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Abstract
For interventions that affect how individuals interact, social network data may aid in understanding the
mechanisms through which an intervention is effective. Social networks may even be an intermediate
outcome observed prior to end of the study. In fact, social networks may also mediate the effects of the
intervention on the outcome of interest, and Sweet (2019) introduced a statistical model for social net-
works as mediators in network-level interventions.We build on their approach and introduce a newmodel
in which the network is a mediator using a latent space approach. We investigate our model through a
simulation study and a real-world analysis of teacher advice-seeking networks.
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1. Introduction
The goal of many large-scale studies in the social sciences is to investigate the effect of an inter-
vention or policy on an outcome of interest, such as the effect of a new mathematics curriculum
on teachers’ instructional practices or the effect of vaccination advertisements on increasing
vaccination rates. Such studies often involve large samples, requiring significant resources, but
they are notorious for finding null results in educational studies (Coalition for Evidence-Based
Policy, 2013). Further many interventions are difficult to implement or modify in the real
world.

Thus, it is important that researchers implementing these large-scale studies also examine the
mechanisms that underlie the intervention. Social network data may be one of the first observed
intermediate outcomes before observing the primary study outcome; for example, an interven-
tion about bullying will likely first impact how individuals interact. Second, social networks may
even mediate the impacts of an intervention on individual-level outcomes; a bullying interven-
tion may impact network structure in ways that are more conducive to improving student sense
of belonging.

Social network data, however, present unique methodological challenges, since most statistical
models are not appropriate for network data. This is because network ties violate the assumption
of independent observations assumed by these models. Whether or not person a is friends with
person b depends on what other friendships exist among the individuals in the network, whether
a and b have any friends in common, and even the size of the network. To accommodate the
unique interdependence present in social network data, researchers have proposed and continue
to propose social network models that predict network ties (e.g. van Duijn et al., 2004;Wasserman
& Pattison, 1996; Hoff et al., 2002; Snijders & Nowicki, 1997).
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Although most network researchers have focused on methods for a single network, several
social network models have been extended for use across multiple, independent networks; that is,
multilevel extensions of these network models have been developed that can be used on network
data collected across ensembles or groups of networks (e.g. Snijders & Kenny, 1999; Templin et al.,
2003; Zijlstra et al., 2006; Sweet et al., 2013; Koskinen et al., 2015; Slaughter &Koehly, 2016; Lorenz
et al., 2020). In addition, methods now exist to examine network-level interventions (Valente,
2012) and estimate treatment effects (e.g. Sweet et al., 2013). Moreover, Sweet (2019) proposed
the idea of modeling a social network as a mediator and introduced a mixed membership model
for mediation. This model assumes that an intervention impacts the subgroup structure of the
networks which then impacts the outcome.

While we believe the overall idea in Sweet (2019) is promising and the proposed model has a
great potential to be useful in assessing network mediation, the model is limited in that it requires
networks to have clique structure. Further, the mediating variable in this model is a measure of
subgroup structure, which may not always be the intermediate outcome observed as result of an
intervention. Thus, alternative models are needed.

We introduce the hierarchical latent space mediation model (HLSMM), for mediation, which
uses a latent space modeling approach instead of a mixed membership approach. Our model also
assumes an intervention on a sample of multiple, independent networks, such as student friend-
ship networks across schools or collaboration networks across organizations. Our model assumes
that an intervention affects the network structure in treated networks, and this structure in turn
affects the variability in an outcome variable in those networks. One possible application is to
model the process through which group consensus is established.

Before introducing our model, we discuss modeling samples or ensembles of networks and
estimating intervention effects using latent space approaches. We then introduce our model, a
HLSM for mediation, and discuss its utility and estimation. We then present some evidence of
feasibility through a simulation study and real-world analysis of teacher advice-seeking data.

2. Modeling ensembles of networks
Researchers have attempted to accommodate tie interdependency by either accounting for tie
dependence explicitly and including network statistics as part of the model (e.g. exponential ran-
dom graph models (Robins et al., 2007)) or accounting for tie dependence implicitly through the
use of latent variables (Dabbs et al., 2020). We will focus on a latent variable model called a latent
space model (LSM; Hoff et al., 2002), which incorporates latent space positions in the network
model to account for the interdependence of network ties.

