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Solitons and two-dimensional integrable models

5.1 Introduction

In the previous chapters we have addressed 2D field theories with no scale. As
we discussed in Chapter 2, one cannot define an S-matrix for such theories.
Generically physical systems are characterized by certain energy scales and the
notion of S-matrix plays an important role. It is thus time to move forward
and examine non-conformal field theories. Again we start our journey with the
theory of a free scalar field, but now a massive one. We then move on and discuss
interacting theories equipped with infinite numbers of conserved charges, the so-
called integrable models, that resemble the free massive theory in a way that will
be explained below.

5.2 From the theory of a massive free scalar field to
integrable models

The classical action of a massive free scalar field is obviously the action of a
massless scalar field with an additional mass term,

S =
∫

d2x

[
1
2
∂μφ∂μφ− 1

2
m2φ2

]
, (5.1)

where m is the mass scale which momentarily will be shown to be the mass of
the particle associated with the field φ. Unlike the analysis of CFTs there is no
advantage here to the use of complex coordinates, so we will use real ones.

The corresponding equation of motion,

∂μ∂μφ + m2φ = 0, (5.2)

is solved for the case of uncompactified space-time by the following Fourier trans-
form,

φ(x0 , x1) =
∫

dk1
√

2π
√

k0

[
a(k1)e−ik ·x + a†(k1)eik ·x] , (5.3)

where (k0)2 − (k1)2 = m2 .
A dramatic difference between the massless field discussed in Chapter 2, and

the massive one we discuss here, shows up when analyzing the symmetries of the
system.
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80 Solitons and two-dimensional integrable models

The only transformations that leave the action invariant are the ISO(1, 1)
Poincare transformations, namely, the space and time translations and a single
Lorentz transformation. These are,

x0 → x0 + a0 x1 → x1 + a1

x0 → x0 + a0
1x

1 x1 → x1 + a1
0x

0 , (5.4)

where the transformation parameters are constants and a0
1 = a1

0 . The fact that
the parameters are constants, and not holomorphic and anti-holomorphic func-
tions of the complex coordinates, has a tremendous impact, since it implies the
absence of the powerful infinite-dimensional Virasoro algebra.

The corresponding Noether currents associated with the Poincare transforma-
tions are,

Tμν = ∂μφ∂ν φ− gμνL,

Jμ
Lor ≡ Jμ01

Lor = ερν T μρxν . (5.5)

However, since the space-time is two dimensional, there is an additional conserved
current, the so-called topological current,

Jμ
top = εμν ∂ν φ, (5.6)

which is conserved regardless of the equations of motion, since obviously ∂μJμ
top =

εμν ∂μ∂ν φ = 0. In fact this current is conserved for any interacting scalar field in
2d, and as we will see later on it plays an important role in the analysis of soliton
solutions of integrable models.

The theory of a free massive scalar field, as well as other scalar theories that
will be addressed in this chapter, are obviously invariant under the discrete
symmetry of,

φ→ −φ. (5.7)

The canonical quantization was described in Section 1.6. The normal ordered
Hamiltonian and momentum expressed in terms of the creation and annihilation
operators take the form,

H =
∫

dk1
√

(k1)2 + m2a†(k1)a(k1) P =
∫

dk1k1a†(k1)a(k1). (5.8)

The state a†(k1)|0> is characterized by,

Pa†(p1)|0> = p1a†(p1)|0> Ha†(p)|0> =
√

(p1)2 + m2a†(p1)|0>, (5.9)

and hence it is interpreted as a single free massive relativistic particle.
For the case of free single particles, the momentum and Hamiltonian can be

generalized to an infinite set of conserved charges, like Qn ≡ Pn as,

Qn a†(p)|0> = (p1)na†(p)|0>, (5.10)

and similarly for powers of p0 .
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5.3 Classical solitons 81

The conserved charge Qn can also be represented as an integral in space. For
odd n = 2k + 1,

Q2k+1 =
∫

dx[φ(2k+1)(t, x)φ̇(t, x) + hermitian conjugate], (5.11)

where φ(n) is n derivatives of space on φ, t is x0 and x is x1 . For even n it is a
bit more complicated, but can be evaluated similarly. Note that the expression
is local.

