϕ(x, y) is a semi-equation, then ϕ(x, y) is a weak semi-
equation. Hence every semi-equational theory is weakly semi-equational.

(2) Semi-equations are closed under conjunctions and exchanging the roles of the
variables.

(3) Weak semi-equations are closed under conjunctions and disjunctions.

Proof. (1) Clear from definitions using Proposition 2.2.
(2) Suppose ϕ (x, y) ∧ � (x, y) is not a semi-equation. By Proposition 2.2, there

are b and an indiscernible sequence (ai)i∈Z
such that |= ϕ (ai , b) ∧ � (ai , b) ⇐⇒

i �= 0. Either �|= ϕ (a0, b), in which case ϕ (x, y) is not a semi-equation, or �|=
� (a0, b), in which case � (x, y) is not a semi-equation. And ϕ(x, y) is a semi-
equation if and only if ϕ∗(y, x) := ϕ(x, y) is a semi-equation by the symmetry of
the definition.

(3) For conjunctions, the same as the proof of (2), but with the stipulation that
(ai)i �=0 is b-indiscernible added. Now suppose ϕ (x, y) ∨ � (x, y) is not a weak
semi-equation. Then there are b and an indiscernible sequence (ai)i∈Z

such that
(ai)i �=0 is b-indiscernible, and |= ϕ (ai , b) ∨ � (ai , b) ⇐⇒ i �= 0. Either |= ϕ (a1, b)
or |= � (a1, b), and then, by b-indiscernibility, either |= ϕ (ai , b) for all i �= 0 or
|= � (ai , b) for all i �= 0. In the first case, ϕ (x, y) is not a weak semi-equation, and
in the second case, � (x, y) is not a weak semi-equation. 	

Remark 2.4. (1) To see that neither property is closed under negation, note
that x = y is a semi-equation (hence also a weak semi-equation), but x �= y
is not a weak semi-equation in the theory of infinite sets.

(2) To see that semi-equations need not be closed under disjunction, note that in
a linear order, x < y and y < x are both semi-equations, but their disjunction
is equivalent to x �= y, which is not.

Problem 2.5. Are weak semi-equations closed under exchanging the roles of the
variables, at least in NIP theories? Fact 6.4 can be viewed as establishing this for the
definition of distality; however, the proof is not sufficiently local with respect to a
formula witnessing failure of distality.

Proposition 2.6. Assume we are given languages L ⊆ L′, a complete L-theory T
and an L′-theory T ′ with T ⊆ T ′, and a formula ϕ(x, y) ∈ L.

(1) The formula ϕ(x, y) is a semi-equation in T if and only if it is in T ′.
(2) If ϕ (x, y) is a weak semi-equation in T, then it is a weak semi-equation in T ′.

Proof. (1) Left to right is immediate from the definition (Proposition 2.2). For
the converse, assume that in some model of T we can find an infinite sequence
(ai , bi)i∈I such that for all i, j ∈ I , |= ϕ (ai , bj) ⇐⇒ i �= j. By completeness of T,
we can find arbitrarily long finite sequences with the same property in every model
of T, in particular in some model of T ′. By compactness we can thus find an infinite
sequence with the same property in a model of T ′, demonstrating that ϕ(x, y) is
not a semi-equation in T ′.

(2) If ϕ (x, y) ∈ L is not a weak semi-equation in T ′, then (in a monster model
of T ′, and hence of T) there are b and an L′-indiscernible (ai)i∈IL+(0)+IR

such that
(ai)i∈IL+IR

isL′-indiscernible over b and |= ϕ (ai , b) for i ∈ IL + IR, but �|= ϕ (a0, b),
for infinite linear orders IL, IR. Then, in particular, (ai)i∈IL+(0)+IR

is L-indiscernible,
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and (ai)i∈IL+IR
is L-indiscernible over b, so ϕ (x, y) is a not a weak semi-equation

in T. 	
Remark 2.7. The converse to Proposition 2.6(2) does not hold. Let T ′ := DLO

be the theory of dense linear orders, and T its reduct to L := {=}. Then the
L-formula x �= y is not a weak semi-equation in T by inspection, but it is a weak
semi-equation in T ′ since it is equivalent to a disjunction of weak semi-equations
(x < y) ∨ (x > y) (Proposition 2.3).

Problem 2.8. Is weak semi-equationality of a theory preserved under reducts?
This appear to be open already for equationality (see [20, Question 3.10]), and fails
for semi-equationality (see Section 3.3).

Problem 2.9. Is (weak) semi-equationality of theories invariant under bi-
interpretability without parameters? Equivalently, if T is (weakly) semi-equational,
does it follow that so is T eq?

2.2. Relationship to equations and NIP. We provide some evidence that semi-
equationality can be naturally viewed as a generalization of equationality (in the
sense of Srour) in stable theories to the NIP context.

Proposition 2.10. (1) Weak semi-equations are NIP formulas; hence, weakly
semi-equational theories are NIP.

(2) Equations are semi-equations.
(3) A formula is an equation if and only if it is both stable and a semi-equation.
(4) In a stable theory, all weak semi-equations are equations. In particular, a stable

theory is equational if and only if it is (weakly) semi-equational.

Proof. (1) If ϕ (x, y) is not NIP, then there are an indiscernible sequence
(ai)i∈N

and b such that |= ϕ (ai , b) ⇐⇒ i is even. For any finite set of formulas
Δ (x1, ... , xn, y), by Ramsey’s theorem, there is an infinite I ⊆ 2N on which the truth
value of all formulas in Δ

(
ai1 , ... , ain , b

)
is constant for all i1 < ··· < in ∈ I . Thus,

by letting a′0 := ai for some sufficiently large odd i, we can find an indiscernible
sequence (a′i )i∈IL+(0)+IR

(using IL � IR = I , and a′i = ai for i ∈ I ) for some infinite
IR and arbitrarily large finite IL, such that (a′i )i∈IL+IR

is Δ-indiscernible over b. By
compactness, it follows that ϕ (x, y) is not a weak semi-equation.

(2) If ϕ (x, y) is not a semi-equation, then there is a sequence (ai , bi)i∈N
such that

|= ϕ (ai , bj) ⇐⇒ i �= j. In particular, |= ϕ (ai , bj) for all j < i , and �|= ϕ (ai , bi),
so this is a counterexample to the descending chain condition, and ϕ (x, y) is not
an equation.

(3) If ϕ (x, y) is not an equation, then by Ramsey and compactness there is
an indiscernible sequence (ai , bi)i∈N

such that |= ϕ (ai , bj) for all j < i , and �|=
ϕ (ai , bi). Ifϕ (ai , bj) holds for i < j thenϕ (x, y) is not a semi-equation. Otherwise,
ϕ (x, y) is not stable.

(4) If ϕ (x, y) is not an equation, by Ramsey and compactness we can choose
an indiscernible sequence (ai , bi)i∈Z

such that |= ϕ (ai , bj) for all j < i , and �|=
ϕ (ai , bi). The indiscernible sequence (ai , bi)i∈Z is totally indiscernible by stability
of T ; hence, we have |= ϕ(ai , b0) ⇐⇒ i �= 0, and also (ai : i �= 0) is indiscernible
over b0. This shows that ϕ (x, y) is not a weak semi-equation. 	
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6 ARTEM CHERNIKOV AND ALEX MENNEN

2.3. Weakly normal formulas, (k, n)-semi-equations, and breadth.

Definition 2.11 (see [32, Chapter 4, Definition 1.1]). A formula ϕ (x, y) is k-
weakly normal if for every b1, ... , bk ∈ My such that |= ∃x ϕ (x, b1) ∧ ··· ∧ ϕ (x, bk),
there are some i �= j ∈ [k] such that |= ∀x ϕ (x, bi) ↔ ϕ (x, bj). It is weakly normal
if it is k-weakly normal for some k (by compactness this is equivalent to: an infinite
collection of pairwise distinct instances of ϕ(x, y) must have empty intersection).

A formulaϕ(x, y) is normal in the sense of [31] if and only if it is 2-weakly normal.
Weakly normal formulas are special kinds of equations characterizing “linearity”
of forking in stable theories (see [32, Chapter 4, Proposition 1.5, Remark 1.8.4, and
Lemma 1.9]):

Fact 2.12. A stable theory T is 1-based if and only if in T, every formula ϕ(x, y) ∈
L, with x, y arbitrary finite tuples of variables, is equivalent to a Boolean combination
of finitely many weakly normal formulas �1(x, y), ... , �n(x, y) ∈ L.

We introduce some numeric parameters characterizing semi-equations, minimal
values of which give rise to a generalization of weak normality.

Definition 2.13. For k, n ∈ N, a formula ϕ (x, y) is a (k, n)-semi-equation
if, for every b1, ... , bk ∈ My , if |= ∃x ϕ (x, b1) ∧ ··· ∧ ϕ (x, bk), then for some
pairwise distinct i1, ... , in, j ∈ [k], |= ∀x

(
ϕ

(
x, bi1

)
∧ ··· ∧ ϕ (x, bin )

)
→ ϕ (x, bj).

And ϕ (x, y) is an n-semi-equation if it is a (k, n)-semi-equation for some k. A
theory T is n-semi-equational (respectively, (k, n)-semi-equational) if every formula
ϕ(x, y) ∈ L, with x, y arbitrary finite tuples of variables, is equivalent in T to
a Boolean combination of n-semi-equations (respectively, (k, n)-semi-equations)
�1(x, y), ... , �n(x, y) ∈ L.

Proposition 2.14. (1) If ϕ (x, y) is a (k, n)-semi-equation, then n < k, and
ϕ (x, y) is also an (�,m)-semi-equation for any � ≥ k andn ≤ m < �. Ifϕ (x, y)
is an n-semi-equation, then it is also an m-semi-equation for every m ≥ n.

(2) A formula is a semi-equation if and only if it is an n-semi-equation for some n,
if and only if it is an (n, n – 1)-semi-equation for some n.

Proof. (1) Clear from the definitions.
(2) If ϕ (x, y) is not a semi-equation, let (ai , bi)i∈N

be such that |= ϕ (ai , bj) ⇐⇒
i �= j. Then for any (k, n) we have |= ϕ (a0, b1) ∧ ··· ∧ ϕ (a0, bk), but for any pair-
wise distinct i1, ... , in, j ∈ [k], |= ϕ

(
aj, bi1

)
∧ ··· ∧ ϕ (aj, bin ) ∧ ¬ϕ (aj, bj); hence,

ϕ(x, y) is not a (k, n)-semi-equation. Conversely, for any k ∈ N, if ϕ (x, y) is not
a (k, k – 1)-semi-equation, then there exist b1, ... , bk such that for each j ∈ [k],
there is aj such that |= ϕ (aj, bi) for i �= j, but �|= ϕ (aj, bj). Hence if ϕ (x, y) is
not a (k, k – 1)-semi-equation for any k, then by compactness ϕ (x, y) is not a
semi-equation. And if ϕ (x, y) is not an n-semi-equation, then it is not an (n + 1, n)-
semi-equation by definition, so a formula that is not an n-semi-equation for any n is
also not a (k, k – 1)-semi-equation for any k. 	

We recall the notion of breadth from lattice theory.

Definition 2.15 [2, Section 2.4]. Given a set X and d ∈ N≥1, a family of subsets
F ⊆ P (X ) has breadth d if any nonempty intersection of finitely many sets in F is
the intersection of at most d of them, and d is minimal with this property.
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Proposition 2.16. A formula ϕ (x, y) is a (k + 1, k)-semi-equation if and only if
the family of sets Fϕ := {ϕ (M, b) | b ∈ My} has breadth at most k. In particular,
ϕ(x, y) is a semi-equation if and only if the family of sets Fϕ has finite breadth.

Proof. The family of sets {ϕ (M, b) | b ∈ My} has breadth at most k if and only
if every finite consistent conjunction of instances of ϕ is implied by the conjunction
of at most k of those instances. In particular this applies to consistent conjunctions of
(k + 1) instances ofϕ, showing that if the breadth ofFϕ is≤ k, then it is a (k + 1, k)-
semi-equation. Conversely, assume ϕ(x, y) is a (k + 1, k)-semi-equation. Given any
consistent conjunction of n > k instances of ϕ, any (k + 1) of them contain an
instance implied by the other k instances. Removing this implied instance, we reduce
to the case of a consistent conjunction of (n – 1) instances, and after (n – k) steps
to a conjunction of k instances of ϕ implying all the other ones. The “in particular”
part is Proposition 2.14(2). 	

Example 2.17. Let T be an NIP theory expanding a group, and let a formula
ϕ(x, y) be such that for every b ∈ My , ϕ(M, b) is a subgroup. Then, by Baldwin
and Saxl [4], there exists n ∈ � such that for all finite B ⊆ My , there is B0 ⊆ B with
|B0| ≤ n such that

⋂
b∈B0
ϕ (M, b) =

⋂
b∈B ϕ (M, b). So ϕ(x, y) is a semi-equation

by Proposition 2.16.