For modeling a sample of networks, we can use a HLSM (Sweet et al., 2013), a multilevel exten-
sion of LSM, although other multilevel extensions have been proposed for other network models
(Snijders & Kenny, 1999; Templin et al., 2003; Zijlstra et al., 2006; Koskinen et al., 2015; Slaughter
& Koehly, 2016; Lorenz et al., 2020).

A HLSM for an ensemble of binary networks denoted by adjacency matrix, Ak, for network k
is given as:

Aijk ∼ Bernoulli (pijk;)

logit (pijk)= β0 + βkXijk − |Zik − Zjk|
βk ∼MVNq(μβk ,�βk)

Zik ∼MVNd(0, σ 2
ZkId) (1)

where Aijk denotes a tie between nodes i and j for network k, Xijk is an edge-level covariate, β0 is
an intercept, and βk is a q-dimensional vector of the associated coefficients. Parameters βk may
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vary across each network k. Without covariates, Equation (1) specifies the probability of a tie pijk
between two nodes i and j in a network k as a function of the distance between the d-dimensional
latent space positions Zik and Zjk. The latent position Zik is assumed to have multivariate nor-
mal distribution with mean 0 and diagonal variance–covariance matrix (σ 2

ZkId), where Id is a
d-dimensional identity matrix.

Networks with larger values of the variance of the latent position, σ 2
Zk , would generally have

latent positions that are more dispersed than networks with smaller values of σ 2
Zk . Because node

dispersion is generally related to increases in distance between pairs of nodes, σ 2
Zk is correlated

with the density of the network. Given a collection of networks, it may be of interest to explore or
even model the differences in the variance of the latent space positions across networks.

2.1 Modeling interventions with LSMs
Consider an intervention in which entire networks are assigned to treatment or condition. Because
we will eventually model the effect of the intervention as a function of σ 2

Z in Equation (1), we first
demonstrate how σ 2

Z impacts network structure.
Recall that in a LSM, each network is represented by relative positions of its nodes in a low-

dimensional space and the probability of a tie is a function of the distance between the nodes.
Thus, σ 2

Z controls the spread or scale of the distance, and networks with smaller values of σ 2
Z will

have higher density than networks with larger values of σ 2
Z , because smaller values of σ 2

Z map
to smaller pairwise distances and higher tie probabilities. In addition, we also expect to see an
increase in the number of isolated nodes as σ 2

Z increases.
However, unlike random graph models, LSMs are also known to preserve reciprocity and

transitivity (Hoff et al., 2002). This is because, as long as the position of a node relative to the
neighboring nodes is preserved, reciprocity and transitivity will also be preserved. Therefore, with
the exception of extreme differences in σ 2

Z , reciprocity and transitivity should be similar across
values of σ 2

Z .
For illustration, we simulated 100 networks for values of σ 2

Z and plotted the median network
statistic value (orange circle) along with 0.025 and 0.975 quantiles, indicated by the line segment.
Figure 1 illustrates how the variance of the latent space positions in a LSM impacts density, vari-
ance in degree, the number of isolated nodes, and mean geodesic distance (among connected
nodes). The plot showing geodesic distance is misleading. The distances are not actually decreas-
ing with increasing σ 2

Z ; rather, the number of isolated nodes who are not connected to other nodes
is increasing, and these distances are not included.

Aside for extreme differences in σ 2
Z , there is little impact on the levels of reciprocity and tran-

sitivity although we note that reciprocity and transitivity naturally increase as density increases.
Here, we use σ 2

Z values 2 to 10 to illustrate a wide range, but note that in Section 4.1, we consider
networks generated from LSMs with expected values of σ 2

Z of 2.7 in the control condition.
Thus, an intervention that impacts σ 2

Z would change the overall density and the number of
isolated individuals in the network, while preserving some standard network structures such as
transitivity and reciprocity. For example, in an intervention focused on improving school climate,
we may expect greater unity and consensus among its teachers, but we would not expect clique
structure or reciprocity to change. Similarly, teachers who were isolated previously may be now
be connected to someone in the network as a result of a decrease in σ 2

Z .

3. A hierarchical latent space mediation model
Let us consider an example that will motivate our proposed model. Suppose, there is a cluster-
randomized trial in which schools are randomly assigned to an intervention and that the
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Figure 1. Network statistics from networks generated from latent space models where σ 2Z ranges from 2 to 10 to illustrate
the impact of σ 2Z on density and the number of isolated nodeswith comparatively little impact on reciprocity and transitivity.

intervention changes how teachers within each school interact. Let us also assume the goal of
this intervention is to improve teacher buy-in about an instructional method. We hypothesize
that treated schools have different types of interactions which result in a stronger consensus about
that instructional method.

