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Abstract

The exact crossing number is only known for a small number of families of graphs. Many of the families
for which crossing numbers have been determined correspond to cartesian products of two graphs. Here,
the cartesian product of the sunlet graph, denoted Sn, and the star graph, denoted K1,m, is considered for
the first time. It is proved that the crossing number of Sn�K1,2 is n, and the crossing number of Sn�K1,3
is 3n. An upper bound for the crossing number of Sn�K1,m is also given.
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1. Introduction

Consider a simple graph G with vertex set V(G) and edge set E(G). A drawing is an
embedding of the graph in the plane, in the sense that each vertex v ∈ V(G) is assigned
coordinates in the plane, and each edge e ∈ E(G) is drawn as a curve starting and
ending at the coordinates of its end points. A good drawing is one in which edges
have at most one point in common, no more than two edges cross at a single point and
edges which share an end point do not cross. For a given drawing D of the graph G,
the crossings in the drawing, denoted crD(G), can then be computed as the number of
times two edges intersect at points other than at their end points. The crossing number
cr(G) of a graph G is the smallest number of crossings over all possible drawings of
G. It is well known that any drawing of G which contains cr(G) crossings is a good
drawing.

The crossing number problem, being the problem of determining the crossing
number of a graph, is known to be NP-hard [11]; this is true even for graphs
constructed by adding a single edge to a planar graph [7]. Indeed, the crossing number
problem is known to be notoriously difficult and is still unsolved even for very small
instances. For example, the crossing number of K13 has still not been determined,
although it is known to be either 223 or 225 [1, 18]. However, the crossing number has
been determined for some infinite families of graphs. In many such cases, the family is
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Figure 1. The sunlet graph S6.

created by taking the cartesian product of members of two smaller graph families. To
the best of the authors’ knowledge, the first such result published was due to Harary
et al. [13] in 1973, who conjectured that the crossing number of Cm�Cn, that is, the
cartesian product of two arbitrarily large cycles, would be n(m − 2) for n ≥ m ≥ 3.
To date, this conjecture remains unproven, although a number of partial results have
been determined. Specifically, the conjecture is known to be true for m ≤ 7 and also
whenever n ≥ m(m − 1) [2, 3, 5, 10, 12, 19, 20]. Other infinite graph families, for which
the crossing numbers of their cartesian products have been studied, include paths and
stars [6, 14, 15], complete graphs and cycles [21], cycles and stars [14, 15], wheels
and trees [17] and cycles with the 2-power of paths [16].

In the present work, we expand this growing literature by considering the cartesian
product of a sunlet graph and a star graph. The sunlet graph on 2n vertices, denoted Sn

for n ≥ 3, is constructed by attaching n pendant edges to an n-cycle Cn; see Figure 1
for an example of S6. The star graph on m + 1 vertices consists of one vertex of
degree m attached to m vertices of degree 1. It is usually denoted S m; however, to
avoid confusion with the notation for the sunlet graph, we note that the star graph is
equivalent to the complete bipartite graph K1,m and use that notation instead. We will
show that cr(Sn�K1,m) ≤ nm(m − 1)/2 for n ≥ 3 and m ≥ 1. We will also prove that
the crossing number meets this bound precisely for m = {1, 2, 3} and conjecture that it
does so for all m ∈ Z+.

2. Upper bound

We begin by providing an upper bound for cr(Sn�K1,m). In what follows, let the
vertex labels of K1,m be v0 for the vertex of degree m and v1, v2, . . . , vm for the vertices
of degree 1. Let the vertex labels of Sn be u0, u1, u2, . . . , un−1 for the vertices on the
cycle and let u′i denote the pendant vertex attached to ui.

Theorem 2.1. The crossing number of Sn�K1,m is no larger than nm(m − 1)/2 for
n ≥ 3, m ≥ 1.

Proof. It is easy to check that Sn�K1,1 is planar; for instance, a planar drawing of
S6�K1,1 is illustrated in Figure 2, which can obviously be extended for any n. It then
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Figure 2. Planar drawing of S6�K1,1.

Figure 3. In (a), the construction of a drawing of the subgraph K1,m�Cn. In (b), the extension which will
be subdivided to produce a drawing of K1,m�Sn.

suffices to give a procedure for drawing the graph Sn�K1,m, m ≥ 2, so that the number
of crossings meets the proposed upper bound.

First, note that Sn�K1,m contains Cn�K1,m as a subgraph. Begin by drawing
the subgraph Cn�K1,m in the manner illustrated in Figure 3(a). For a given
i = 0, 1, . . . , n − 1, the thick edges represent ((v0, ui), (v j, ui)) for j = 0, 1, . . . ,m. The
dashed edges represent ((v j, ui), (v j, ui+1)) and ((v j, ui), (v j, ui−1)) for j = 0, 1, . . . ,m.
Then it is easy to see that the dashed edges can be joined to the corresponding sections
for i + 1 and i − 1 to complete a drawing of K1,m�Cn without introducing any additional
crossings. Hence, the number of crossings in this drawing of the subgraph Cn�K1,m is

n
( b m

2 c−1∑
k=1

k +

d m
2 e−1∑
k=1

k
)

= n
⌊m

2

⌋⌊m − 1
2

⌋
.