Remark 2.18. If ϕ(x, y) is stable with infinitely many distinct instances
ϕ(M, b), b ∈ My , then either ϕ(x, y) is not a semi-equation, or ¬ϕ(x, y) is not
a semi-equation (combining [2, Proposition 2.20] and Proposition 2.16).

The following suggests that 1-semi-equationality can be viewed as a generalization
of being 1-based from stable to the NIP context.

Proposition 2.19. A formula ϕ (x, y) is weakly normal if and only if it is stable
and a 1-semi-equation. Hence a stable theory is 1-based if and only if it is 1-semi-
equational.

Proof. Clearly every k-weakly normal formula is a (k, 1)-semi-equation and
is also an equation, hence stable. Conversely, suppose that ϕ (x, y) is a (k, 1)-
semi-equation and is stable, or just NSOP: there is some � ∈ � such that there
is no strictly increasing chain of sets of the form ϕ (M, b0) � ··· � ϕ (M, b�).
We will show that then ϕ(x, y) is k� -weakly normal. Let (b�)�∈[k]� be such that

|= ∃x
∧
�∈[k]� ϕ (x, b�). For 	 ∈ [k]≤� , we will show by induction on m := � – |	|

that there are pairwise distinct �0, ... , �m ∈ [k]� extending 	 (as sequences) such
that ϕ

(
M, b�0

)
⊆ ϕ

(
M, b�1

)
⊆ ··· ⊆ ϕ (M, b�m ). With m = �, so that 	 = 〈〉 is the

empty sequence, this implies by the choice of � that there are � �= �′ ∈ [k]� such that
ϕ (M, b�) = ϕ

(
M, b�′

)
, as desired. The base case (m = 0) is trivial, with �0 = 	.

Assume the claim holds for m, and let 	 ∈ [k]�–(m+1). For each i ∈ [k], there
exist pairwise distinct �i,0, ... , �i,m ∈ [k]� extending 	
i such that ϕ

(
M, b�i,0

)
⊆

··· ⊆ ϕ
(
M, b�i,m

)
. Among the sets

{
ϕ

(
M, b�i,0

)
| i ∈ [k]

}
, one must be contained

in another by (k, 1)-semi-equationality. Say ϕ
(
M, b�j,0

)
⊆ ϕ

(
M, b�i,0

)
for some

i �= j. Then ϕ
(
M, b�j,0

)
⊆ ϕ

(
M, b�i,0

)
⊆ ϕ

(
M, b�i,1

)
⊆ ··· ⊆ ϕ

(
M, b�i,m

)
, and
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8 ARTEM CHERNIKOV AND ALEX MENNEN

�j,0, �i,0, �i,1, ... , �i,m are pairwise distinct and extend 	, as desired. The “in
particular” part follows by Fact 2.12. 	

Remark 2.20. It is well known that the family of weakly normal formulas is
closed under conjunctions (but we could not find a direct reference). While semi-
equations are closed under conjunctions by Proposition 2.3(2), this is not the case for
the family of 1-semi-equations. Indeed, in a dense linear order, the formulas x < y1

and x > y2 are 1-semi-equations, but the formula ϕ(x; y1, y2) := y2 < x < y1 is not
a 1-semi-equation since we can have any number of intervals with a non-empty
intersection, so that none of them is contained in the other.

We observe a connection to another notion of “linearity” for NIP theories
considered in [5], where various combinatorial results are proved for relations that
are Boolean combinations of basic relations. The following is [5, Definition 2], in the
case of binary relations (using the equivalence in [5, Proposition 2.8 and Remark
2.9]).

Definition 2.21. A binary relation R ⊆ X × Y is basic if there exist a linear
order (S,<) and functions f : X → S, g : Y → S such that for any a ∈ X, b ∈ Y ,
(a, b) ∈ R ⇐⇒ f(a) < g(b).

Fact 2.22 [16, Claim 1 in the proof of Proposition 2.5]. Let X be a set and
F ⊆ P(X ) a family of subsets of X such that there are noA,B ∈ F satisfyingA ∩ B �=
∅, B \ A �= ∅ and B \ A �= ∅ simultaneously. Then there exists a linear order < on X
so that every A ∈ F is a <-convex subset of X.

Proposition 2.23. (1) Given a formula ϕ(x, y) ∈ L, if the relation Rϕ :=
{(a, b) ∈ Mx ×My :|= ϕ(a, b)} is basic, thenϕ(x, y) is a (2, 1)-semi-equation.

(2) If ϕ(x, y) is (2, 1)-semi-equation, thenRϕ = R1 ∩R2 for some (not necessarily
definable) basic relations R1, R2 ⊆ Mx ×My .

Proof. (1) Let (S,<), f, g be as in Definition 2.21 for Rϕ . Given any b1, b2 ∈
My , the sets {x ∈ S : x < g(bi)} for i ∈ {1, 2} are initial segments of S. Say
g(b1) ≤ g(b2). Then for any a ∈ Mx ,f(a) < g(b1) ⇒ f(a) < g(b2), soϕ(M, b1) ⊆
ϕ(M, b2), and the other case is symmetric.

(2) Ifϕ(x, y) is a (2, 1)-semi-equation, then the familyFϕ of subsets ofMx satisfies
the assumption in Fact 2.22. Hence there exists a (not necessarily definable) linear
ordering <′ of Mx so that for every b ∈ My , ϕ(M, b) is <′-convex. Let (S,<) be
the Dedekind completion of (Mx,<′). Consider the functions g1, g2 : My → S so
that g1(b) is the infimum of ϕ(M, b) in S, and g2(b) is the supremum of ϕ(M, b) in
S. Then Rϕ = {(a, b) ∈ Mx ×My : g1(b) ≤ a} ∩ {(a, b) ∈ Mx ×My : a ≤ g2(b)},
and both of these relations are basic (see [5, Remark 2.7]). 	

Remark 2.24. (1) In view of Proposition 2.23(2), if ϕ(x, y) is a Boolean
combination of (2, 1)-semi-equations, then by [5, Theorem 2.17 and Remark 2.20]
the relation Rϕ satisfies an almost linear Zarankiewicz bound. In particular, no
infinite field can be defined in a (2, 1)-semi-equational theory (see [5, Corollary
5.11] or [42, Proposition 6.3] for a detailed explanation).

(2) If ϕ(x, y) is a (2, 1)-semi-equation, then Rϕ need not be basic. Indeed, the
family of cosets of a subgroup is (2, 1)-semi-equational. If it was basic, then its
complement is also basic, hence (2, 1)-semi-equational by the lemma above. But if
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the index of the subgroup is ≥ 3, the family of complements of cosets is clearly not
(2, 1)-semi-equational.

Problem 2.25. If ϕ(x, y) is a (k, 1)-semi-equation for k ≥ 3, is it still a Boolean
combination of basic relations?

Problem 2.26. Show that no infinite field is definable in a 1-semi-equational
theory.

Problem 2.27. Is every 1-semi-equational theory rosy? (Note that dense trees are
not 1-semi-equational by Theorem 3.13.)

§3. Examples of semi-equational theories.

3.1. O-minimal structures. All o-minimal theories (and more generally, ordered
dp-minimal theories) are distal (see [36]); hence, they are weakly semi-equational by
Remark 4.4. Semi-equationality appears more subtle. An o-minimal structure M is
linear if it has the CF property in the sense of [23], i.e., if every interpretable normal
family of curves is of dimension at most 1. This is a weakening of local modularity of
the pregeometry induced by the algebraic closure, and by the o-minimal trichotomy
[30] it is equivalent to no infinite field being definable in M. We will only need the
following fact about linear o-minimal structures from [23]:

Fact 3.1. LetT = Th(M), withM = (M ;<,+, ...) a linear o-minimal expansion
of a group. Let L = (<,+, ...) be the language of T. A partial endomorphism of M
is a map f : (– c, c) →M , for c an element of M or ∞, such that if a, b, a + b are
all in the domain, then f(a + b) = f(a) + f(b). Let M′ be the reduct of M to
the language L′ consisting of +, <, constant symbols naming aclL(∅), and for each
L(∅)-definable partial endomorphism f : (– c, c) →M with c ∈ aclL(∅) or c = ∞, a
unary function symbol interpreted as f on (– c, c) and as 0 outside of the domain of f.
Let T ′ := ThL′(M′).

(1) [23, Proposition 4.2] A subset of Mn is ∅-definable in M if and only if it is
∅-definable in M′.

(2) [23, Corollary 6.3] T ′ admits quantifier elimination in the language L′.

Proposition 3.2. Let T = Th(M), with M = (M ;<, ...) an o-minimal structure.
(1) If T is an expansion of an ordered group and linear, then T is (2, 1)-semi-

equational.
(2) Conversely, if T is (2, 1)-semi-equational, then T is linear.

Proof. (1) Let L = (<,+, ...), M′ and L′ be as in Fact 3.1. By Fact 3.1(1)
it suffices to show that T ′ := ThL′ (M′) is (2, 1)-semi-equational. By Fact 3.1(2),
it then suffices to show that every atomic L′-formula ϕ(x, y), with x, y arbitrary
finite tuples of variables, is equivalent in T ′ to a Boolean combination of (2, 1)-
semi-equations. By the proof of Theorem 4.3 in [1], every atomic L′-formula
ϕ(x, y) is equivalent in T ′ to a Boolean combination of atomic formulas of
the form f(x)�g(y) + c, where � ∈ {<,=, >}, f :M |x| →M,g :M |y| →M are
total multivariate L′(∅)-definable homomorphisms and c ∈ dclL′(∅). Every formula
of this form clearly defines a basic relation onM |x| ×M |y|, hence is a (2, 1)-semi-
equation by Proposition 2.23(1).

https://doi.org/10.1017/jsl.2023.28 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.28


10 ARTEM CHERNIKOV AND ALEX MENNEN

(2) By the o-minimal trichotomy theorem (see [30] and Remark 2 after the
statement of Theorem 1.7 there), if M is not linear, then it defines an infinite
field. But then Remark 2.24(1) implies that T is not (2, 1)-semi-equational. 	

Problem 3.3. Is every o-minimal 1-semi-equational structure linear? A positive
answer would follow from a positive answer to Problem 2.26.

Problem 3.4. Which o-minimal theories are semi-equational? In particular, is
Th(R,+,×) semi-equational?

3.2. Colored linear orders. Given a linearly ordered set (S,<), a binary relation
R ⊆ S2 is monotone if (x, y) ∈ R, x′ ≤ x, and y ≤ y′ implies (x′, y′) ∈ R.

Fact 3.5. Let M =
(
M,<, (Ci)i∈I , (Rj)j∈J

)
be a linear order expanded by

arbitrary unary (Ci) and monotone binary (Rj) relations. Then Th (M) is (2, 1)-
semi-equational.

Proof. Let M′ be an expansion of M obtained by naming all LM(∅)-definable
unary and monotone binary relations, then a subset ofMn is ∅-definable in M if and
only if it is ∅-definable in M′, so it suffices to show thatT ′ := Th (M′) is (2, 1)-semi-
equational. By [35, Proposition 4.1],T ′ eliminates quantifiers. Note that ifR(x, y) is
monotone, then it is a (2, 1)-semi-equation (given any b1 ≤ b2 ∈M , for any a ∈M
we have |= R(a, b1) → R(a, b2) by monotonicity; hence,R(M,b1) ⊆ R(M,b2)). And
any unary relation Ci(x) is trivially a (2, 1)-semi-equation; hence, T ′ is (2, 1)-semi-
equational. 	

3.3. Cyclic orders. A cyclic order �(x, y, z) (see, e.g., [6, Section 5] or [41]) is
dense if its underlying set is infinite and for every distinct a, b, there is c such that
� (a, b, c), and d such that � (d, b, a). The theory T� of dense cyclic orders is
complete and has quantifier elimination (see, e.g., [7, Proposition 3.7]).

Proposition 3.6. (1) The theory T� is not semi-equational.
(2) The theory T� expanded with one constant symbol c is (2, 1)-semi-equational.