To fit a mediation model, a classic approach is to use the three regression equations shown in
Equation (2) and made popular by Baron & Kenny (1986). We present the Bayesian version of
these equations where generally the last two lines are estimated, and the mediation or indirect
effect is defined as β2γ (Yuan & MacKinnon, 2009). The model is given as

Yk ∼N(α1 + β1Tk, τ1)

Mk ∼N(α2 + β2Tk, τ2)

Yk ∼N(α3 + β3Tk + γMk, τ3) (2)
where k indexes the observed unit of randomization, Yk denotes the outcome, Tk denotes the
treatment status, andMk denotes the mediator. Similarly, α1, α2, and α3 are intercept parameters,
β1, β2, and β3 are coefficients associated with treatment indicator Tk, and γ is the coefficient
associated with mediatorMk.

In our context, our observed units are the networks, and our outcome of interest is teacher
consensus, measured as the variability in opinions about this instructional method. Further, we
assume that the intervention is focused on bringing teachers together and increasing collabo-
ration. We present this scenario as a Bayesian mediation model where we replace Mk with a
parameter from a HLSM for network k and incorporate the last two lines of Equation (2).

Thus, the hierarchical latent space mediation model (HLSMM) model is given as:
Aijk ∼ Bernoulli (pijk)

logit (pijk)= β0 − |Zik − Zjk|
Zik ∼MVNd(0, σ 2

ZkId)

log (σZk)∼N(γ0 + γ1Tk, τZ)

Yik ∼N(μ, σ 2
Yk)

log (σYk)∼N(θ0 + θ1 log (σZk)+ νTk, τY ) (3)
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Figure 2. The directed acyclic graph for the HLSM
for mediation illustrations the relations among the
independent variable T, the mediating parameter
log (σZ), and the outcome variable log (σY ).

where the treatment indicator is still Tk; i and j index the individuals within each network and
k indexes the network. For any network, Ak is generated from a LSM such that the variance–
covariance matrix of the latent space positions is σ 2

ZkId. Note that pretreatment confounders can
be included in the model as well.

We can also represent this model as the directed acyclic graph given in Figure 2; the media-
tion analysis is illustrated among treatment T, the mediator log (σZ), and the outcome variable
log (σY ). Compared to Equation (2), the mediation analysis is also tied to network model such
that a network tie from node i to node j in network k (Aijk) is a function of latent space positions
Zik and Zjk with variance σ 2

Zk .
Note that Figure 2 and Equation (3) denote the impact of an independent variable and medi-

ating variable on the variability of some outcome log (σY ), but other outcome variables could be
used. Because the mediator is the log standard deviation of the latent space positions, a natural
outcome is some measure of consensus or the log standard deviation in the outcome variable
among individuals in each network. Also note that Equation (3) is parameterized such that the
outcome and mediator both have normal distributions, similar to Equation (2), but we could
parameterize this model so that σZ and σY have lognormal distributions.

Returning to our contextual example, if the intervention is effective, the treated networks
will have a smaller latent position variance. Decreasing the log standard deviation of the latent
space positions, log (σZ), essentially decreases the number of isolated nodes and increases the
overall density of the network. Not having any isolated nodes and increasing the number of
ties would therefore result in higher levels of connection in the network. Thus, we hypothe-
size that well-connected networks have higher levels of consensus than networks with sparse
connections.

3.1 Estimation
The HLSMMs in this manuscript were fit using a Markov chain Monte Carlo (MCMC) algo-
rithm (Gelman et al., 2013), and we used a combination of Metropolis-Hastings and Metropolis
updates within Gibbs sampling. The Metropolis/Gibbs algorithm is standard and allows any
reader familiar with MCMC to understand the estimation process as well as augment the code
to expand or adapt the proposed model for their purposes. However, the HLSMM can be fit using
a variety of MCMC algorithms as well as posterior approximation methods such as variational
inference.

Moreover, the MCMC algorithm combines the network portion of the model and the medi-
ation model and updates all parameters simultaneously. That is, the latent positions given the
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observed networks are updated iteratively alongside the regression coefficients of the media-
tion portion of the model. Fitting the HLSMM in this way accounts for the estimation error
in the latent positions when estimating the regression coefficients used to calculate the indirect
effect.