We elevate the field theory associated with a free massive scalar particle into
a non-trivial interacting integrable model by replacing the mass term with a
potential for the scalar field. It will be shown that identifying in such interacting
field theories, an infinite set of conserved charges similar to the one of the free
theory, will be a key ingredient in constructing integrable models. This will be
discussed in Section 5.10.

A more general construction of integrable models is based on perturbing con-
formal field theories, which were discussed in Chapter 3, with relevant primary
fields, namely, those that have conformal dimension Δ + Δ̄ < 2.1 This class of
models, which will include in particular the integrable minimal models, will be
discussed in Section 5.9.

A very basic notion in scalar theories with interacting potential is the solitonic
classical configurations, which will be the topic of the next section.

5.3 Classical solitons

We now let the massive particles interact with each other. The interaction is
introduced in the form of a potential added to the Lagrangian of the free scalar
field theory. Our first task in analyzing this type of field theories is to determine
the solutions of the classical equations of motion. We start first with solitons,
which are static solutions of finite energy, and then move on to time-dependent
solutions.

The “classical” material about solitons is described in great detail in several
books, in particular in [182], [66] and [183]. For “nontopological solitons” see
[149].

Consider a two-dimensional scalar field described by the following action,

S =
∫

d2x

[
1
2
∂μφ∂μφ− V (φ)

]
=
∫

d2x

[
1
2
(φ̇)2 − 1

2
(φ′)2 − V (φ)

]
, (5.12)

1 So far in the context of conformal field theory we have denoted the conformal dimension by
h. Here in the chapter on integrable models it will be denoted by Δ.
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82 Solitons and two-dimensional integrable models

where ˙ and ′ refer to time and space derivatives and V (φ) is a positive semi-
definite function of φ. The corresponding equation of motion is given by,

∂μ∂μφ + ∂φV (φ) = φ̈− φ′′ + ∂φV (φ) = 0. (5.13)

The energy associated with a given configuration of φ is,

E =
∫

dx

[
1
2
(φ̇)2 +

1
2
(φ′)2 + V (φ)

]
. (5.14)

Let us assume that the potential has a set of N absolute minima at which it
vanishes, namely V (φi) = 0 for i = 1, . . . , N . If φi are constants independent of
space-time, then the corresponding energy vanishes, and in fact E(φ) = 0 if and
only if φ(x, t) = φi .

Static solutions of the equation of motion are determined by,

φ′′ − ∂φV (φ) = 0. (5.15)

Solitons which have finite energy, must have φ
′
and V (φ) vanish rapidly enough

at ±∞, and thus must approach asymptotically one of the configurations φi that
minimizes the potential, namely

limx→∞ φ(x)→ φi, limx→−∞ φ(x)→ φj . (5.16)

Solving (5.15) is equivalent to solving a mechanical system where x becomes
the time, φ the coordinate of a point particle of a unit mass subjected to a
potential−V (φ), and Emech = 1

2 φ′2 − V (φ) is the conserved energy of the system.
The boundary conditions where at x→ ±∞ V (φ)→ 0 and φ′ → 0 implies that
Emech = 0. The energy of the field theory (5.14) translates into the action of the
mechanical system. The particle trajectory is therefore characterized by having
finite action and vanishing mechanical energy. The virial theorem for the particle
system has the form,

1
2
(φ′)2 = V (φ), (5.17)

which is also easily derivable in field theory language by multiplying (5.15) by
φ′, integrating over x and using the boundary conditions.