Proof. (1) We show that �(x1, x2; y) := � (x1, x2; y) is not a Boolean combi-
nation of semi-equations. By quantifier elimination, the formulas � (x1, x2; y) and
� (x2, x1; y) each isolate a complete 3-type (over ∅). Any Boolean combination of
formulas that is equivalent to � (x1, x2; y) must contain some formula ϕ (x1, x2; y)
that is implied by � (x1, x2; y) and is inconsistent with � (x2, x1; y), or vice
versa. Assume the former. Let (ci)i∈Z

be such that |= � (ck, ci , cj) for i < j < k.
Let a1,i = c2i , a2,i = c2i+2, and bi = c2i+1. Then |= � (a2,i , a1,i ; bj) ⇔ i = j and
|= � (a1,i , a2,i ; bj) ⇔ i �= j, so |= ϕ (a1,i , a2,i ; bj) ⇔ i �= j, so ϕ (x1, x2; y) is not a
semi-equation. If instead, ϕ (x1, x2; y) is implied by � (x2, x1; y) and inconsistent
with � (x1, x2; y), we switch the roles of x1 and x2 to get the same result.

(2) Let < be defined by x < y ⇔ � (x, y, c). Then < is a dense linear order
on the complement of {c}, so x < y is a (2, 1)-semi-equation. We have that
� (x, y, z) is equivalent to x < y < z ∨ y < z < x ∨ z < x < y ∨ (z = c ∧ x < y) ∨
(y = c ∧ z < x) ∨ (x = c ∧ y < z). Hence � (x, y, z) is a Boolean combination of
(2, 1)-semi-equations (with c as a parameter), under any partition of the variables.
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By quantifier elimination, it follows that every formula is a Boolean combination of
(2, 1)-semi-equations (using c as a parameter). 	

This example shows that a theory being semi-equational, or 1-semi-equational, is
not preserved under forgetting constants (naming constants clearly preserves k-semi-
equationality). This is in contrast to equationality [20, Proposition 3.5] and distality
[36, Corollary 2.9], which are invariant under naming or forgetting constants. This
is also an example of a distal, non-semi-equational theory.

Problem 3.7. Is weak semi-equationality of theories preserved by forgetting
constants?

3.4. Ordered abelian groups. We consider ordered abelian groups, as structures in
the language LCH introduced in [13]. Given an ordered abelian group (G,+, <) and
prime p, for a ∈ G \ pG we letGp(a) be the largest convex subgroup of G such that
a /∈ Gp(a) + pG , and for a ∈ pG let Gp(a) := {0}. Let Sp := {Gp(a) : a ∈ G}.
Then the LCH-structure Ḡ corresponding to G consists of the main sort G for G, an
auxiliary sort Sp for each p, along with countably many further auxiliary sorts and
relations between them. A relative quantifier elimination result is obtained for such
structures in [13], to which we refer for the details (see also [3, Section 3.2] for a
quick summary).

Proposition 3.8. Every ordered abelian group (either as a pure ordered abelian
group, or the corresponding structure Ḡ) with finite auxiliary sorts Sp for all prime p is
1-semi-equational (this includes Presburger arithmetic, and any ordered abelian group
with a strongly dependent theory by [12, 14, 15, 17]).

Proof. Since every auxiliary sort is finite and linearly ordered by a (definable)
relation in LCH, all auxiliary sorts are contained in dcl(∅). Hence we only need
to verify that every formula ϕ(x, y) with x, y tuples of the main sort G is a
Boolean combination of 1-semi-equations in the expansion with every element of
every auxiliary sort named by a new constant symbol (countably many in total).
As explained in [3, Proposition 3.14], it then follows from the relative quantifier
elimination that ϕ(x, y) is equivalent to a Boolean combination of atomic formulas
of the form �α(f(x)) �α �α(g(y)) + kα , where � ∈ {=, <,≡m}, k ∈ Z, α is an
element of an auxiliary sort, f, g are Z-linear functions on G,Gα is a corresponding
convex subgroup of G, �α : G → G/Gα is the quotient map, 1α is the minimal
positive element of G/Gα if it is discrete or 0 ∈ G/Gα otherwise, and kα = k · 1α in
G/Gα , and for g, h ∈ G/Gα we have g ≡m h if g – h ∈ m (G/Gα) (note that these
relations on G are expressible in the pure language of ordered abelian groups).

It is straightforward from Definition 2.13 that if ϕ(x, y) is a (k, n)-semi-
equation and f(x), g(y) are ∅-definable functions, then the formula �(x, y) :=
ϕ(f(x), g(y)) is also a (k, n)-semi-equation. Using this (in an expansion of Ḡ
naming �α , and the ordered group structure on G/Gα together with the constants
for kα), we only have to show that the relations x = y, x < y, x ∈ y +m (G/Gα) on
G/Gα are (2, 1)-semi-equations, which is straightforward. 	

Problem 3.9. Is every ordered abelian group 1-semi-equational, or at least
(weakly) semi-equational?
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3.5. Trees. In this section we use “∧” to denote “meet,” and “&” to denote
conjunction. By a tree we mean a meet-semilattice (M,∧) with an associated partial
order ≤ (defined by x ≤ y ⇐⇒ x ∧ y = x) so that all of its initial segments are
linear orders. An infinitely branching dense tree is a tree whose initial segments are
dense linear orders and such that for each element x, there are infinitely many
elements any two of which have meet x.

Fact 3.10 (see, e.g., [7, Lemma 3.14] or [27, Section 1]). The theory of infinitely
branching dense trees is complete and eliminates quantifiers in the language {∧}.

Lemma 3.11. In any tree M = (M,∧) with no additional structure, if every formula
of the form ϕ (x; y1, y2) with x, y1, y2 singletons is a Boolean combination of semi-
equations, then every formula is a Boolean combination of semi-equations.

Proof. By [35, Corollary 4.6] (using that x ≤ y ⇐⇒ x ∧ y = x), in any tree
M = (M,∧) we have: two tuples ā = (ai : i ∈ [n]), b̄ = (bj : j ∈ [n]) ∈Mn have
the same type if and only if (ai , aj, ak) and (bi , bj , bk) have the same type for every

i, j, k ∈ [n]. Hence for any ā, b̄, tp
(
āb̄

)
is implied by the set of formulas satisfied by

three-element subtuples of āb̄. So if every partitioned formula with three total free

variables is a Boolean combination of semi-equations, then tp
(
āb̄

)
is implied by

a Boolean combination of semi-equations. In view of this, it is sufficient to assume
that every formula of the form ϕ (x; y1, y2) is a Boolean combination of semi-
equations, because then by symmetry, every formula of the form ϕ (x1, x2; y) is as
well, and every partitioned formula with one of the parts empty (i.e., ϕ (; y1, y2, y3)
or ϕ (x1, x2, x3; )) is automatically a semi-equation. 	

Theorem 3.12. The theory of infinitely branching dense trees is semi-equational.

Proof. Let M = (M,∧) be an infinitely branching dense tree. By Lemma 3.11, it
is enough to check that every formulaϕ (x; y1, y2) is a Boolean combination of semi-
equations, and, by Fact 3.10, it is enough to check this for positive atomic formulas
ϕ (x; y1, y2). Using the fact that ∧ is associative, commutative, and idempotent,
each such formula is equivalent to a formula of the form

∧
A =

∧
B for non-empty

A,B ⊆ {x, y1, y2}. By a direct case analysis (see [7, Theorem 3.16] for the details)
every such formula is either a tautology, or does not mention x, or an equality
between two variables, or is equivalent to a Boolean combination of the following
formulas (possibly replacing y2 by y1):

(1) x = x ∧ y1, i.e., x ≤ y1—a semi-equation: given (ai , bi)i∈Z
such that |= ai ≤

bj ⇐⇒ i �= j, ai ≤ b0 for i �= 0, so (ai)i �=0 forms a chain. This is not consistent
with a1 ≤ b2, a2 ≤ b1, a1 �≤ b1, a2 �≤ b2.

(2) x ∧ y1 ∧ y2 = y1 ∧ y2, i.e., x ≥ y1 ∧ y2—a semi-equation for the same reason.
(3) x ∧ y1 = x ∧ y2—a negated semi-equation: given (ai , bi , b′i )i∈Z

such that |=
ai ∧ bj = ai ∧ b′j ⇐⇒ i = j, for every i �= 0 we have: either ai ∧ b0 > a0 ∧ b0 or
ai ∧ b′0 > a0 ∧ b0. By pigeonhole, there are i1 �= i2 such that the same case holds for
both. Without loss of generality, a1 ∧ b0 > a0 ∧ b0 and a2 ∧ b0 > a0 ∧ b0. But then
a1 ∧ a2 > a0 ∧ b0 = a0 ∧ a1, so a1 and a2 meet strictly closer to each other than
to a0. But, since a1 ∧ b1 ≤ a0 ∧ b1 and a1 ∧ b1 ≤ a2 ∧ b1, it must also be true that
a0 ∧ a2 ≥ a1 ∧ b1 = a1 ∧ a0, so a0 and a2 meet at least as closely to each other as to
a1. These are inconsistent.
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(4) x ∧ y1 = x ∧ y1 ∧ y2 (i.e., x ∧ y1 ≤ y2)—a negated semi-equation: given
(ai , bi , b′i )i∈Z

such that |= ai ∧ bj ≤ b′j ⇐⇒ i = j, in particular a0 ∧ b0 ≤ b′0 and
ai ∧ b0 �≤ b′0 for i �= 0. Since the initial segment below b0 is totally ordered, it
follows that a0 ∧ b0 < ai ∧ b0 for i �= 0. a1 ∧ a2 ≥ (a1 ∧ b0) ∧ (a2 ∧ b0) > a0 ∧ b0 =
a0 ∧ a1. That is, a1 and a2 meet strictly closer together with each other than with a0.
But, by switching the roles of the indices 0 and 2 in that argument, a0 and a1 must
meet strictly closer together with each other than with a2 as well, a contradiction. 	

Theorem 3.13. In an infinitely branching dense tree M = (M,∧), the formula
x < y is not a Boolean combination of 1-semi-equations (without parameters).

Proof. By quantifier elimination, there are four complete 2-types over ∅
axiomatized by {x = y, x > y, x < y, x ⊥ y}, where ⊥ denotes incomparable
elements. Thus, up to equivalence, there are only 16 formulas ϕ (x, y) with x, y
singletons without parameters. By a direct case analysis (see [7, Theorem 3.17] for
the details) the only 1-semi-equations among them are x �= x, x = x, x = y, x > y,
x ≥ y. None of them separate x < y from x ⊥ y, so any Boolean combination of
1-semi-equations implied by x < y must also be implied by x ⊥ y, so x < y is not
equivalent to a Boolean combination of 1-semi-equations. 	

Corollary 3.14. In any expansion of an infinitely branching dense tree M =
(M,∧) by naming constants, the formula x < y is not a Boolean combination of
1-semi-equations.

Proof. Suppose x < y is equivalent to a Boolean combination of 1-semi-
equations with parameters c = (c1, ... , cn). Say x < y ⇐⇒ Φ(ϕ1(x, y, c), ... , ϕk
(x, y, c)), where Φ is a Boolean formula in k variables, andϕ1 (x, y, c) , ... , ϕk (x, y, c)
are 1-semi-equations. Let d be an element such that d ⊥

∧
i≤n ci . For each i, let

�i (x, y) be the formula ∃z
(

tp(z) = tp (c) &
(
x ∧ y ⊥

∧
i≤n zi

)
&ϕi (x, y, z)

)
. As

tp (c) is isolated by quantifier elimination, this is indeed a first-order formula.
For a, b > d , if |= ϕi (a, b, c), then |= �i (a, b). By quantifier elimination and
[35, Lemma 4.4], the converse also holds. Thus, for a, b > d , |= a < b ⇐⇒
|= Φ (ϕ1 (a, b, c) , ... , ϕk (a, b, c)) ⇐⇒ |= Φ (�1 (a, b) , ... , �k (a, b)). Since all
singletons have the same type, it follows that this holds for all a, b. It thus remains
to show that each �i (x, y) is a 1-semi-equation, contradicting Theorem 3.13. If
this were not the case for some i ≤ k, then there would be (bj)j∈N

and a such
that |= �i (a, bj) for all j ∈ N, but such that for every j �= � ∈ N, there is aj,� such
that |= �i (aj,� , bj) but �|= �i (aj,� , b�). But, again because all singletons have the
same type, and every finite set of elements has a lower bound, it is consistent that
furthermore all of these elements are above d. But then this would also provide a
counterexample to ϕi (x, y) being a 1-semi-equation. 	

Remark 3.15. Since x > y is a (2, 1)-semi-equation and x < y is not, this
shows that being an (n, k)-semi-equation for fixed n, k (or even being a Boolean
combination of them) is not preserved under exchanging the roles of the variables
(while being a semi-equation is preserved).

Remark 3.16. Note also that every tree admits an expansion in which x < y is
a Boolean combination of (2, 1)-semi-equations. In a tree, let ≤lex be a linear order
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refining ≤ such that for a, b, b′ such that a ⊥ b and b ∧ b′ > b ∧ a, a ≤lex b ⇐⇒
a ≤lex b

′. Then let ≤revlex be given by x ≤revlex y : ⇐⇒ x ≤ y ∨ (x ⊥ y&y ≤lex x).
Then ≤revlex satisfies the same conditions as ≤lex (so both are (2, 1)-semi-equations
as both are linear orders), and x ≤ y ⇐⇒ x ≤lex y&x ≤revlex y.