Given the normal distributions specified in the model for log (σZ) and log (σY ), we used Gibbs
updates for γ0, γ1, θ0, θ1, and ν, using normal distributions as conjugate priors. Similarly, for vari-
ance hyper-parameters τZ and τY , we employed conjugate inverse-Gamma distributions so that
they were also updated via Gibbs. The latent space positions as well as the variance of the latent
space positions (reparametrized as log (σZ)) were each updated using a random walk Metropolis-
Hastings update. We used conjugate priors when possible, but other prior distributions can be
used. For example, half-Cauchy distributions could replace inverse-Gamma distributions for the
variance updates.

Note that LSMs have two identifiability issues. The first is that there are an infinite number of
latent space position configurations possible due to translation, reflection, and rotation. A pro-
crustes transformation as used in Hoff et al. (2002) can be applied to obtain estimates of the
latent space positions with a stable configuration. Note that this transformation can be applied
post-sampling as convergence can be obtained without it.

The second identifiability issue is discussed less often but has larger impacts on the HLSMM
parameters. There is an identifiability between β0, which can be thought of as an intercept and
related to the overall probability of a tie, and the variance of the latent space positions σ 2

Zk , which
also impacts tie probability through the dispersion of nodes in the latent space. We recommend
fixing β0 when estimating σ 2

Zk is of particular importance.

4. Empirical examples
As a proof of concept, we explore some of the operating characteristics and demonstrate the
feasibility of the HLSMM with two empirical examples. The first is a series of simulations to
help readers connect mediation parameter values to variance parameters and network structures.
Through these simulations, we also examine the conditions under which the proposed model
can be most useful. The second example is a real-world application of the HLSMM that involves
advice-seeking networks among school staff at 14 schools in 2010 and 2015.

4.1 Simulation study
The purpose of this small simulation study is to examine the influence of various parameters on
both parameter recovery and model utility. We consider nine different combinations of parame-
ters γ1 and θ1 in Equation (3). Recall that γ1 is the effect of the intervention T on the log standard
deviation of the latent space positions log (σZ), so we explore settings where the intervention
has three different effects on this measure of variability. Similarly, θ1 is the conditional effect of
log (σZ) on log (σY ) given T, and we consider three different values for this parameter as well.

We selected values of γ1 that resulted in differences in log (σZ) that produced visually distinct
but still realistic networks and values of θ1 that yielded analogous values for log (σY ). Note that
negative values of γ1 result in smaller variance of latent space positions. Our positive value of
θ1 maps to a positive relationship between latent space variability log (σZ) and variability in the
outcome log (σY ).

Table 1 summarizes the nine cells of our simulation, and each cell represents one combination
of values for γ1 and θ1. We also include sample variances (across replications) to illustrate the
indirect and direct effects on the outcome; note that σ 2

Z and σ 2
Y are given instead of log (σY ) and

log (σY ) for ease of interpretation. The full data generating model used is given as:
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Table 1. A summary of parameter values across the nine cells of the simulation study
along with approximate sample variances

Setting/parameters γ1 θ1 Avg. σ 2Yk ,control Avg. σ 2Yk , treated

1 −0.2 0.5 0.67 0.45
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 −0.2 0.7 0.82 0.51
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 −0.2 0.9 1 0.57
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 −0.4 0.5 0.67 0.37
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 −0.4 0.7 0.82 0.38
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 −0.4 0.9 1 0.40
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 −0.6 0.5 0.67 0.30
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 −0.6 0.7 0.82 0.29
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 −0.6 0.9 1 0.28

log (σZk)∼N(0.5+ γ1Tk, 0.09), k= 1, . . . , 30

Zik ∼MVN2(0, σ 2
ZkI2), i= 1, . . . , 20

pij ∼
exp (− |Zik − Zjk|)

1+ exp (− |Zik − Zjk|) , i, j= 1, . . . , 20 (4)

Aijk ∼ Bernoulli(pij), i, j= 1, . . . , 20

log (σYk)∼N(− 0.45+ θ1 log (σZk)− 0.1Tk, 0.09)

Yik ∼N(0, σ 2
Yk)

where k indexes the 30 networks each with 20 nodes. The independent variable Tk indicates
whether network k is in the treated group such that 15 networks are treated and 15 networks
are not.