From the mechanical analog it is clear that:

(i) there is no non-trivial solution for a potential with a single minimum.
(ii) For a potential with n minima there are 2(n− 1) solutions associated with

trajectories starting at x→ −∞ at φi and ending at x→∞ at φi+1 and
vice versa. Trajectories where instead the particle ends at φj>i+1 or back to
φi are impossible, since all the derivatives dn φ

dxn vanish at φi+1 so the particle
that gets to this point will not be able to leave it.
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5.3 Classical solitons 83

The equation of motion (5.15) has solutions of the form,

x− x0 = ±
∫ φ(x)

φ(x0 )

dφ̃√
2V (φ̃)

, (5.18)

where x0 the integration constant is any arbitrary point where the field has
the value of φ(x0). The integral is non-singular apart from the end-points since
everywhere else V (φ) is positive.

Classical solitons of λφ4 theory

Let us now demonstrate the general features of solitons discussed in the previous
section with the prototype model of the a potential with a quartic interaction.
Consider the potential,

V (φ) =
1
4
λ

(
φ2 − m2

λ

)2

, (5.19)

which has two minima at φ = ± m√
λ

and is obviously invariant under φ→ −φ.
Substituting this potential into (5.18) and inverting it one finds when setting
φ(x0) = 0 the following two possible solutions,

φ(x) = ± m√
λ

tanh
[

m√
2
(x− x0)

]
, (5.20)

which corresponds to either starting at φ = − m√
λ

and ending at φ = m√
λ
, or vice

versa. The former will be called a “kink” and the latter an “anti-kink”. The
invariance under φ→ −φ and parity transformation are easily realized in the
kink anti-kink system, namely, φkink(x) = −φanti−kink(x), and for x0 = 0 also
= −φkink(−x) (otherwise reflect around x0).

The energy density of the kink solution is given by

ε(x) =
1
2
(φ′)2 + V (φ) =

m4

2λ
sech4

[
m√
2
(x− x0)

]
. (5.21)

The total classical energy, which is refered to as the classical mass of the kink is
(as our soliton is like a particle at rest),

Mcl =
∫ ∞

−∞
dxε(x) =

2
√

2
3

m3

λ
. (5.22)

Classical solitons of sine-Gordon theory

The sine-Gordon model, which will serve as a prototype model throughout this
chapter is defined by the action given in (5.12) with the potential,

V (φ) = −m4

λ

[
cos

(√
λ

m
φ

)
− 1

]
. (5.23)
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84 Solitons and two-dimensional integrable models

Later in Section 5.4 we will adopt a different convention where,
√

λ

m
= β μ2 =

m3
√

λ
. (5.24)

In terms of this parametrization the potential reads,

V (φ) = −μ2

β
[cos(βφ)− 1]. (5.25)

The potential has an infinite set of discrete vacua at φk = 2πk m√
λ

and again it
is invariant under φ→ −φ. As for the φ4 case, here as well the integral in (5.18)
can be solved analytically. For the soliton that goes from 0 to m√

λ
2π and vice

versa for the anti-soliton, and choosing φ(x0) = m√
λ
π, we get,

φ(x) = 4
m√
λ

tan−1 [e±m (x−x0 ) ]. (5.26)

Adding m√
λ
2nπ to this, gives a soliton that goes from m√

λ
2nπ to m√

λ
2(n + 1)π,

and vice versa for the anti-soliton. The soliton has a topological charge associated
with (5.6) of Q = 1, the anti-soliton Q = −1.