Problem 3.17. Is every theory of trees semi-equational? Is every theory of trees
(expanded by constants) not 1-semi-equational?

§4. Weak semi-equations and strong honest definitions. In this section we
discuss how (weak) semi-equationality naturally generalizes both distality and
equationality.

Definition 4.1. Given a formula ϕ (x, y) ∈ L and a type p, we denote by p+
ϕ :=

{ϕ (x, b) : ϕ (x, b) ∈ p} the positive ϕ-part of the type p.

Given small sets A,B,C ⊆ M, let A |
u

C
B denote that tp (A/BC ) is finitely

satisfiable in C. We recall the following characterization of equations from [24,
Lemma 2.4], which in turn is a variant of [38, Theorem 2.5]. Note that Fact 4.2(3) is
equivalent to [24, Lemma 2.4(3)] since in stable theories non-forking is symmetric
and equivalent to finite satisfiability over models. Existence of k in Fact 4.2(2) is not
stated explicitly in [24, Lemma 2.4(2)], but is immediate from the proof.

Fact 4.2. Given a formulaϕ (x, y) in a stable theory T, the following are equivalent:

(1) ϕ (x, y) is an equation (equivalently, ϕ∗(y, x) := ϕ(x, y) is an equation).
(2) There is some k ∈ N such that for any a ∈ Mx and small B ⊆ My , there is a

subset B0 of B of size at most k such that tp+
ϕ (a/B0) � tp+

ϕ (a/B).

On the other hand, we recall one of the standard characterizations of distality
(see, e.g., [3, Corollary 1.11]), which we use as a definition here:

Definition 4.3. A theory is distal if and only if every formula ϕ (x, y) is
distal, that is, for any IL and IR infinite linear orders, b ∈ My and indiscernible
sequence (ai)i∈IL+(0)+IR

with ai ∈ Mx such that (ai)i∈IL+IR
is indiscernible over b,

|= ϕ (a0, b) ⇐⇒ |= ϕ (ai , b) for i ∈ IL + IR.

There is a straightforward relationship between weak semi-equationality and
distality:

Remark 4.4. A formulaϕ (x, y) is distal if and only if bothϕ (x, y) and¬ϕ (x, y)
are weak semi-equations. In particular, every distal theory is weakly semi-equational.

Problem 4.5. Is there an NIP theory without a (weakly) semi-equational
expansion? We note that while the theory ACFp for p > 0 is known not to have
a distal expansion [11], it is equational, and hence semi-equational.

An NIP theory is distal if and only if every formula admits a strong honest
definition:

Fact 4.6 [10, Theorem 21]. A theory T is distal if and only if for every formula
ϕ(x, y) there is a formula � (x; y1, ... , yk), called a strong honest definition forϕ (x, y),
such that for any finite set C ⊆ My (|C | ≥ 2) and a ∈ Mx , there is b ∈ Ck such that
|= � (a; b) and � (x; b) � tpϕ (a/C ).
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We now show that in an NIP theory, weak semi-equationality is equivalent to the
existence of one-sided strong honest definitions, which is also a generalization of
Fact 4.2 (replacing a conjunction of finitely many instances of ϕ by some formula
�). We will need the following (p, k)-theorem of Matoušek from combinatorics:

Fact 4.7 [26]. Let F be a family of subsets of some set X. Assume that the VC co-
dimension of F is bounded by k. Then for every p ≥ k ∈ N, there is N ∈ N such that:
for every finite subfamily G ⊆ F , if G has the (p, k)-property, meaning that among any
p subsets of G some k intersect, then there is a subset of X of size N intersecting all
sets in G.

Theorem 4.8. Let T be NIP, and let ϕ (x, y) be a formula. The following are
equivalent:

(1) The formula ϕ∗ (y, x) := ϕ(x, y) is a weak semi-equation.
(2) For every small B ⊆ My and a ∈ Mx with |= ϕ(a, b) for all b ∈ B there

are �(x; y1, ... , yk), c ∈ (My)k such that c |
u

B
a, |= �(a, c) and �(x, c) �

tp+
ϕ (a/B).

(3) There is some formula � (x; y1, ... , yk) and number N such that for any finite
set B ⊆ My with |B | ≥ 2 and a ∈ Mx , there is some B0 ⊆ B with |B0| ≤ N
such that tp+

� (a/B0) � tp+
ϕ (a/B).

Proof. (1) implies (2). We follow closely the proof of [10, Proposition 19].
Assume that a, B are such that |= ϕ(a, b) for all b ∈ B . Let M � M contain a, B ,
and let (M′, B ′) � (M, B) be a κ := |M | +-saturated elementary extension (with
B named by a new predicate). We may assume M′ ≺ M is a small submodel. Take
p(x) := tp (a/B ′).

Claim 4.9. Assume that q (y) ∈ Sy (B ′) is a type finitely satisfiable in B. Then
p (x) ∪ q (y) � ϕ (x, y).

Proof. Let q̂ ∈ Sy(M) be an arbitrary global type extending q and finitely
satisfiable in B, and form the Morley product q̂(�)(y1, y2, ...) :=

⊗
i∈N
q(yi) ∈

S(y1,y2,...)(M), also finitely satisfiable in B. For any set C ⊆ M, we let q|C := q̂ �C
(respectively, q(�)|C := q̂(�) �C ) be the restriction of q̂ (respectively, of q̂(�)) to
formulas with parameters in C. As T is NIP, by [10, Lemma 5] there is some D
with B ⊆ D ⊆ B ′, |D| < κ such that for any two realizations I, I ′ ⊆ B ′ of q(�)|D we
have aI ≡D aI ′. Fix some I |= q(�)|D in B ′ (exists by saturation of (M′, B ′) and
finite satisfiability of q(�)|M in B) and J |= q(�)|M (in some larger monster model
M′ � M).

We claim that I + J is indiscernible over aB . Indeed, as q(�)|M is finitely satisfiable
in B, by compactness and saturation of (M′, B ′) there is some J ′ |= q(�)|aDI in B ′.
If I + J is not aB-indiscernible, then I ′ + J ′ is not aB-indiscernible for some finite
subsequence I ′ of I. As by construction both I ′ + J ′ and J ′ realize q(�)|D in B ′, it
follows by the choice of D that J ′ is not indiscernible over aB—contradicting the
choice of J ′.

Now let b∗ ∈ M be any realization of q, then the sequence I + (b∗) + J is Morley
in q|M over B, hence indiscernible (even over B). And I + J is indiscernible over
a (even over aB) by the previous paragraph. Note also that |= ϕ(a, b) for every
b ∈ B ′ (by assumption we had |= ϕ(a, b) for all b ∈ B , but a ∈ M and (M′, B ′) �
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(M, B)). Hence |= ϕ(a, b) for every b ∈ I + J . And since ϕ∗(y, x) is a weak semi-
equation, this implies |= ϕ(a, b∗). That is, for any a |= p and b∗ |= q, we have
|= ϕ(a, b∗), as wanted. 	

Now let S ′ be the set of types over B ′ finitely satisfiable in B, then S ′ is a
closed subset of Sy(B ′). By the claim, for every q ∈ S ′ we have p(x) ∪ q(y) �
ϕ(x, y); hence, by compactness �q(x) ∪ �q(y) � ϕ(x, y) for some formulas �q(X ) ∈
p,�q(y) ∈ q. As {�q(y) : q ∈ S ′} is a covering of the closed set S ′, it has a finite
sub-covering

{
�qk : k ∈ K

}
. Let �(x) :=

∧
k∈K �qk (x) ∈ p(x). As in particular

tp(b/B) ∈ S ′ for every b ∈ B , we thus have �(x) ∈ L(B ′) (and B ′ |
u

B
a), |= �(a)

and �(x) � tp+
ϕ (a/B).

(2) implies (3). Let a, B be given. We either have that |= ¬ϕ(a, b) holds for all
b ∈ B , in which case tp+

� (a/B0) = tp+
ϕ (a/B) = ∅, and ∅ � ∅ trivially. Or we replace

B by {b ∈ B : |= ϕ(a, b)}, and follow the proof of (1) implies (2) in [10, Theorem
21].

We provide the details. By (2), given small B ⊆ My and a ∈ Mx such that |=
ϕ (a, b) for all b ∈ B , there exist � (x; y1, ... , y�) and c ∈ (My)� such that c |

u

B
a,

|= � (a, c), and � (x, c) � tp+
ϕ (a/B). Then given any finite B0 ⊆ B , there is d ∈

B� such that tpϕ(d/aB0) = tpϕ(c/aB0), so in particular |= � (a, d ) and � (x, d ) �
tp+
ϕ (a/B0).
Now fix an arbitrary function f : L → N and let n� := f (� (x; y1, ... , y�)) for

every partitioned formula � ∈ L with x the same as before and � arbitrary. Let
Tf be a theory in the language L ∪ {P(x), a} with P a new unary predicate
and a a new constant symbol, so that Tf expands T with the following axioms:
∀x ∈ P ϕ (a, x) and, for every formula � (x; y1, ... , y�) ∈ L, an axiom ∃b1, ... , bn� ∈
P ∀c ∈ P� (¬� (a, c)) ∨ ∃x

(
� (x, c) ∧

∨
i≤n� ¬ϕ (a, bi)

)
. By the previous para-

graph, the theory Tf is inconsistent. By compactness, there is a finite inconsistent
subset of Tf only requiring finitely many of these formulas �1, ... , �k .

Thus there are finitely many formulas �1
(
x; y1, ... , y�1

)
, ... , �k

(
x; y1, ... , y�k

)
∈ L

such that: given B ⊆ My and a ∈ Mx such that |= ϕ (a, b) for all b ∈ B , there is
i ≤ k such that for all B0 ⊆ B with |B0| ≤ n�i , there is c ∈ B�i such that |= �i (a; c)
and �i (x; c) � tp+

ϕ (a/B0).
For each formula � (x; y1, ... , y�) ∈ L, let �� (x, y; z) := � (x; z) ∧ ∀w � (w; z) →

ϕ (w, y), and n� := VC (��) + 1 in the above argument (where VC is the VC-
dimension), and let �1, ... , �k be as given by the previous paragraph for this choice
of the n� ’s. Then for an arbitrary a ∈ Mx and finiteB ⊆ My such that |= ϕ (a; b) for
b ∈ B , there is ia,B ≤ k such that: for allB0 ⊆ B with |B0| ≤ n�ia,B , there is c ∈ B�ia,B
with |= �ia,B (a; c) and �ia,B (x; c) � tp+

ϕ (a/B0). For b ∈ B , consider the set

F ba,B :=
{
c ∈ B�ia,B : |= �ia,B (a; c) , �ia,B (x; c) � ϕ (x; b)

}
.

Note that F ba,B =
{
c ∈ B�ia,B : |= ��ia,B (a, b; c)

}
, and let Fa,B :=

{
F ba,B : b ∈ B

}
. By

Fact 4.7 applied toFa,B , withp = k = n�ia,B , there isNia,B (depending on ia,B but not

otherwise depending on a, B) such that if every n�ia,B sets from Fa,B intersect, then

there is B0 ⊆ B�ia,B with |B0| ≤ Nia,B intersecting all sets from Fa,B . Furthermore,
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by choice of ia,B , the condition that every n�ia,B sets from Fa,B intersect holds. And
there are only k many possible values of ia,B , so we let N := max1≤i≤k Ni .

We thus foundN ∈ N such that: for all a ∈ Mx and finiteB ⊆ My with |= ϕ (a; b)
for all b ∈ B , there is ia,B ≤ k and B1 ⊆ B�ia,B with |B1| ≤ N intersecting all sets
from Fa,B , meaning that for every b ∈ B there is c ∈ B1 such that |= �ia,B (a; c) and
�ia,B (x; c) � ϕ (x; b). That is, tp+

�ia,B
(a/B1) � tp+

ϕ (a/B).

Finally, let � (x; y1, ... , y�) be a formula that can code for any �i
(
x; y1, ... , y�i

)
when parameters range over a set with at least two elements. For all a ∈ Mx and
finite B ⊆ My with |B | ≥ 2, for which |= ϕ (a; b) for all b ∈ B , there is B0 ⊆ B with
2 ≤ |B0| ≤ �N + 2 (consisting of the coordinates ofB1 from the previous paragraph,
and two points for coding) such that tp+

� (a/B0) � tp+
ϕ (a/B), as desired.