Next, we extend this drawing to a drawing of Sn�K1,m in the following way. For
each i = 0, 1, . . . , n − 1, place a vertex in the region between the centre horizontal
(dashed) edge ((v0, ui), (v0, ui+1)) and the first thick edge on the side which possesses
dm/2e vertices and join this new vertex to each of the vertices (v j, ui) for j = 0, 1, . . . ,m
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as in Figure 3(b). Then the number of crossings in this graph is equal to
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.

Finally, if every new edge is subdivided, except for the ones emanating from (v0, ui)
for i = 0, 1, . . . , n − 1, the resulting graph is isomorphic to Sn�K1,m. Since subdividing
edges does not alter the number of crossings, we conclude that it is possible to draw
Sn�K1,m with nm(m − 1)/2 crossings. �

3. Exact results

We now consider Sn�K1,m for some small values of m and show that the crossing
number coincides precisely with the upper bound from Section 2. Denote that upper
bound by U(n,m) := nm(m − 1)/2. As noted previously, Sn�K1,1 is planar; see
Figure 2. This agrees with U(n, 1) = 0. Next, we will consider the cases when m = 2
and m = 3.

In what follows, we will utilise some properties of subgraphs of Sn�K1,m, which we
denote by Hi for each i = 0, 1, 2, . . . , n − 1. In particular, Hi is defined as the subgraph
induced by the union of the following, disjoint, sets of edges:

ai := {((v j, ui), (v j, ui+1)) | j = 0, 1, . . . ,m};
bi := {((v j, ui), (v j, u′i)) | j = 0, 1, . . . ,m};
b′i := {((v0, u′i), (v j, u′i)) | j = 1, . . . ,m};
ci := {((v j, ui), (v j, ui−1)) | j = 0, 1, . . . ,m};
ti := {((v0, ui), (v j, ui)) | j = 1, . . . ,m};

ti+1 := {((v0, ui+1), (v j, ui+1)) | j = 1, . . . ,m};
ti−1 := {((v0, ui−1), (v j, ui−1)) | j = 1, . . . ,m}.

A detailed illustration of Hi, for the case m = 3, is displayed in Figure 4. For each
i = 0, 1, 2, . . . , n − 1, there is a corresponding Hi in Sn�K1,m and Hi and H j contain
common edges when j = i + 1 or j = i − 1.

We now consider the case when m = 2. Note that U(n, 2) = n. In what follows, we
use the following notation: consider a drawing D of a graph which contains two edge
sets a and b. Then crD(a) is equal to the number of crossings on the edges of a in D.
Similarly, crD(a, b) is equal to the number of crossings in D between edge pairs, such
that one edge is contained in a and the other is contained in b.

Lemma 3.1. The crossing number of Sn�K1,2 is equal to n.

Proof. From Theorem 2.1, we know that cr(Sn�K1,2) ≤ n. Hence, the task now is to
show that the reverse inequality holds. Let H′i be the subgraph Hi without the edges ti.
An illustration of H′i is displayed in Figure 5.

It is clear that H′i is homeomorphic to K3,3 and so there exists at least one crossing in
the subdrawing D′ of H′i . Furthermore, at least one crossing in D′ involves two edges
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Figure 4. The subgraph Hi of Sn�K1,3. The labels for each set of edges lie next to one edge belonging to
that set. In this drawing, the thick lines correspond to the sets ti−1, ti, ti+1 and b′i .

Figure 5. The subgraph H′i of Sn�K1,2. The labels for each set of edges lie next to one edge belonging to
that set.

which come from the edge sets (ai ∪ ti+1), (bi ∪ b′i) and (ci ∪ ti−i), but do not both come
from the same edge set. That is,

crD′((ai ∪ ti+1), (bi ∪ b′i)) + crD′((ai ∪ ti+1), (ci ∪ ti−1)) + crD′((bi ∪ b′i), (ci ∪ ti+1)) ≥ 1.

Hence, it is clear that there is at least one crossing in each H′i which does not occur
in any other H′j for i , j, which leads immediately to the result. �

Next, we consider the case when m = 3. Note that U(n, 3) = 3n. In order to handle
this case, we first need to prove two intermediate results, Lemmas 3.2 and 3.3.

Lemma 3.2. For m = 3, consider the following four edge sets: (ai ∪ ti+1), (bi ∪ b′i),
(ci ∪ ti−1) and ti. Then, in any good drawing of the subgraph Hi, there are at least
three crossings for which the two edges involved in the crossing are not in the same
set.

https://doi.org/10.1017/S0004972719000091 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972719000091


10 M. Haythorpe and A. Newcombe [6]

Figure 6. The drawing of the subgraph induced by Fi if Fi is not crossed by itself.