Substituting the explicit expression of the soliton profile (5.26) into the expres-
sion for the energy one finds that the mass of the SG soliton is

MSGsol =
8m3

λ
=

8m

β2 . (5.27)

Classical stability of the solitons

So far we have shown that scalar field theories with degenerate vacua admit
soliton solutions. Let us now address the question of whether these solutions are
stable against small time-dependent perturbation. Consider the field configura-
tion,

φ(x, t) = φsol(x) + δφ(x, t), (5.28)

where φsol(x) is a time-independent soliton solution and δ(x, t) is a small pertur-
bation. Substituting this configuration into the equation of motion and retaining
only linear terms in the perturbation we get,

∂μ∂μδφ + V ′′(φsol)δφ = 0. (5.29)

Since the equation is invariant under time translation, we express the perturba-
tion as a superposition of normal modes in the following form,

δφ(x, t) =
∑

n

Re[aneiwn tδn (x)]. (5.30)

The normal modes obey the equation,

−d2δn

dx2 + V ′′(φsol)δn = w2
nδn , (5.31)
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5.3 Classical solitons 85

which is in fact a one-dimensional Schrodinger equation with V ′′(φsol) as a poten-
tial. If this equation has eigenmodes with negative eigenvalues, the soliton is
unstable.

It is easy to construct one eigenmode. Since the soliton is invariant under space
translation φsol(x)→ φsol(x + a), δ0 = dφ s o l (x)

dx is an eigenmode with a vanishing
eigenvalue. Now since the soliton is a monotonic function of x, δo does not have
nodes. A theorem about a one-dimensional Schrodinger equation tells us that
the eigenmode with no nodes has the lowest eigenvalue and hence there are no
negative modes and the soliton for any V (φ) is indeed stable.

The topological charge

Any two-dimensional scalar field theory in two dimensions admits the topological
current (5.6), Jμ

top = eμν ∂ν φ. Thus, the following difference is a conserved charge,

Qtop =
∫

dxφ′ = [φ(t,+∞)− φ(t,−∞)] ≡ φ+ − φ−. (5.32)

Often one refers to φ± as the topological indices. In fact for theories with a
potential that has a discrete number (finite or infinite) of vacua, non-singular
field configurations of finite energy have both φ+ and φ− separately conserved.
This results from the following argument. Finite energy implies that both φ+

and φ− are at absolute minima of the potential. Now since the non-singular
configurations are continuous in time, and the potential has a set of discrete
(finite or infinite) vacua, φ(t,∞) must be stationary at φ+, or ∂0φ(t,±∞) =
∂0φ± = 0, namely the indices are conserved.

In fact this conservation can be used to show the existence of non-dissipative
solutions. For instance in the φ4 theory we can show that a configuration with
φ+ = −φ− is non dissipative. By continuity in x there must be, for any t, some x

for which φ = 0. At this point T00 ≥ V (0) and since the definition of a dissipative
solution is that the limt→∞ maxx T00 = 0 it is clear that it is non-dissipative.
Similar arguments hold for other cases of solitons.

Thus, one can divide the space of finite-energy non-singular solutions into
topologically disconnected sub-spaces that are characterized by the two indices
φ±. Such a sub-space cannot be continuously deformed into another one unless
the finite energy condition is violated. For instance, in the φ4 theory, the potential
has two minima so that φ+ = m

λ and φ− = −m
λ . Hence, there are four subspaces

(−,+), (+,−), (−,−), (+,+) associated with the soliton, the anti-soliton and the
two trivial constant vacuum solutions. For the sine-Gordon the solitons belong
to the subspaces characterized by φ− = 2πn m√

λ
and φ+ = 2π(n + 1) m√

λ
.

Obviously, non-trivial topological charges require multiple vacua. The latter
situation occurs if and only if there is a spontaneous breaking of a symmetry.
For instance in φ4 and sine-Gordon it is the discrete φ→ −φ symmetry which
is broken.
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86 Solitons and two-dimensional integrable models

Derrick’s theorem

Consider a scalar field theory in D + 1 space-time dimensions described by the
Lagrangian density,

L =
1
2
∂μφ∂μφ− V (φ), (5.33)

where the potential V (φ) is non-negative and vanishes at its minima. The the-
orem states that for D ≥ 2 the only non-singular time-independent solutions of
finite energy are the vacua.