(3) implies (1). This follows almost verbatim from the proof of (2) implies (1)
in [10, Theorem 21]. Let I + d + J be an indiscernible sequence in My , with I
and J infinite, and I + J indiscernible over a ∈ Mx , and suppose |= ϕ (a, b) for
b ∈ I + J . Let I1 ⊂ I with |I1| = N + 1. Then there is some I0 ⊆ I1 such that |I0| ≤
N and tp+

� (a/I0) � tp+
ϕ (a/I1). Let b ∈ I1 \ I0. By indiscernibility of I + d + J ,

there is some 	 ∈ Aut (M) such that 	 (I1) ⊂ I + d + J and 	 (b) = d . We have
	 (I0) ⊆ I + J , so by a-indiscernibility of I + J , |= � (a, 	 (c)) for every c ∈ I k0
for which |= � (a, c), and hence a |= 	

(
tp+
ϕ (a/I1)

)
. And ϕ (x, b) ∈ tp+

ϕ (a/I1), so
ϕ (x, d ) ∈ 	

(
tp+
ϕ (a/I1)

)
, and hence |= ϕ (a, d ). 	

Problem 4.10. Can the assumption that T is NIP be omitted? (Note that the
proof of (3) implies (1) does not use it.)

Proposition 2.16 immediately implies an analog of Fact 4.2 for semi-equations,
telling us that ϕ (x; y) is a one-sided strong honest definition for itself:

Corollary 4.11. A formula ϕ (x, y) (equivalently, ϕ∗(y, x)) is a semi-equation if
and only if there is some k ∈ N such that: for every finite B ⊂ My and a ∈ Mx there
is some B0 ⊆ B with |B0| ≤ k such that tp+

ϕ (a/B0) � tp+
ϕ (a/B).

§5. Non weakly semi-equational valued fields. In this section we demonstrate that
many valued fields are not weakly semi-equational. By an ac-valued field field we
mean a three-sorted structure (K, k,Γ, �, ac) in the Denef-Pas language, where K
is a field, � : K → Γ is a valuation, with (ordered) value group Γ and residue field
k, and ac : K → k is the angular component map. As usual, O = O� denotes the
valuation ring of �, and for x ∈ O, x̄ denotes the residue of x in k. The following is
the main theorem of the section:

Theorem 5.1. Let K be an ac-valued field for which the residue field k contains a
non-constant totally indiscernible sequence ( for instance, if k is infinite and stable), and
which eliminates quantifiers of the main field sort ( for example, a Henselian ac-valued
field of equicharacteristic 0 with an algebraically closed residue field ). Then K is not
weakly semi-equational.

Before presenting its proof, we need to develop some auxiliary results. First
we provide a general sufficient criterion for when a formula is not a Boolean
combination of weak semi-equations in Section 5.1. Then we discuss valuational
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independence in Section 5.2. In Section 5.3 we describe a particular configuration of
elements in a valued field indented to satisfy this sufficient criterion with respect to
the formula�(x1, x2; y1, y2) := � (x1 – y1) < � (x2 – y2), and reduce demonstrating
that it has all of the required properties to Claims 5.7 and 5.8 which express a
certain amount of indiscernibility of our configuration. We also explain how both
claims can be proved by induction on the complexity of the formula and reduce to
several essential cases that have to be considered; and show in Claim 5.9 valuational
independence of some elements of our configuration which will be helpful in the
proof of the claims. We then prove Claim 5.7 in Section 5.4 and Claim 5.8 in Section
5.5, concluding the proof of Theorem 5.1. Finally, in Section 5.6 we discuss some
further applications of Theorem 5.1 and examples.

5.1. Boolean combinations of weak semi-equations. We provide a sufficient
criterion for when a formula is not a Boolean combination of weak semi-equations
(analogous to a criterion for equations from [28]).

Lemma 5.2. If ϕ (x, y) and � (x, y) are weak semi-equations, then there are no
b ∈ My and array (ai,j)i,j∈Z

with ai,j ∈ Mx such that:

• Every row (i.e., (ai,j : j ∈ Z) for a fixed i ∈ Z) and every column (i.e., (ai,j : i ∈
Z) for a fixed j ∈ Z) is indiscernible (over ∅).

• Rows and columns without their 0-indexed elements (i.e.,
(
ai,j

)
j �=0 for fixed i,

and
(
ai,j

)
i �=0 for fixed j) are b-indiscernible.

• |= ϕ
(
ai,j , b

)
∧ ¬�

(
ai,j , b

)
⇐⇒ i = 0 ∨ j �= 0.

Proof. Assume there exist an array (ai,j : i, j ∈ Z) and b with these properties.
For any fixed i �= 0, we have |= ϕ (ai,j , b) for all j �= 0, (ai,j)j∈Z

is indiscernible, and
(ai,j)j �=0 is b-indiscernible, so, by weak semi-equationality of ϕ, |= ϕ (ai,0, b). But �|=
ϕ (ai,0, b) ∧ ¬� (ai,0, b), so |= � (ai,0, b). Now the sequence (ai,0)i∈Z

is indiscernible,
(ai,0)i �=0 is b-indiscernible, and |= �(ai,0, b) for all i �= 0, so, by weak semi-
equationality of �, |= � (a0,0, b)—contradicting |= ϕ (a0,0, b) ∧ ¬� (a0,0, b). 	

Lemma 5.3. Ifϕ (x, y) is a Boolean combination of weak semi-equations, then there
are no b ∈ My and array (ai,j)i,j∈Z

with ai,j ∈ Mx such that:

• Rows and columns of
(
ai,j

)
i,j∈Z are indiscernible.

• Rows and columns without their 0-indexed elements (i.e.,
(
ai,j

)
j �=0 for fixed i,

and
(
ai,j

)
i �=0 for fixed j) are b-indiscernible.

• |= ϕ
(
ai,j , b

)
⇐⇒ i = 0 ∨ j �= 0.

• All ai,j with i = 0 or j �= 0 have the same type over b.

Proof. Any conjunction of finitely many weak semi-equations and negations
of weak semi-equations is of the form � (x, y) ∧ ¬� (x, y) for some weak
semi-equations � (x, y) and � (x, y), because weak semi-equations are closed
under conjunction and under disjunction (Proposition 2.3(3)), so negations
of weak semi-equations are also closed under conjunction. Thus any Boolean
combination of weak semi-equations is equivalent, via its disjunctive normal
form, to

∨
k∈I (�k (x, y) ∧ ¬�k (x, y)) for some finite index set I and weak semi-

equations �k (x, y) and �k (x, y) for k ∈ I . Given b and (ai,j)i.j∈Z
as above, since
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i = 0 ∨ j �= 0 ⇐⇒ |= ϕ (ai,j , b) ⇐⇒ |=
∨
k∈I (�k (ai,j , b) ∧ ¬�k (ai,j , b)), and all

ai,j with i = 0 or j �= 0 have the same type over b, there is some k such that
|= �k (ai,j , b) ∧ ¬�k (ai,j , b) ⇐⇒ i = 0 ∨ j �= 0, contradicting Lemma 5.2. 	

5.2. Valuational independence.

Definition 5.4. Let K be a field with valuation �.

(1) We say that a1, ... , an ∈ K are valuationally independent if, for every
polynomial f (x1, ... , xn) =

∑
i cix

α1,i
1 ... x

αn,i
n (where i runs over some finite

index set, ci , α1,i , ... , αn,i ∈ Z, and (α1,i , ... , αn,i) �= (α1,j , ... , αn,j) for i �= j)
we have

� (f (a1, ... , an)) = min
i
�

(
cia
α1,i
1 ... a

αn,i
n

)
.

That is, if the valuation of every polynomial applied to a1, ... , an is the
minimum of the valuations of its monomials (including their coefficients).

(2) An infinite set is valuationally independent if every finite subset is.

Example 5.5. (1) A set of elements with valuation 0 is valuationally independent
if and only if their residues are algebraically independent.

(2) In a valued field of pure characteristic, every set of elements whose valuations
are Z-linearly independent is valuationally independent. In mixed characteristic
(0, p), every set of elements whose valuations, together with � (p), are Z-linearly
independent, is valuationally independent. In an ac-valued field, this is the only way
for a set of elements with angular component 1 to be valuationally independent.

5.3. Reducing the proof of Theorem 5.1 to two claims. We will show that the
partitioned formula �(x1, x2; y1, y2) := � (x1 – y1) < � (x2 – y2) is not a Boolean
combination of weak semi-equations.

Without loss of generality we may assume that K is a monster model. By Lemma

5.3, it suffices to find b, b′ and (ai)i∈Z
,
(
a′j

)
j∈Z

in K such that the sequences (ai)i∈Z

and
(
a′j

)
j∈Z

are mutually indiscernible (so that rows and columns of the array(
aia

′
j

)
i,j∈Z

are indiscernible), (ai)i �=0 is indiscernible over bb′
(
a′j

)
j∈Z

,
(
a′j

)
j �=0

is indiscernible over bb′ (ai)i∈Z
(so that the rows and the columns of the array(

aia
′
j

)
i,j∈Z

with their 0-indexed elements removed are indiscernible over bb′), |=

� (ai – b) < �
(
a′j – b′

)
⇐⇒ i �= 0 ∨ j = 0, and all pairs

(
ai , a

′
j

)
with i �= 0 or

j = 0 have the same type over bb′.
To find these elements, first let 0 < �0 < �1 < �2 < �3 < �4 < �5 < �6 ∈ Γ be an

increasing indiscernible sequence of positive elements of the value group (exists by
Ramsey and saturation).

Claim 5.6. The elements �0, �1, �2, �3, �4, �5 are Z-linearly independent (in Γ viewed
as a Z-module). If K has mixed characteristic (0, p), then � (p) , �0, �1, �2, �3, �4, �5 are
Z-linearly independent.
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Proof. If n0�0 + ··· + n5�5 = 0 with n0, ... , n5 ∈ Z not all 0, let i ≤ 5 be maximal
such that ni �= 0. Now n0�0 + ··· + ni�i = 0, and ni �= 0. By indiscernibility of
the sequence (�1, ... , �6), n0�0 + ··· + ni–1�i–1 + ni�6 = 0, but then ni (�i – �6) = 0,
contradicting that ni �= 0, �i �= �6, and Γ is ordered and thus torsion-free. In mixed
characteristic, the same argument can be repeated starting from n0�0 + ··· + n5�5 =
m� (p) with n0, ... , n5, m ∈ Z. 	

Next let a∞, a′∞ ∈ K be such that � (a∞) = �0, � (a′∞) = �1, and ac (a∞) =

ac (a′∞) = 1. Let (ãi)i∈Z
+

(
b̃
)

and
(
ã′j

)
j∈Z

+
(
b̃′

)
be arbitrary mutually totally

indiscernible sequences in the residue field k. Such sequences exist by assumption
on k and saturation, e.g., splitting a totally indiscernible sequence into two disjoint

subsequences. We define ai := a∞ + α lift (ãi) and a′j := a′∞ + � lift
(
ã′j

)
for i, j ∈

Z, for some α, � ∈ K with � (α) = �2, � (�) = �3, and ac (α) = ac (�) = 1. Here
lift (x) is some arbitrary element of O such that lift (x) = x. Let b, b′ be such that
� (a0 – b) = �4, �

(
a′0 – b′

)
= �5, ac (a0 – b) = b̃ – ã0, and ac

(
a′0 – b′

)
= b̃′ – ã′0. All

of these elements are fixed for the rest of the section.
It is clear that |= � (ai – b) < �

(
a′j – b′

)
⇐⇒ i �= 0 ∨ j = 0, because

� (a0 – b) = �4, � (ai – b) = �2 for i �= 0, �
(
a′0 – b′

)
= �5, and �

(
a′j – b′

)
= �3

for j �= 0.
We will prove the following two claims. Given a sequence (xi)i∈I and J ⊆ I , we

will write xJ to denote the subsequence (xi : i ∈ J ).

Claim 5.7. (1) Let ϕ
(
x; z;w; b′, a′J

)
be a formula with parameters b′ and a′J

for some J ⊆ Z, tuples of variables x of sort K, z of sort k, and w of sort Γ∞.
Let I1, I2 be tuples of distinct indices from Z, with |I1| = |I2| = |x|. Let 	 ∈ Aut (k)
be such that 	

(
ãI1

)
= ãI2 (preserving the ordering of the tuples), 	

(
ã′J

)
= ã′J , and

	
(
b̃′

)
= b̃′. Then for any tuples c ∈ kz, d ∈ Γw∞ we have |= ϕ

(
aI1 ; c; d ; b′; a′J

)
⇐⇒

|= ϕ
(
aI2 ; 	 (c) ; d ; b′; a′J

)
.