In Equation (4), the expected log (σZ) for control networks and treated networks is defined as
γ0 and γ0 + γ1, respectively. Thus, in selecting values for each, our goal was to generate networks
that reflected real-world data. The expected σ 2

Z under the control condition is approximately
2.72 and under the three treated conditions ( γ1 = −0.2, −0.4, −0.6) is 1.82, 1.22, and 0.82
respectively.

Figure 3 shows 30 networks generated from Equation (4) where γ0 = 0.5 and γ1 = −0.4. The
control networks are shown on the top three rows of plots and the treated networks on the
bottom three rows. Overall, the control networks tend to have more isolated nodes and are
less dense than the treated networks. Thus, γ1 = −0.2 would result in less noticeable differ-
ences between the conditions, and γ1 = −0.6 would result in more noticeable differences between
conditions.

We selected values for θ1 in a similar manner aiming for σY to be distinct enough to detect
differences. Again, we selected error variances (τ = 0.09) to observe adequate separation of distri-
butions of log (σYk) to detect effects. Finally, we also chose to include a nonzero value for ν = −0.1
to indicate a partial mediation. Figure 4 shows a plot of log (σYk) against log (σZk) for the 30 net-
works generated from Equation (4) where γ0 = 0.5, γ1 = −0.4, θ0 = −0.45, θ1 = 0.9, and ν = 0.1.
There is evidence of a positive effect of log (σZ) on log (σY ).
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Figure 3. Networks simulated from a HLSM for Mediation where T indicated treatment and the treated networks have
smaller σZk (see Equation (4)).

Figure 4. The scatterplot of log (σY ) against log (σZ) shows a positive effect of the mediator on the outcome.
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Figure 5. Simulation summary of mediation effect corresponding to settings 1–9 in Table 1. The lower and upper bound
of each error bar indicates the 95% highest posterior density credible interval for the posterior distribution of the average
causal mediation effect and the circle represents MAP of the distribution. The red horizontal line represents the true value of
the parameters used to generate the data.

Within each simulation condition given in Table 1, we simulated data from a HLSMM
generating model, Equation (4), and fit a HLSMM, Equation (3), using the following priors:

γ0, θ0 ∼N(0, 100)

γ1, θ1, ν ∼N(0, 9)

τZ , τY ∼ IG(5, 0.5)

(5)

We selected weakly informative priors for γ0 and θ0 and chose more informative priors for γ1, θ1,
and ν and error variances τZ and τW . (See the Appendix for a prior sensitivity analysis.) For each
model fit, we ran three chains of length 10,000; we removed the first 1,000 draws and thinned each
chain by 35 to obtain a final posterior sample of 774; this length and thinning provided adequate
convergence and autocorrelation across all parameters. This process was repeated 100 times for
each cell of the simulation (Table 1).

To evaluate model performance under each setting, we report the coverage rate, defined as
the proportion of replications in which the 95% equal-tailed credible interval covered the data
generating parameter. In addition, we also report the posterior probabilities that the mediation
effect γ1θ1 < 0. Note that the mediation effect is negative for all cells of the simulation.

Figure 5 summarizes the posterior distributions of the mediation effect (indirect effect) γ1θ1 of
the 100 replications across all 9 conditions. The circles represent themaximum a posteriori (MAP)
estimates, and the bars indicate the 95% highest posterior density (HPD) credible intervals. The
coverage rates for themediation effect are between 0.91 and 0.98, indicating that the indirect effect
coverage is as expected. In addition, parameter coverage for all parameters estimated in the model
range from 0.91 to 1.00. Furthermore, we note that the posterior variance for γ1θ1 increases as the
effect sizes of γ1 and θ1 increase.
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Table 2. Mean posterior probability
that γ1θ1 < 0 across all nine simula-
tion conditions

γ1 θ1 P(γ1θ1 < 0)

−0.2 0.5 0.81
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−0.2 0.7 0.86
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−0.2 0.9 0.88
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−0.4 0.7 0.94
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−0.4 0.5 0.96
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−0.4 0.9 0.98
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−0.6 0.5 0.94
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−0.6 0.7 0.98
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−0.6 0.9 0.99

We also examine the posterior probability of the indirect effect being less than 0. We find
that as the true indirect effect becomes more negative (a stronger effect), the posterior probabil-
ity increases. It appears that changing the effect sizes of γ1 has a larger impact than θ1 on these
posterior probabilities. The exact probabilities are given in Table 2.