Proof. The subgraph Hi is homeomorphic to K1,3,3 and Asano [4] proved that
cr(K1,3,3) = 3. Any drawing of Hi corresponds to some drawing of K1,3,3. Any drawing
of K1,3,3 has at least three crossings between pairs of edges which are not incident.
These crossings correspond precisely to crossings in the drawing of Hi which satisfy
the lemma. �

Lemma 3.3. For n ≥ 3, let D be a drawing of Sn�K1,3. If, for each i = 0, 1, 2, . . . , n − 1,
the edges ti ∪ bi ∪ b′i are crossed two or fewer times in D, then D has at least 3n
crossings.

Proof. Let Fi denote the edge set ti ∪ bi ∪ b′i . Note that Fi is a subgraph of Hi. Then,
from Lemma 3.2,

crD(ai ∪ ti+1, Fi) + crD(ci ∪ ti−1, Fi) + crD((ai ∪ ti+1), (ci ∪ ti−1)) + crD(Fi, Fi) ≥ 3.
(3.1)

Assume that crD(Fi) ≤ 2 for all i = 0, 1, 2, . . . , n − 1. It will be shown that if
crD(ti+1, Fi) , 0, or if crD(ti−1, Fi) , 0, then a contradiction arises.

Suppose that crD(ti+1,Fi) = 1. Note that the edges of bi+1 link to all of the end points
of ti+1. Since the subgraph induced by Fi is 2-connected, it is clear that it is impossible
to draw (bi+1 ∪ b′i+1) without creating an additional crossing on the edges of Fi. Since
the subgraph induced by Fi ∪ ci ∪ ti−1 is isomorphic to P2�K1,3, where P2 denotes the
path graph on three vertices, and cr(P2�K1,3) = 1 [14], it follows that

crD(ci ∪ ti−1, Fi) + crD(Fi, Fi) ≥ 1.

This would imply that Fi is crossed at least three times, but, by assumption,
crD(Fi) ≤ 2. Hence, crD(ti+1, Fi) , 1. An analogous argument can be made for ti−1,
which, similarly, implies that crD(ti−1, Fi) , 1 as well.

Suppose that crD(ti+1, Fi) = 2. Then, since crD(Fi) ≤ 2, it must be the case that
crD(Fi, Fi) = 0 and hence, without loss of generality, the subdrawing of the subgraph
induced by Fi is equivalent to the drawing displayed in Figure 6.

Now consider the rest of the subgraph Hi, which includes edge sets (ai ∪ ti+1) and
(ci ∪ ti−1). Note that the edges ci link to all of the end points of ti and these do not
lie on a common face of D, so (ci ∪ ti−1) cannot be drawn without crossing Fi at least
once. This would imply that Fi is crossed at least three times, but, by assumption,
crD(Fi) ≤ 2. Hence, crD(ti+1, Fi) , 2. An analogous argument can be made for ti−1,
which, similarly, implies that crD(ti−1, Fi) , 2 as well.
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Since crD(Fi) ≤ 2, the only possibility is that crD(ti+1, Fi) = crD(ti−1, Fi) = 0 and so
(3.1) simplifies to

crD(ai, Fi) + crD(ci, Fi) + crD((ai ∪ ti+1), (ci ∪ ti−1)) + crD(Fi, Fi) ≥ 3. (3.2)

It is easy to see that any crossing counted by the left-hand side of (3.2) is not counted
for any other j , i. Hence, summing (3.2) over i = 0, 1, 2, . . . , n − 1 provides the
result. �

Finally, we are ready to propose the theorem for m = 3.

Theorem 3.4. For n ≥ 3, the crossing number of Sn�K1,3 is equal to 3n.

Proof. We will prove the result by induction. The base case where n = 3, correspon-
ding to a graph on 24 vertices, was proved computationally, utilising the exact
crossing minimisation methods of Chimani and Wiedera [8], which are available at
http://crossings.uos.de. The proof comes from a solution to an appropriately cons-
tructed integer linear program and shows that cr(S3�K1,3) = 9. The proof file is
available and can be provided by the corresponding author if desired.

Now assume that cr(Sn�K1,3) = 3n for each n = 3, . . . , k − 1, but that for n = k there
exists a drawing with strictly fewer than 3k crossings. Let D denote such a drawing.
By Lemma 3.3, there must be at least one i such that the edges of Fi are crossed at least
three times in D. Hence, the edges Fi could be deleted and the number of crossings
remaining would be strictly less than 3(k − 1). However, once Fi is deleted, the
resulting graph is homeomorphic to Sk−1�K1,3, which, by the inductive assumption,
has crossing number equal to 3(k − 1). This is a contradiction and hence any drawing
for n = k must have at least 3k crossings. This, combined with Theorem 2.1, implies
that cr(Sk�K1,3) = 3k and inductively we obtain the result. �

We conclude by conjecturing that the upper bound described in Theorem 2.1
coincides precisely with the crossing number in all cases. To provide evidence
supporting this conjecture, we used QuickCross [9], a recently developed crossing
minimisation heuristic, to find good drawings of Sn�K1,m for n,m ≤ 20. In all cases,
QuickCross was able to find an embedding that agrees with the conjecture but was
never able to find an embedding with fewer crossings.

Conjecture 3.5. For n ≥ 3, m ≥ 1,

cr(Sn�K1,m) =
nm(m − 1)

2
.
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