(2) Likewise, let ϕ (y; z;w; b, aI ) be a formula with parameters b and aI for some
I ⊆ Z, tuples of variables y of sort K, z of sort k, and w of sort Γ∞. Let J1, J2 be
tuples of distinct indices from Z, with |J1| = |J2| = |y|, and let 	 ∈ Aut (k) be such

that 	
(
ã′J1

)
= ã′J2 , 	 (ãI ) = ãI , and 	

(
b̃
)

= b̃. Then for any tuples c ∈ kz, d ∈ Γw∞
we have

|= ϕ
(
a′J1 ; c; d ; b; aI

)
⇐⇒ |= ϕ

(
a′J2 ; 	 (c) ; d ; b; aI

)
.

Claim 5.8. Let ϕ (x; y; z;w; b; b′) be a formula with parameters b, b′, where
x and y are single variables of sort K, and z and w are tuples of variables of
sort k and Γ∞, respectively. Let 	i ∈ Aut (k) be such that 	i (ãi) = b̃, 	i (ã0) =

ã0, 	i
(
ã′0

)
= ã′0, and 	i

(
b̃′

)
= b̃′. Let 	′j ∈ Aut (k) be such that 	′j

(
b̃′

)
= ã′j ,

	′j
(
ã′0

)
= ã′0, 	′j (ãi) = ãi , and 	′j

(
b̃
)

= b̃. Let � ∈ Aut (Γ∞) be such that � (�2) =

�4, � (�0) = �0, � (�1) = �1, and � (�5) = �5, and let � ∈ Aut (Γ∞) be such that
� (�5) = �3, � (�0) = �0, � (�1) = �1, and � (�2) = �2. Then, for i, j �= 0, c ∈ kz ,
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and d ∈ Γw∞, |= ϕ
(
a0; a′0; 	i (c) ; � (d ) ; b; b′

)
⇐⇒ |= ϕ

(
ai ; a′0; c; d ; b; b′

)
⇐⇒ |=

ϕ
(
ai ; a′j ; 	

′
j (c) ; � (d ) ; b; b′

)
.

Assuming these two claims, from the |z| = |w| = 0 case of Claim 5.7, we get that

(ai)i∈Z
is totally indiscernible over b′

(
a′j

)
j∈Z

, and
(
a′j

)
j∈Z

is totally indiscernible

over b (ai)i∈Z
. In particular (ai)i∈Z

and
(
a′j

)
j∈Z

are mutually totally indiscernible.

In describing (ai)i∈Z
,
(
a′j

)
j∈Z

, b, b′, we have made exactly the same assumptions

about a0 as about b, and the same assumptions about a′0 as about b′, in the
sense that if we replace a0 with b or replace a′0 with b′, the resulting elements

(ai)i∈Z
,
(
a′j

)
j∈Z

, b, b′ could have come from the same construction. Thus, as Claim

5.7 implies that (ai)i �=0 is totally indiscernible over a0b
′
(
a′j

)
j∈Z

, and
(
a′j

)
j �=0

is

totally indiscernible over a′0b (ai)i∈Z
, it must also be the case that (ai)i �=0 is totally

indiscernible over bb′
(
a′j

)
j∈Z

, and
(
a′j

)
j �=0

is totally indiscernible over b′b (ai)i∈Z
.

From the |z| = |w| = 0 case of Claim 5.8, we get that

tp
(
ai , a

′
j/b, b

′) = tp (ai , a′0/b, b
′) = tp (a0, a

′
0/b, b

′)

for i, j �= 0; hence, all
(
ai , a

′
j

)
with i �= 0 or j = 0 have the same type over bb′.

Thus these two claims establish the conditions needed for Lemma 5.3 to imply
that � (x1 – y1) < � (x2 – y2) is not a Boolean combination of weak semi-equations.

Both claims will be proved by induction on the parse tree of the formula ϕ
(without parameters). There are five cases that must be considered:

Case 1. The formula ϕ is of the form t1 ≤ t2, where t1, t2 are terms of
sort Γ∞. Such terms are N-linear combinations of variables of sort Γ∞ and
valuations of polynomials in variables of sort K ; i.e., of the form n · x +m ·
� (f (y)), where x =

(
x1, ... , x�1

)
is a tuple of variables of sort Γ∞, y is a

tuple of variables of sort K, f is a tuple of polynomials
(
f1(y), ... , f�2 (y)

)
,

n =
(
n1, ... , n�1

)
∈ N|x|, m =

(
m1, ... , m�2

)
∈ N|f|, �

(
f(y)) is an abbreviation for

the tuple
(
�

(
f1(y)) , ... , �

(
f�(y))

)
, and “·” is the dot product.

Case 2. ϕ is of the form t1 =k t2, where t1, t2 are terms of sort k. Terms of sort k
are polynomials applied to variables of sort k and angular components of terms of
sort K ; i.e., of the form f (x, ac (g (y))), where f is a polynomial, g = (g1, ... , g�)
is a tuple of polynomials, x is a tuple of variables of sort k, y is a tuple of variables
of sort K, and ac

(
g(y)) is an abbreviation for the tuple

(
ac(g1(y)), ... , ac(g�(y))).

Since t1 =k t2 if and only if t1 – t2 =k 0, every formula of this form is equivalent to
a formula of the form f (x, ac (g (y))) =k 0.

Case 3. ϕ is a Boolean combination of formulas for which the claim holds.

Case 4. ϕ is of the form ∃u �, with u a variable of sort k, and the claim holds
for �.

Case 5. ϕ is of the form ∃u �, with u a variable of sort Γ∞, and the claim holds
for �.
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There are four more cases for how ϕ could be constructed, but they follow from
the previous five cases: ϕ is of the form t1 =Γ t2, where t1, t2 are terms of sort
Γ∞—this is equivalent to t1 ≤ t2 ∧ t2 ≤ t1, and is thus redundant with Cases 1 and
3; ϕ is of the form t1 =K t2, where t1, t2 are terms of sort K—this is equivalent to
� (t1 – t2) = � (0), and is thus redundant with Cases 1 and 3; ϕ is of the form ∀u �,
where u is a variable of sort k or Γ∞—this is redundant with Cases 3–5; ϕ is of the
form ∃u �, or ∀u �, where u is a variable of sort K—this case can be neglected by
quantifier elimination, since we can always pick a formula equivalent to ϕ which
has no quantifiers of sort K.

The following auxiliary result will be used in the proof of the claims.

Claim 5.9. The elements a∞, a
′
∞, (α lift (ãi))i∈Z

,
(
� lift

(
ã′j

))
j∈Z

, b – a0,

b′ – a′0 are valuationally independent.

Proof. Define a valuation �∗ : Z [u, v, x, y, z, w] → Γ∞ (with |u| = |v| = |z| =
|w| = 1, |x| , |y| arbitrary), by, for monomials (which in case of mixed characteristic
is taken to include its coefficient),

�∗
(
n · ur∞xr11 ... x

r|x|
|x| v

s∞y
s1
1 ... y

s|y|
|y| z

t1wt2
)

:= � (n) + r∞�0 + s∞�1 +
(
r1 + ··· + r|x|

)
�2 +

(
s1 + ··· + s|y|

)
�3 + t1�4 + t2�5,

and the valuation of a polynomial is the minimum of the valuations of its monomials.
That way, for any I, J ⊆ Z with |I | = |x| and |J | = |y| we have

�∗ (f (u, v, x, y, z, w)) = � (f (a∞, a′∞, α · lift (ãI ) , � · lift (ã′J ) , b – a0, b
′ – a′0))

when f is a monomial (where α · lift(ãI ) :=
(
α lift(ãi))i∈I ), and we need to prove

that this holds for all polynomials f. Given a polynomial f (u, v, x, y, z, w),

�∗ (f) = � (n) +m0�0 +m1�1 +m2�2 +m3�3 +m4�4 +m5�5

for some n,m0, m1, m2, m3, m4, m5 ∈ N (with � (n) , m0, m1, m2, m3, m4, m5 unique
by Claim 5.6). Let f̃ (u, v, x, y, z, w) be the sum of monomials in f of the same
valuation as f, so that every monomial appearing in f̃ (u, v, x, y, z, w) has degreem0

in u, degreem1 in v, total degreem2 in x, total degreem3 in y, degreem4 in z, degree

m5 in w, and has leading coefficient with valuation � (n), and �∗
(
f – f̃

)
> �∗ (f).

Thus

f̃ (u, v, x, y, z, w)
n · um0vm1zm4wm5

is a non-zero polynomial in x, y, all coefficients having valuation 0, so it reduces
under the residue map to a nonzero polynomial inx, y. Since the set of elements in the
tuples ãI , ã′J is algebraically independent (they come from an infinite indiscernible
sequence), it follows that

f̃
(
u, v, ãI , ã

′
J , z, w

)
n · um0vm1zm4wm5

�= 0,
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and thus a lift of it,

f̃
(
u, v, lift (ãI ) , lift

(
ã′J

)
, z, w

)
n · um0vm1zm4wm5

,

has valuation 0. Thus

�
(
f̃

(
a∞, a′∞, lift (ãI ) , lift

(
ã′J

)
, b – a0, b

′ – a′0
))

= � (n) +m0�0 +m1�1 +m4�4 +m5�5

and, by homogeneity of f̃,

�
(
f̃ (a∞, a′∞, α · lift (ãI ) , � · lift (ã′J ) , b – a0, b

′ – a′0)
)

= � (n) +m0�0 +m1�1 +m2�2 +m3�3 +m4�4 +m5�5 = �∗ (f) .

We have

�
((
f – f̃

) (
a∞, a′∞, α · lift (ãI ) , � · lift

(
ã′J

)
, b – a0, b

′ – a′0
))

≥ �∗
(
f – f̃

)
> �∗ (f)

(the first inequality holds by the ultrametric property, combined with the fact that
it holds for monomials), so it follows that

� (f (a∞, a′∞, α · lift (ãI ) , � · lift (ã′J ) , b – a0, b
′ – a′0)) = �∗ (f) . 	

We are ready to prove the two claims.

5.4. Proof of Claim 5.7. Let ϕ
(
x; z;w; b′; a′J

)
with x =

(
x1, ... , x|x|

)
and

I1, I2, 	, c, d be as in the statement of the claim, and we analyze the five cases
described above. We will assume without loss of generality that j1 = 0, where
J = (j1, ... , j|J |) (since if 0 appears somewhere else in J, J may be re-ordered, and if
0 does not appear in J, it may be added). The proof for the part regarding a formula

ϕ (y; z;w; b; aI ) is identical, switching the roles of (ai)i∈Z
and

(
a′j

)
j∈Z

, replacing

b′ with b′, and replacing �5 with �4.

Case 1. ϕ
(
x; z;w; b′; a′J

)
is of the form n1 · w +m1 · �

(
g

(
x, b′, a′J

))
≤ n2 · w +

m2 · �
(
h

(
x, b′, a′J

))
.

It is enough to show that for any polynomial f (x, q, y) (with |x| = |I1| , |y| =
|J | , |q| = 1), we have �

(
f

(
aI1 , b

′, a′J
))

= �
(
f

(
aI2 , b

′, a′J
))

, because then

m1 · �
(
g

(
aI1 , b

′, a′J
))

= m1 · �
(
g

(
aI2 , b

′, a′J
))

and

m2 · �
(
h

(
aI1 , b

′, a′J
))

= m2 · �
(
h

(
aI2 , b

′, a′J
))
, so

|= n1 · d +m1 · �
(
g

(
aI1 , b

′, a′J
))

≤ n2 · d +m2 · �
(
h

(
aI1 , b

′, a′J
))

⇐⇒
|= n1 · d +m1 · �

(
g

(
aI2 , b

′, a′J
))

≤ n2 · d +m2 · �
(
h

(
aI2 , b

′, a′J
))
.

Given a polynomial f(x, q, y), let

f∗ (u, v, x, y, q) := f
(
x1 + u, ... , x|x| + u, q + y1 + v, y1 + v, ... , y|y| + v

)
,

with |u| = |v| = |q| = 1, |x| = |I1|, |y| = |J |, so that

f∗ (
a∞, a

′
∞, α · lift

(
ãIi

)
, � · lift (ã′J ) , b′ – a′0

)
= f

(
aIi , b

′, a′J
)
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for i ∈ {1, 2} (using that ai = a∞ + α · lift (ãi) and a′j = a′∞ + � · lift
(
ã′j

)
and

j1 = 0).

Since �

(
n · ar∞∞

(
α lift

(
ãi1

))r1 ... (α lift
(
ãi|x|

))r|x|
(a′∞)

s∞ ·

·
(
� lift

(
ã′j1

))s1
...