4.2 Application to teacher networks
We now present an application of the HLSMM to real-world data. These data come from a
longitudinal study of workplace and social interactions among school staff that are part of the
Distributed Leadership Studies at Northwestern University (distributedleadership.org). These
data represent language arts advice-seeking relationships among school staff in 14 elementary
schools in 2010 and 2015 in a suburban school district in the midwestern part of the US. There
were major policy changes during this time including a new mathematics curriculum, the use of
mathematics instructional coaches for teachers, and high stakes testing in mathematics.

While advice-seeking ties aroundmathematics have been studied in detail (Spillane et al., 2017,
2015, 2018), language arts advice-seeking ties have not. We aim to examine the effects of the
policy changes in mathematics on the language arts advice-seeking networks, and whether these
networks then mediated consensus about teachers’ influence on school policy.

School staff in these 14 schools were asked “During this school year, to whom have you turned
for advice and/or information about curriculum, teaching, and student learning?” For each person
nominated, respondents then classified the connection as being about language arts, math, or
science. The language arts networks for the years 2010 and 2015 are shown in Figures 6 and 7,
respectively. Note that school staff includes teachers and administrators as well as instructional
support teachers (math coaches) but does not include all staff employed by the school district
such as nurses, administrative assistants, custodians, or para-educators.

Response rates varied by school but on average were approximately 85%. Respondents who did
not submit a survey were excluded from the network unless they were nominated by at least two
other staff members, and these individuals were assumed to have no outgoing ties. Further, staff
members who took the survey but did not nominate anyone remained in the networks as having
no outgoing ties.

As part of this study, school staff were asked a number of items about mathematics and math-
ematics pedagogy, but there were a few survey items that were not subject-specific. One is a series
of items asking respondents “How much influence do teachers have over school policy in each
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Figure 6. Language arts advice-seeking networks among school staff in 14 elementary schools in 2010; note that response
rates in one school were particularly low.

of the areas below?” and the areas listed were as follows: hiring professional staff; planning how
discretionary funds should be used; determining which books and instructional materials are used
in classrooms; establishing the curriculum and instruction program; determining the content of
in-service programs; setting standards for student behavior; and determining goals for improving
the school.

To demonstrate how the HLSMM could be used in practice, we examine the extent to which
language arts advice-seeking networks mediated the effect of the district changes on consensus
about teacher’s influence on school policy. The belief is that structural differences in the language
arts networks in 2010 compared to 2015 may impact differences in school staff consensus about
teacher influence over policy (in 2010 compared to 2015).
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Figure 7. Language arts advice-seeking networks among school staff in 14 elementary schools in 2015.

The HLSMM fit to these data is given as:
Aijk ∼ Bernoulli (pij), i, j= 1, . . . , nk

logit (pij)∼ β0 − |Zik − Zjk|
Zik ∼MVN2(0, σ 2

ZkI2), i= 1, . . . , nk

log (σZk)∼N(γ0 + γ1Tk, τZ) (6)

log (σYk)∼N(θ0 + θ1 log (σZk)+ νTk, τY )

γ0, θ0 ∼N(0, 100)

γ1, θ1,ν ∼N(0, 9)

τZ , τY ∼ IG(5, 0.5)
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Figure 8. Density plots of the posterior distribu-
tions from HLSMM fit to teacher advice-seeking
data. The distribution of the mediation effect
γ1θ1 suggests very little evidence that the net-
work structuremediates changes in teacher con-
sensus.

where Aijk = 1 if teacher i seeks language arts advice from teacher j in school k and 0 otherwise,
Tk = 1 if the network is from 2015 and 0 otherwise, and σYk is the standard deviation in teacher
influence scores for school k.

Because our model hinges on accurate estimation of σZk , we chose to fix β0. To fit the HLSMM,
we ran a single chain of length 200,000.We broke the chain into three pieces to assess convergence;
the potential scale reduction factor for the mediation effect was 1 with an upper confidence bound
of 1.01, indicating adequate mixing. After tossing the first 1000 steps and thinning by every 175th
step, our posterior sample size was 1138.