Let us denote by φ(x) a time-independent solution of the equation of motion.
We now introduce a one-parameter family of field configurations defined as,

φ(λ,x) = φ(λx), (5.34)

where λ is a positive real number. The energy associated with the configuration
φ(λ,x) is,

E(λ) = λ−D

∫
dDx

[
1
2
λ2(∇φ)2 + V (φ)

]
. (5.35)

By Hamilton’s principle the energy as a function of λ is stationary at λ = 1 so
that, ∫

dDx
[
1
2
(D − 2)(∇φ)2 + DV (φ)

]
= 0. (5.36)

For D > 2 the two terms in the integral have to vanish separately, which occurs
only for the vacua. For D = 2, the potential term has to vanish, which again
occurs only for the vacua. This proves the theorem.

The following remarks are in order:

(i) Derrick’s theorem applies only to time-independent configurations.
(ii) It applies to field theories with only scalar fields. Once one introduces

additional fields like gauge fields or fermions the theorem is not valid (see
Section 20.3).

5.4 Breathers or “doublets”

So far we have discussed only time-independent solutions of the equations of
motion. A natural question to ask is whether the equations also admit exact
time-dependent solutions. Another question, seemingly unrelated, is that of the
interactions between solitons and between solitons and anti-solitons. We will see
shortly that these two puzzles are in fact related. We now proceed to examine
these questions in the laboratory of the sine-Gordon model.

The following periodic configuration,

φ(x, t) =
4
β

tan−1
[

η sin(wt)
cosh(ηwx)

]
, (5.37)
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5.4 Breathers or “doublets” 87

where η =
√

(m 2 −w 2 )
w , with w ≤ m, is a solution of the equation of motion (5.13).

We will show now that this solution is related to a bound state of a soliton and
anti-soliton.

Consider first the simple case of small w, namely w � m. For positive sin(wt)
and finite x, the argument of tan−1 is very large, and thus φ ∼ 2π

β . When x

approaches −∞ we can approximate φ(x, t) as,

φ(x, t) ∼ 4
β

tan−1
[
exp
(

mx + ln
[
2m

w
sin(wt)

])]
, (5.38)

which looks like a soliton to the left. Similarly, it looks like an anti-soliton to
the right. The soliton and anti-soliton move further apart as sin(wt) increases to
one, and then when sin(wt) decreases they approach each other. As sin(wt)→ 0
the approximation that lead to (5.38) is no longer valid, in accordance with the
fact that in this region the soliton and anti-soliton are on top of each other.
A similar discussion applies also for negative sin(wt). It is thus clear that the
solution (5.37) describes an oscillation of a soliton anti-soliton pair around their
common center of mass.

Revealing a bound state solution implies that the system must be attractive
at least in a certain region of the “coupling constant”. Indeed if one uses the
coupling constant,

ξ =
πβ2

8π− β2 , (5.39)

then

∞ > ξ > π repulsive interaction

ξ = π free particle

π > ξ > 0 attractive interaction (5.40)

As will be clarified in the next chapter, the case of ξ = π corresponds to a free
massive Dirac fermion. This will be further discussed in Section 6.1 as a bosoniza-
tion of the free massive Dirac fermion. Also, the attractive region corresponds
to positive coupling of a four-fermion interaction, namely attraction, while the
repulsive region above corresponds to a negative coupling four-fermion. The case
of negative ξ leads to no ground state.

If indeed the breather describes a bound state, it has to have a mass which
is smaller than twice the mass of the soliton. It is easy to compute the classical
energy associated with (5.37) at t = 0, since both the potential and the φ′ vanish.
Thus,

E
(clas)
breather =

∫
dx

[
1
2
(φ̇)2

]
=

8(ηw)2

β2

∫
dx

1
cosh2(ηwx)

= 2Msol

√
1−
(w

m

)2
,

(5.41)
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(a) (b) (c)

Fig. 5.1. Normal-order correction of the coupling (a), a correction to m2 (b)
and the lowest-order contribution to δm2 (c).

where Msol is the mass of the soliton. This verifies the existence of a binding
energy since the mass of the breather is less than twice the mass of the soliton.
In Section 5.5.1 the quantum description of the bound states will be addressed,
and their scattering processes in Section 5.6.