(
� lift

(
ã′j|y|

))s|y|
(b′ – a′0)

t

)

= � (n) + r∞�0 + s∞�1 +
(
r1 + ··· + r|x|

)
�2 +

(
s1 + ··· + s|y|

)
�3 + t�5,

regardless of i1, ... , i|x|, if we let

n · ur∞vs∞xr11 ... x
r|x|
|x| y

s1
1 ... y

s|y|
|y| q

t

be a monomial in f∗ (u, v, x, y, q) minimizing

� (n) + r∞�0 + s∞�1 +
(
r1 + ··· + r|x|

)
�2 +

(
s1 + ··· + s|y|

)
�3 + t�5,

then by Claim 5.9,

�
(
f

(
aIi , b

′, a′J
))

= �
(
f∗ (
a∞, a

′
∞, α · lift

(
ãIi

)
, � · lift (ã′J ) , b′ – a′0

))
= � (n) + r∞�0 + s∞�1 +

(
r1 + ··· + r|x|

)
�2 +

(
s1 + ··· + s|y|

)
�3 + t�5

for i ∈ {1, 2}.

Case 2. ϕ
(
x; z;w; b′; a′J

)
is of the form f

(
z, ac

(
g

(
x, b, a′J

)))
=k 0.

It is enough to show that f(	(c), ac(g(aI2 , b
′, a′J ))) = 	(f(c, ac(g(aI1 , b

′,
a′J )))), for which it is in turn enough to show that ac(g(aI2 , b

′, a′J )) =

	(ac(g(aI1 , b
′, a′J ))). Since ai = a∞ + α · lift (ãi) and a′j = a′∞ + � · lift

(
ã′j

)
, there

is a polynomial h (u, v, x, y, q) (with |u| = |v| = |q| = 1, |x| = |I1|, |y| = |J |) such
that

h
(
a∞, a

′
∞, α · lift

(
ãIi

)
, � · lift (ã′J ) , b′ – a′0

)
= g

(
aIi , b

′, a′J
)

for i ∈ {1, 2}. As in the proof of Case 1, there are n,m0, m1, m2, m3, m5 ∈ N such
that

�
(
h

(
a∞, a

′
∞, α · lift

(
ãIi

)
, � · lift (ã′J ) , b′ – a′0

))
= � (n) +m0�0 +m1�1 +m2�2 +m3�3 +m5�5

for i ∈ {1, 2}. Let h̃ (u, v, x, y, q) be the sum of monomials in h with degreem0 in u,
degree m1 in v, total degree m2 in x, total degree m3 in y, degree m5 in q, and whose
coefficient has valuation � (n). That way

�
(
h̃

(
a∞, a

′
∞, α · lift

(
ãIi

)
, � · lift (ã′J ) , b′ – a′0

))
= � (n) +m0�0 +m1�1 +m2�2 +m3�3 +m5�5, and

�
((
h – h̃

) (
a∞, a

′
∞, α · lift

(
ãIi

)
, � · lift (ã′J ) , b′ – a′0

))
> � (n) +m0�0 +m1�1 +m2�2 +m3�3 +m5�5.
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Then h∗ (x, y) := h̃(u,v,x,y,q)
n·um0vm1qm5 is a non-zero polynomial in x, y, all coefficients having

valuation 0, so it reduces under the residue map to a nonzero polynomial in x, y.
Since ãIi , ã

′
J are algebraically independent (by indiscernibility), it follows that

h∗
(
ãIi , ã

′
J

)
�= 0, so h∗

(
lift

(
ãIi

)
, lift

(
ã′J

))
has valuation 0, and hence its angular

component is its residue, h∗
(
ãIi , ã

′
J

)
. We have

h∗
(
ãI2 , ã

′
J

)
= h∗

(
	

(
ãI1

)
, 	

(
ã′J

))
= 	

(
h∗

(
ãI1 , ã

′
J

))
, thus

ac
(
h̃

(
a∞, a′∞, α · lift

(
ãI2

)
, � · lift

(
ã′J

)
, b′ – a′0

))

= ac
(
n · am0∞ (a′∞)m1 αm2�m3

(
b′ – a′0

)m5
)

ac

(
h̃

(
a∞, a′∞, lift

(
ãI2

)
, lift

(
ã′J

)
, b′ – a′0

)
n · am0∞ (a′∞)m1

(
b′ – a′0

)m5

)

= ac (n)
(
ã′0 – b̃′

)m5
h∗

(
ãI2 , ã

′
J

)
= ac (n)

(
ã′0 – b̃′

)m5
	

(
h∗

(
ãI1 , ã

′
J

))
= 	

(
ac (n)

(
ã′0 – b̃′

)m5
h∗

(
ãI1 , ã

′
J

))

= 	

(
ac

(
n · am0∞ (a′∞)m1 αm2�m3

(
b′ – a′0

)m5
)
·

· ac

(
h̃

(
a∞, a′∞, lift

(
ãI1

)
, lift

(
ã′J

)
, b′ – a′0

)
n · am0∞ (a′∞)m1

(
b′ – a′0

)m5

))

= 	
(

ac
(
h̃

(
a∞, a′∞, α · lift

(
ãI1

)
, � · lift

(
ã′J

)
, b′ – a′0

)))
.

Since �
((
h – h̃

) (
a∞, a

′
∞, α · lift

(
ãIi

)
, � · lift (ã′J ) , b′ – a′0

))
> �

(
h

(
a∞, a

′
∞, α · lift

(
ãIi

)
, � · lift (ã′J ) , b′ – a′0

))
,

we have ac
(
g

(
aIi , b

′, a′J
))

= ac
(
h

(
a∞, a

′
∞, α · lift

(
ãIi

)
, � · lift (ã′J ) , b′ – a′0

))
= ac

(
h̃

(
a∞, a

′
∞, α · lift

(
ãIi

)
, � · lift (ã′J ) , b′ – a′0

))
; hence

ac
(
g

(
aI2 , b

′, a′J
))

= ac
(
h̃

(
a∞, a

′
∞, α · lift

(
ãI2

)
, � · lift (ã′J ) , b – a′0

))
= 	

(
ac

(
h̃

(
a∞, a

′
∞, α · lift

(
ãI1

)
, � · lift (ã′J ) , b′ – a′0

)))
= 	

(
ac

(
g

(
aI1 , b

′, a′J
)))
.

Case 3. Clear.

Case 4. ϕ
(
x; z;w; b′; a′J

)
is of the form ∃u �

(
x; z, u;w; b′; a′J

)
, where u is a

variable of sort k, and the claim holds for �. If |= ϕ
(
aI1 ; c; d ; b′; a′J

)
, then |=

�
(
aI1 ; c, e; d ; b′; a′J

)
for some e ∈ k. Then we have |= �

(
aI2 ; 	 (c) , 	 (e) ; d ; b′; a′J

)
,

so |= ϕ
(
aI2 ; 	 (c) ; d ; b′; a′J

)
.

Case 5. ϕ
(
x; z;w; b′; a′J

)
is of the form ∃u �

(
x; z;w, u; b′; a′J

)
, where u is a

variable of sort Γ∞, and the claim holds for �. If |= ϕ
(
aI1 ; c; d ; b′; a′J

)
, then |=

�
(
aI1 ; c; d, e; b′; a′J

)
for some e ∈ Γ∞. Then we have |= �

(
aI2 ; 	 (c) ; d, e; b′; a′J

)
,

so |= ϕ
(
aI2 ; 	 (c) ; d ; b′; a′J

)
. This concludes the proof of Claim 5.7.

5.5. Proof of Claim 5.8. Let ϕ (x; y; z;w; b; b′) , 	i , 	′j , �, � be as in the claim.

Case 1. ϕ (x; y; z;w; b; b′) is of the form n1 · w +m1 · � (g (x, y, b, b′)) ≤
n2 · w +m2 · � (h (x, y, b, b′)). It is enough to show that for any polynomial
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f (x, y, u, u′),

�–1 (� (f (a0, a
′
0, b, b

′))) = � (f (ai , a′0, b, b
′)) = �–1 (

�
(
f

(
ai , a

′
j , b, b

′)))
for i, j �= 0, because then

n1 · � (d ) +m1 · � (g (a0, a
′
0, b, b

′)) = � (n1 · d +m1 · � (g (ai , a′0, b, b
′))) and

n1 · � (d ) +m1 · �
(
g

(
ai , a

′
j , b, b

′)) = � (n1 · d +m1 · � (g (ai , a′0, b, b
′)))

for i, j �= 0, and likewise for n2,m2, h, and, as � and � preserve order, this implies

|= ϕ (a0; a′0; 	i (c) ; � (d ) ; b; b′) ⇐⇒ |= ϕ (ai ; a′0; c; d ; b; b′)

⇐⇒ |= ϕ
(
ai ; a′j ; 	

′
j (c) ; � (d ) ; b; b′

)
.

To show this, letf∗ (x, y, u, v) := f (x + u, y + v, u, v). By Claim 5.6 and the choice
of these elements, for i, j ∈ Z, the valuations ofai – b,a′j – b′, b, and b′ areZ-linearly
independent (together with � (p) if the characteristic is mixed), and hence these are
valuationally independent. Let nxe1ye2ue3ve4 be the monomial in f∗ (x, y, u, v)
minimizing � (n) + e1�2 + e2�5 + e3�0 + e4�1, so that by valuational independence,

� (f∗ (ai – b, a′0 – b′, b, b′)) = � (n) + e1�2 + e2�5 + e3�0 + e4�1.

This monomial is unique by linear independence (Claim 5.6). Since � and � preserve
order, this monomial also minimizes

� (� (n) + e1�2 + e2�5 + e3�0 + e4�1) = � (n) + e1�4 + e2�5 + e3�0 + e4�1
= � (f∗ (a0 – b, a′0 – b′, b, b′)) , and

� (� (n) + e1�2 + e2�5 + e3�0 + e4�1) = � (n) + e1�2 + e2�3 + e3�0 + e4�1

= �
(
f∗ (
ai – b, a′j – b′, b, b′

))
for i, j �= 0.

Case 2. ϕ (x; y; z;w; b; b′) is of the form f (z, ac (g (x, y, b, b′))) =k 0.
It is enough to show that

	i (f (c, ac (g (ai , a′0, b, b
′)))) = f (	i (c) , ac (g (a0, a

′
0, b, b

′))) and

	′j (f (c, ac (g (ai , a′0, b, b
′)))) = f

(
	′j (c) , ac

(
g

(
ai , a

′
j , b, b

′))) ,
for which it is in turn enough to show that

	i (ac (g (ai , a′0, b, b
′))) = ac (g (a0, a

′
0, b, b

′)) and

	′j (ac (g (ai , a′0, b, b
′))) = ac

(
g

(
ai , a

′
j , b, b

′)) .
Let h (x, y, u, v) := g (x + u, y + v, u, v). Let nxm1ym2um3vm4 be the (unique, by

Claim 5.6) monomial in h (x, y, u, v) minimizing � (n) +m1�2 +m2�5 +m3�0 +
m4�1, so that by valuational independence, �

(
h

(
ai – b, a′0 – b′, b, b′

))
= � (n) +

m1�2 +m2�5 +m3�0 +m4�1. Since � and � preserve order, this monomial also
minimizes � (n) +m1�4 +m2�5 +m3�0 +m4�1 and � (n) +m1�2 +m2�3 +m3�0 +
m4�1.
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For i �= 0, ac
(
n (ai – b)m1 (a′0 – b′)

m2 bm3 (b′)
m4

)
= ac (n) (ac (α) (ãi – ã0))m1

(
b̃′ – ã′0

)m2
ac (a∞)m3 ac (a′∞)

m4

= ac (n) (ãi – ã0)m1
(
b̃′ – ã′0

)m2
.

Similarly, ac
(
n (a0 – b)m1 (a′0 – b′)

m2 bm3 (b′)
m4

)
= ac (n)

(
b̃ – ã0

)m1
(
b̃′ – ã′0

)m2
ac (a∞)m3 ac (a′∞)

m4

= ac (n)
(
b̃ – ã0

)m1
(
b̃′ – ã′0

)m2
= 	i

(
ac (n) (ãi – ã0)m1

(
b̃′ – ã′0

)m2
)
.

And for i, j �= 0 we have ac
(
n (ai – b)m1

(
a′j – b′

)m2 bm3 (b′)
m4

)
= ac (n) (ac (α) (ãi – ã0))m1

(
ac (�)

(
ã′j – ã′0

))m2 ac (a∞)m3 ac (a′∞)
m4

= ac (n) (ãi – ã0)m1
(
ã′j – ã′0

)m2 = 	′j
(

ac (n) (ãi – ã0)m1
(
b̃′ – ã′0

)m2
)
.

Since �
(
h (ai – b, a′0 – b′, b, b′) – n (ai – b)m1 (a′0 – b′)

m2 bm3 (b′)
m4

)
> � (h (ai – b, a′0 – b′, b, b′)) , we have

ac (h (ai – b, a′0 – b′, b, b′)) = ac
(
n (ai – b)m1 (a′0 – b′)

m2 bm3 (b′)
m4

)
= ac (n) (ãi – ã0)m1

(
b̃′ – ã′0

)m2
.