The posterior distributions for γ1, θ1, ν, and γ1θ1 are shown in Figure 8, where the HPD cred-
ible intervals are indicated by the shaded region. There is evidence of an intervention effect γ1
on the log (σZ), and the posterior probability that γ1 > 0 is 0.94. The evidence of a mediated or
indirect effect of log (σZ) is weak; the posterior probability that γ1θ1 < 0 is 0.71, which is not sta-
tistically significant from a frequentist perspective that offers little evidence of a mediated effect.
Further, the posterior probability that ν < 0 is 0.93 which suggests some evidence of a direct effect.

Thus, we conclude that there is evidence that the networks in 2015 compared to those in 2010
have a larger latent space variance in a LSM. There is some evidence of a direct effect of policy
changes on staff consensus about their influence, but little evidence that the spread of the latent
space positions mediated the effect of policy changes on teacher consensus.

This example serves as an illustration of our model as opposed to a formal analysis of these
networks. Our evidence was quite weak, but even if our finding for a mediated effect could be
considered statistically significant, there were too many limitations for these results to be used
in practice. We are comparing networks in 2010 with networks in 2015, and there may be other
causes for differences in network structure over the years than just the district-led policy changes.
Similarly, there may be other variables that impact differences in teacher consensus.

As an illustration, however, we can continue with this real-world data analysis to examine good-
ness of fit. Note that we did fix β0 as there is potentially an identifiability issue between β0 and
σZk . We selected several possible values for β0 = (− 3,−2,−1, 0, 1, 2, 3). If we fixed the inter-
cept at a value that was too small, the overall probability of tie would be not be well recovered
because the model is defined by subtracting distance between the latent positions from the inter-
cept. Subtracting a number from a small number would yield results in fitted model that predicts
extremely few ties. Similarly, if we selected an intercept that was too large, the latent positions
would need to be quite far and it is possible that our model would produce networks dissim-
ilar to our observed data. We hypothesized that β0 = 1 would be ideal and decided to rely on
goodness-of-fit checks to confirm.

We use posterior predictive checks and generate network data from the parameters specified at
each step in our MCMC chain. We examine goodness of fit in two stages: we first investigate the
network portion of the model and then we examine the regression portion of the model. For the
network model fit, we use the latent space positions estimated at each step of the chain to generate
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Figure 9. Posterior predictive checks for the latent space portion of the HLSMM show that network density, reciprocity, and
transitivity are well recovered.

28 networks and evaluate our model fit using density, reciprocity, and transitivity in each of the
28 networks.

Figure 9 shows the distributions of density, reciprocity, and transitivity for each network gen-
erated from parameters at each step in the MCMC chain. The observed network statistic for each
network are shown with a vertical line. In general, density, reciprocity, and transitivity are all well
recovered, indicating that the LSM was able to capture these aspects of the observed network.

Note that posterior predictive checks using values of β0 = −1,−2 resulted in models that gen-
erated networks with lower densities, reciprocity, and transitivity values than in our observed
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Figure 10. Posterior predictive checks for the regression portion of the HLSMM show that the predicted outcome log (σY ) in
each network is well recovered.

network; similarly values of β0 = 3 produced networks that tended to generate networks higher
in reciprocity and transitivity than in our observed data. Using β0 = 0 or β0 = 2 did not produce
extremely different networks, although reciprocity recovery was slightly lower for β0 = 0.

For the regression portion of the model fit, we took the parameters at each step of the MCMC
chain to generate outcome data log σYk . We show the distribution of our predicted outcome data
with the observed data in Figure 10. The posterior predictive checks suggest the outcome data
were well recovered.

Thus, we find the HLSMM fitted to the language arts advice-seeking network data to be ade-
quate because the HLSMM generates data quite similar to our observed data. Despite the lack
of evidence of mediation, we believe this example illustrates the feasibility of our model and
demonstrates how posterior predictive checks can be used to assess model fit.

5. Discussion
To contribute to the methodological research exploring how social networks could act as medi-
ators in interventions on networks, we introduced the HLSMM that embeds a LSM into a
mediation analysis.

Our model is specifically aimed at interventions that increase or decrease connectedness (aver-
age centrality and density) and whose network structure is believed to impact a network-level
outcome. The model we presented uses the variance of the latent positions in a network model to
mediate the effect of a network-level treatment on the variance of an outcome.