5.5 Quantum solitons

The quantization of the soliton and breather was worked out in [74].
The classical mass of the soliton is M = 8m

β 2 , as in (5.27). Quantum mechani-
cally this mass is corrected due to quantum fluctuations. We parametrize these
space-time-dependent fluctuations as,

φs → φs +
∑

n

Re[eiwn tδn (x)]. (5.42)

The normal modes δn (x) obey the equation,

[−∂2
x + m2 cos(βφs)]δn (x) = w2

nδn (x). (5.43)

The leading order of the quantum mass is then given by

Mquantum = Ms +
1
2

∑
n

wn + Vct(φs), (5.44)

where Vct(φs) is a counter term that one has to add to the Lagrangian.
In two dimensions the only source of UV divergences in any order of pertur-

bation theory are diagrams that contain a loop consisting of a single internal
line. Stated differently, UV divergences are due to the fact that the action is not
normal ordered. The corresponding diagrams are depicted in Figure 5.1. In fact
the corrections (a) and (b) cancel and the only corrections follow from (c).

Let us first recall the normal ordering of φ2(x), namely,

φ2(x) =: φ2(x) :m +
1
4π

∫
dk√

k2 + m2
(5.45)

where : :m indicates that the normal ordering is performed for a scalar of mass
m. The last integral in obviously divergent so one introduces a cutoff Λ� m
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5.5 Quantum solitons 89

such that

1
4π

∫ Λ

−Λ

dk√
k2 + m2

=
1
4π

ln
4Λ2

m2 + O

(
m2

Λ2

)
. (5.46)

For a general potential V (φ), Wick’s theorem tells us that,

V (φ) =:
[
e

1
8 π ln 4 Λ 2

m 2
d 2

d φ 2 V (φ)
]

:m . (5.47)

If one expands the exponent one finds a term with no contraction, next, with
one contraction etc. We can pass from normal ordering at mass m to normal
ordering at m̃. This transformation is independent of the cutoff, since

: φ2 :m =: φ2 :m̃ +
1
4π

ln
m2

m̃2 , (5.48)

and hence

: V (φ) :m =:
[
e

1
8 π ln m 2

m̃ 2
d 2

d φ 2 V (φ)
]

:m̃ . (5.49)

When applied to the sine-Gordon case, the normal-ordered potential takes the
form,

m2

β2 : [cos(βφ)− 1] :m
(m2 − δm2)

β2 [cos(βφ)− 1] , (5.50)

and where to the lowest order in β,

δm2 = −m2β2

4π

∫ Λ dk√
k2 + m2

. (5.51)

Thus the counterterm potential reads,

Vcounter(φ) = −δm2

β2

∫ ∞

−∞
dx[(1− cos(βφs)]− Evacuum , (5.52)

where we further subtracted the energy of the vacuum. Finally the quantum
mass takes the form

Mquantum = Ms +
1
2

∑
n

wn −
δm2

β2

∫ ∞

−∞
dx[(1− cos(βφs)]−

1
2

∑
n

√
k2

n + m2 ,

(5.53)
where kn = 2π

L , with L the size of the quantization length, to be sent to ∞ at
the end of the calculation.