Likewise, �
(
h (a0 – b, a′0 – b′, b, b′) – n (a0 – b)m1 (a′0 – b′)

m2 bm3 (b′)
m4

)
> � (h (a0 – b, a′0 – b′, b, b′)) , so

ac (h (a0 – b, a′0 – b′, b, b′)) = ac
(
n (a0 – b)m1 (a′0 – b′)

m2 bm3 (b′)
m4

)
= 	i

(
ac (n) (ãi – ã0)m1

(
b̃′ – ã′0

)m2
)
.

And �
(
h

(
ai – b, a′j – b′, b, b′

)
– n (ai – b)m1

(
a′j – b′

)m2 bm3 (b′)
m4

)
> �

(
h

(
ai – b, a′j – b′, b, b′

))
, so

ac
(
h

(
ai – b, a′j – b′, b, b′

))
= ac

(
n (ai – b)m1

(
a′j – b′

)m2 bm3 (b′)
m4

)
= 	′j

(
ac (n) (ãi – ã0)m1

(
b̃′ – ã′0

)m2
)
.

Since g(ai , a′0, b, b
′) = h(ai – b, a′0 – b′, b, b′), g(a0, a

′
0, b, b

′) = h(a0 – b, a′0 – b′,

b, b′), and g
(
ai , a

′
j , b, b

′
)

= h
(
ai – b, a′j – b′, b, b′

)
, this is what we wanted to

show.

Case 3. Clear.

Case 4. ϕ (x; y; z;w; b; b′) is of the form ∃u � (x; y; z, u;w; b; b′), where u is a
variable of sort k, and the claim holds for �.

For i, j �= 0, if |= ϕ
(
ai ; a′0; c; d ; b; b′

)
, then |= �

(
ai ; a′0; c, e; d ; b; b′

)
for some

e ∈ k. Then |= �
(
a0; a′0; 	i (c) , 	i (e) ; � (d ) ; b; b′

)
and |= �(ai ; a′j ; 	

′
j(c), 	

′
j(e);

�(d ); b; b′), so |= ϕ
(
a0; a′0; 	i (c) ; � (d ) ; b; b′

)
and |= ϕ

(
ai ; a′j ; 	

′
j (c) ; � (d ) ; b; b′

)
.

Note that each of these implications is reversible.
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Case 5. ϕ (x; y; z;w; b; b′) is of the form ∃u � (x; y; z;w, u; b; b′), where
u is a variable of sort Γ∞, and the claim holds for �. For i, j �= 0, if
|= ϕ

(
ai ; a′0; c; d ; b; b′

)
, then |= �

(
ai ; a′0; c; d, e; b; b′

)
for some e ∈ Γ∞. Then

|= �
(
a0; a′0; 	i (c) ; � (d ) , � (e) ; b; b′

)
and |= �

(
ai ; a′j ; 	

′
j (c) ; � (d ) , � (e) ; b; b′

)
;

hence, |= ϕ
(
a0; a′0; 	i (c) ; � (d ) ; b; b′

)
and |= ϕ

(
ai ; a′j ; 	

′
j (c) ; � (d ) ; b; b′

)
. Since

� and � are bijective, each of these implications is reversible. This concludes the
proof of Claim 5.8, and hence of Theorem 5.1.

5.6. Some further applications of Theorem 5.1 and examples.

Remark 5.10. Our proof of Theorem 5.1 also applies to any reduct of an
ac-valued field K whose residue field has a non-constant totally indiscernible
sequence to a language L ⊆ LDenef-Pas such that L contains the relation � (x1 – y1) <
� (x2 – y2), and every L-formula is equivalent to a Boolean combination of
LDenef-Pas-formulas with no quantifiers of the main sort. This gives us further
examples of NIP theories that are not weakly semi-equational, such as:

(1) a Henselian valued field of equicharacteristic 0 whose residue field is
algebraically closed;

(2) an algebraically closed valued field (of any characteristic);
(3) the reduct of either of the above to a valued vector space or valued abelian

group;
(4) a generic abstract ultrametric space: a two-sorted structure (M,Γ∞), with a

linear order ≤ on Γ∞ that is dense with maximal element ∞ ∈ Γ∞ and no
minimal element, and a function � : M2 → Γ∞, such that � (x, y) = ∞ ⇐⇒
x = y, � (x, y) = � (y, x), and � (x, z) ≥ max (� (x, y) , � (y, z)), and such
that for every � ∈ Γ and a ∈ M, there are (bi)i∈N

in M such that � (a, bi) =
� (bi , bj) = � for i, j ∈ N.

Example 5.11. Let K be a valued field (viewed as a structure in the language of
rings with a predicate for the valuation ring O), d ∈ � and let F be the family of all
convex subsets ofKd in the sense of Monna (equivalently, the family of all translates
of O-submodules of Kd ). Then F is a definable family, and a formula defining it is
a semi-equation by [8, Theorem 4.3] and Proposition 2.16.

Problem 5.12. Is the field Qp semi-equational? It is weakly semi-equational by
distality.

§6. Weak semi-equationality in expansions by a predicate.

6.1. Context. We recall the setting and some results from [9] (as usual, below
x, y, z denote arbitrary finite tuples of variables). We start with a theory T in
a language L, and let LP := L ∪ {P (x)}, where P is a new unary predicate. Let
TP := ThLP (M,A), where A is some subset of M (interpreted as P). We fix some
monster model (M ′, A′) � (M,A) of TP. An LP-formula �(x) is bounded if it is
of the form Q0y0 ∈ P ... Qnyn ∈ Pϕ (x, y), where Qi ∈ {∃,∀} and ϕ (x, y) ∈ L. We
denote the set of all bounded LP-formulas by Lbdd

P and say that the theory TP is
bounded if every LP formula is equivalent modulo TP to a bounded one. Finally, for
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L ⊆ L′ ⊆ LP (M ) we denote by Aind(L′) the L′(∅)-induced structure on A, i.e., the

structure
(
A;

(
Rϕ(x))ϕ(x)∈L′

)
with Rϕ :=

{
a ∈ A|x| : (M,A) |= ϕ(a)

}
.

Remark 6.1. (1) The structuresAind(Lbdd
P ) andAind(L) have the same definable

subsets of An, for all n ∈ �. Indeed, given �(x) = Q0y0 ∈ P ... Qnyn ∈
Pϕ (x, y) with ϕ(x, y) ∈ Lbdd

P . Then R�(A) can be defined in Aind(L) by
Q0y0 ... QnynRϕ (x, y).

(2) If TP is bounded, then clearly Aind(LP) and Aind(Lbdd
P ) have the same definable

subsets of An, for all n.

Fact 6.2. (1) [9, Corollary 2.5] Assume that T is NIP, Aind(L) is NIP, and TP

is bounded. Then TP is NIP.
(2) [9, Corollary 2.6] In particular, if T is NIP, A �M , and TP is bounded, then
TP is NIP.

Some results on preservation of equationality under naming a set by a predicate
are obtained in [24]. As pointed out in [18], the exact analog with distality in place
of NIP is false:

Fact 6.3 ([18, Theorem 5.1] and the examples after it). The theory of dense pairs
of o-minimal structures expanding a group is not distal (even though it is bounded and
the induced structure on the submodel is distal ). Their proof shows that the formula
ϕ (x, y) = ¬∃u ∈ P (x = u + y) is not a weak semi-equation in the theory of dense
pairs.

In this section we show that at least weak semi-equationality ofTP can be salvaged.
We will need the following properties of indiscernible sequences and definable sets
with distal induced structure.

Fact 6.4 [3, Proposition 1.17]. Let T be NIP, and let D be an ∅-definable set.
Assume thatDind is distal. Let (ci : i ∈ Q) be an indiscernible sequence of tuples in M

and let a tuple b from D be given. Assume that (ci : i ∈ Q \ {0}) is indiscernible over
b, then (ci : i ∈ Q) is indiscernible over b as well.

Lemma 6.5. Assume T is NIP and D is an ∅-definable set with Dind distal.
Let (ai : i ∈ Q) be an ∅-indiscernible sequence, b such that (ai : i ∈ Q \ {0}) is b-
indiscernible, and c ∈ D arbitrary. Then we can find a sequence (ci : i ∈ Q) such
that:

• aici ≡b a1c for all i ∈ Q \ {0},
• (aici : i ∈ Q) is ∅-indiscernible, and
• (aici : i ∈ Q \ {0}) is b-indiscernible.

Proof. By b-indiscernibility of (ai : i ∈ Q \ {0}), Ramsey, compactness, and
taking automorphisms we can find a sequence (ci : i ∈ Q \ {0}) in D such that
(aici : i ∈ Q \ {0}) is b-indiscernible and aici ≡b a1c for all i �= 0. It remains to find
a c0 ∈ D such that (aici : i ∈ Q) is ∅-indiscernible. Let I ⊆ Q \ {0} be an arbitrary
finite set and let ā0 := (ai : i ∈ I ). Let ε > 0 in Q be such that I ⊆ Q \ (– ε, ε).
For each i ∈ Q, let a′i := (ai , ā0) and consider the sequence (a′i : i ∈ (– ε, ε)). It is
∅-indiscernible since the sequence (ai : i ∈Q) is, and moreover (a′i : i ∈ (– ε, ε) \ {0})
is indiscernible over (ci : i ∈ I ) ⊆ D (since the sequence of pairs (aici : i ∈ Q \ {0})
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is indiscernible). Then by Fact 6.4 we have that (a′i : i ∈ (– ε, ε)) is indiscernible
over (ci : i ∈ I ). In particular, there exists an automorphism 	 sending a′ε

2
to a′0

and fixing (ci : i ∈ I ), hence sending aε
2

to a0 and fixing (aici : i ∈ I ). As by

assumption (aici : i ∈ I, i <– ε) +
(
aε

2
c ε

2

)
+ (aici : i ∈ I, i > ε) is indiscernible,

applying 	 we have that there is c̃0 := 	
(
c ε

2

)
∈ D such that (aici : i ∈ I, i <– ε) +

(a0c̃0) + (aici : i ∈ I, i > ε) is indiscernible. As I was arbitrary, we can then find c0
as wanted by compactness. 	

Definition 6.6. A theory TP is almost model complete if, modulo TP, every LP-
formula � (x) is equivalent to a Boolean combination of formulas of the form
∃y0 ∈ P ... ∃yn–1 ∈ Pϕ (x, y), where ϕ (x, y) is an L-formula.

Theorem 6.7. Assume that T is distal, Aind(L) is distal, and TP is almost model
complete. Then TP is weakly semi-equational.

Proof. We know by Fact 6.2 that TP is NIP. As TP is almost model complete, so
in particular bounded, by Lemma 6.1(1) and (2) the structures Aind(LP) and Aind(L)
have the same definable subsets of An, for all n. Hence the full structure induced on
P in TP is distal, so Lemma 6.5 can be applied to TP with D := P.

Let (M ′, A′) be a sufficiently saturated elementary extension of (M,A) |= TP. As
TP is almost model complete by assumption, it is enough to show that every formula
in LP of the form

ϕ (x, y) = ∃z0 ∈ P ...∃zn–1 ∈ P� (x, y, z) ,

where � (x, x, z) ∈ L, is a weak semi-equation in TP.
To check Definition 1.2, assume (using Remark 2.1) that we are given an LP-

indiscernible sequence of finite tuples (ai : i ∈ Q) and a finite tuple b, both inM ′,
such that the sequence (ai : i ∈ Q \ {0}) is LP (b)-indiscernible and |= ϕ (ai , b) for
all i �= 0. In particular, there is some tuple c in P such that |= � (a1, b, c) holds.
By Lemma 6.5 applied in TP with D := P, it follows that there is a sequence
(ci : i ∈ Q) with ci ∈ P such that (aici : i ∈ Q) is LP-indiscernible, (aici : i �= 0)
is LP (b)-indiscernible and aici ≡LP

b a1c for i �= 0. In particular |= � (ai , b, ci) for
i �= 0. But�′ (x, z; y) := � (x, y, z) ∈ L is a semi-equation in T as T is distal, hence
|= � (a0, b, c0), and so |= ϕ (a0, b) holds—as wanted. 	

Corollary 6.8. Dense pairs of o-minimal structures, as well as the other examples
discussed after [18, Theorem 5.1], are weakly semi-equational.

Problem 6.9. (1) In Theorem 6.7, can we relax the assumption to “T and
Aind(L) are weakly semi-equational?”

(2) Is there an analog of Theorem 6.7 for semi-equationality? Even a general
result for equationality seems to be missing (the argument in [24] for belles
paires of algebraically closed fields is specific to algebraically closed fields).
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