We also illustrated the feasibility of our model through a small simulation study showing that
ourmodel recovers parameters and can estimatemediation effects.We also presented a real-world
example of a natural experiment on networks. Although we did not find strong evidence of a
mediation effect, this example showed how this model can be applied to data and how posterior
predictive checks can be used for assessing goodness of fit.

We note that many mediation analyses are aimed at estimating a causal effect. We argue that
the HLSMM could be used in a causal mediation analysis in the same way that the mediation
model put forth by Baron & Kenny (1986) can be used in a causal mediation analysis. Causal
inference requires a series of assumptions, and our model’s ability to meet these assumptions is
context- and data-dependent.

Further, this model does not account or accommodate within-network interactions, other-
wise known as network interference or peer effects. How individuals within each network are
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influencing each other and their outcomes is not being modeled; this is a limitation of this model
and other multilevel network models. Rather this model is looking at a mediation effect on a
network-level outcome.

Thus, a natural next step in this work is to examine how network-level interventions and
mediating variables could impact node-level outcomes. Being able to map changes across and
within networks will help to improve our understanding of how individual outcomes are shaped
through interactions. We imagine extensions to this model would then account for network inter-
ference/peer influence and align with current research in that area (e.g. An, 2018; VanderWeele &
An, 2013; Ogburn, VanderWeele et al., 2017; Manski, 2000).
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Appendix
Prior sensitivity analysis
We conducted a prior sensitivity analysis because prior distribution specificationmay be challeng-
ing with Bayesian models. We considered four different prior distributions as detailed in Table 3
where the first row is considered to be standard. We then vary the priors for the other parameters
to be more or less informative.

For each replication of our sensitivity analysis, we changed the prior distribution for a single
parameter and kept the priors for all other parameters to be those given in Table 3. For example,
when exploring the priors for γ0, the priors for γ1, θ0, θ1, ν, τZ , τY did not change and remained
fixed to the distribution given in the first row of Table 3. Thus, our sensitivity analysis had 28 cells,
and for each cell in the table, we ran 10 replications.

The data generating model is given as:

log (σZk)∼N(0.5− 0.6Xk, 0.09)

log (σYk)∼N(− 0.45+ 0.5 log (σZk)− 0.1Xk, 0.09)

Aijk ∼ Bernoulli(pij)

pij ∼
exp (− |Zik − Zjk|)

1+ exp (− |Zik − Zjk|)
Zik ∼MVNd(0, σ 2

ZkI2)

Yik ∼N(0, σ 2
Yk)

(7)

where k= 1, . . . , 30 indexes the network, and i, j= 1 . . . , 20indexthenodes. Xk is a binary vector
of length 30.

The prior distribution γ0, γ1, θ0, θ1, and ν had little to no impact on the parameter recovery
of that parameter or on the parameter recovery of any other parameters in the model. The prior
distributions of τZ and τY did parameter recovery of τZ and τY respectively; priors whose distri-
butions that gave non-trivial weight to extremely large values resulted in more extreme values in
the posterior distributions of τZ and τY and worse parameter recovery.

Table 3. A summary of all priors considered in the sensitivity analysis. For each condition, the priors for a single
parameter were varied and the other priors for fixed to the top row

γ0 γ1 τZ θ0 θ1 ν τY

N(0,1) N(0,1) IG(5,0.5) N(0,0.5) N(0,1) N(0,0.5) IG(5,0.5)


N(0.5,0.5) N(-0.6,0.6) IG(10,1) N(-0.2,0.2) N(0.5,0.5) N(-0.1,-0.1) IG(10,1)


N(0,10) N(0,10) IG(1,1) N(0,10) N(0,10) N(0,10) IG(1,1)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N(0,100) N(0,100) IG(1,2) N(0,100) N(0,100) N(0,100) IG(1,2)
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Similarly, prior distributions for τZ and τY also had varying impacts on the posterior variance
for other parameters. When IG(1,1) or IG(1,2) was used for τZ , the posterior variances for γ0 and
γ1 were slightly larger, but when IG(1,1) or IG(1,2) was used for τY , the posterior variances for θ0,
θ1, and ν were between 3 and 5 times higher.

Despite some effects of the choice prior distribution, the posterior distribution of themediation
effect was generally robust to choice of prior, and only the posterior variance was impacted when
extreme prior distributions were used for variance components. This does impact the utility of the
model in that users must be thoughtful regarding their choice of prior distribution for the τY .
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