When substituting the set of all the frequencies wn associated with solutions
of (5.43) one finds that the quantum mass is finite and reads,

Mquantum =
8m

β2 −
m

π
=

m

ξ
(5.54)

up to corrections of order mβ2 .
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5.5.1 Quantization of the breather

Next we discuss the quantization of the classical time-dependent breather solu-
tion. First, as a warm up exercise, compute the spectrum approximately, using
the Bohr–Sommerfeld “old quantization procedure”. Adapting this recipe to field
theory states that a one parameter family of periodic fields characterized by the
period τ = 2π

w has an energy eigenstate whenever∫ τ

0
dt

∫
dxπ(x, t)∂0φ(x, t) = 2πN, (5.55)

where N is an integer.
Using the relation between the Hamiltonian and Lagrangian densities, H =

π∂0φ− L, we find after integrating over one period that,

Eτ = 2πN −
∫ τ

0
dt

∫
dxL. (5.56)

By differentiating with respect to τ (with N varying as a function of it, by
analytic continuation), and using the equations of motion we find,

dN

dE
=

1
w

=
1
m

1√
1− E 2

4M 2

, (5.57)

where the expression for w in terms of E and M follows from the calculation of
the energy which can be performed most conveniently at t = 0, as was done in
(5.41).

Integrating this equation and using a natural boundary condition that N = 0
for E = 0 the Bohr–Sommerfeld procedure predicts the following spectrum,

MN = 2Msol sin
(

Nβ2

16

)
N = 1, 2, . . . , <

8π

β2 . (5.58)

Next we would like to describe the quantization procedure of Dashes, Hass-
lacher and Neveu (DHN). The classical action of the breather solution per period
τ = 2π

w is determined by substituting the breather solution (5.37) into the action
and integrating,

Scl(φb) =
32π

β2

[
cos−1

(w

m

)
− η
]
. (5.59)

The stability of the breather solution is determined by the requirement that
there are no negative eigenmodes to the stability equation,

[∂μ∂μ + m2 cos(βφb)]δn (x, t) = 0, (5.60)

where δn (x, t), which obeys δn (x, t + τ) = eiνn δn (x, t), is the fluctuation of the
breather solution. The set of all the solutions of this equation was written down
by DHN [74].

The corresponding spectrum of νn reads,

ν0 = 0 ν1 = 0 νn =
2π

w

√
m2 + q2

n , (5.61)
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where qn obeys the equations

Lqn + f(qn ) = 2πn f(qn ) = 4 tan−1
(

ηw

qn

)
, (5.62)

and where L is the size of the space direction. The two vanishing frequencies are
associated with the invariance under space and time translations.

The WKB semi-classical quantization determines the energy level of the
breather solution via the conditions,

Ecl(φb) + Ect(φb)− 1/2
∞∑
0

w2

2π
∂w νn = E

Scl(φb) + Sct(φb) +
2πE

w(φb)
− 1/2

∞∑
0

νn = 2πN, (5.63)

where Ect and Sct are the energy and action associated with the counterterm.
In the limit of L→∞ the sum over qn turns into an integral. The integral has
a quadratic as well as logarithmic divergences. These divergences will be can-
celled out by the contribution of the counterterm such that Scl(φb) + Sct(φb)−
1/2
∑∞

0 νn is the same as the Scl(φb) given above with the renormalization of
the coupling constant β2 → ξ = πβ 2

8π−β 2 . Using this result it is easy to determine
the energy,

E = − d
dτ

(
Scl(φb) + Sct(φb)− 1/2

∞∑
0

νn

)
2wη

ξ
(5.64)

Substituting this into the second equation of (5.63) one finds that the energy
levels take the form,

MN =
2m

ξ
sin
(

Nξ

2

)
N = 1, 2, . . . , <

π

ξ
. (5.65)

Note that in spite of the fact that the quantization condition permits any N ,
only if it is smaller than π

ξ the classical breather solution exists. Thus the inter-
pretation of this result is that there is a finite number of quantum bound states
corresponding to the classical breather solution. Even though the derivation of
the mass spectrum of the bound states was based on a Wentzel, Krames and
Brillonin (WKB) approximation, the final result turns out to be exact. This
statement follows from the analysis of the physical poles of soliton anti-soliton
scattering, and already indicated in perturbation theory from two loops. The
latter, though, works for mass ratios only, in view of scale dependence for the
normal ordering of each individual mass.

The spectrum (5.65) can be re-written in terms of the mass of the quantum
soliton. Using (5.54) this takes the form,

MN = 2Msol sin
(

Nξ

2

)
N = 1, 2, . . . , <

π

ξ
, (5.66)
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which indicates that the quantum breather states are indeed bound states of a
quantum soliton anti-soliton pair.

At weak coupling Nβ2 � 1, the mass spectrum reads,

MN = Nm

[
1− 1

6

(
Nβ2

16

)2

+ O(N 2β6)

]
. (5.67)

Thus at weak coupling the lowest bound state has a mass of,

M1 = m

[
1− 1

6

(
β2

16

)2

+ O(β6)

]
, (5.68)

showing that first bound state is in fact the “elementary” boson of the theory.
Moreover the higher bound states have a mass which is NM1 + O[(β2)2

N(1−
N 2)], namely bound states of N elementary bosons. These bound states are
loosely bound with a binding energy of m

6 ( β 2

16 )2N(N 2 − 1). Using perturbation
theory one can show that each of these states is stable against decay to states
with lower N . In fact the stability turns out to be an exact statement. The source
of the stability of these states is the set of infinitely conserved charges as will be
discussed in the following section.

5.6 Integrability and factorized S-matrix

One of the first papers that discusses integrability of the S-matrix is the seminal
paper [235]. We follow this paper in describing the basic notions of integrability.
The Yang–Baxter relations were derived in [230] and [29] and S-matrix results
for solitons and breathers of the sine-Gordon model are analyzed in [198].

Consider an integrable theory with ∞ of conserved charges Qn diagonalized
in the single particle base such that

Qn |p(a)>= w(a)
n (p)|p(a)>, (5.69)

where p is the momentum of the particle and (a) denotes its type. For the sine-
Gordon case the eigenvalues w

(a)
n (p) are given by,

w
(a)
2n+1(p) = p2n+1 , w

(a)
2n (p) = p2n

√
p2 + m2

a . (5.70)

In general one assumes that the w
(a)
n (p) form a set of independent functions. A

multiple particle in or out state obeys

Qn |p(a1 )
1 . . . p

(ak )
k , in> =

k∑
i=1

w(ai )
n (pi)|p(a1 )

1 . . . p
(ak )
k , in>, (5.71)

and since the charges Qn are conserved one finds that,∑
i∈in

w(ai )
n (pi) =

∑
i∈out

w(ai )
n (pi). (5.72)
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Fig. 5.2. Space-time picture of the multi-particle factorized scattering.

From this conservation one can deduce that,

� For any given mass ma the number of initial and final particles of this mass is
the same.

� The final set of momenta is the same as the initial one.

These two rules, that should apply also to intermediate states where particles
are far enough from each other, together with the special kinematics of two
dimensions, are behind the assertion that the multi-particle S-matrix of theories
equipped with infinitely many conserved charges, can be expressed in terms of
two-particle ones.

The factorized S-matrix corresponds to the following scattering process:

� In the infinite past a set of N particles with momenta p1 > p2 > . . . > pN are
spatially arranged in the opposite order, namely, x1 < x2 < . . . < xN .

� In the interaction region the particles collide in pairs. In each collision the
momenta are conserved and in between collisions the particles move as free
particles.

� The final state of the outgoing particles, achieved after N (N −1)
2 pair collisions,

is built from the N particles arranged along the x coordinate in the order of
increasing momenta.

The factorized scattering of the N particles is represented, for N = 4, by the
space-time diagram Fig. 5.2, in which time is flowing up.
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Fig. 5.3. Two possible ways of three-particle scattering.

� Each line corresponds to a given value of the momentum associated with the
slope of the line.

� Each vertex corresponds to a two-particle collision. The two-particle amplitude
Sij (pi, pj ) has to be attached to each vertex.

� The total S-matrix element of the process is the product of all the N (N −1)
2

two-particle amplitudes
∏

ij Sij , and then a sum over the different kinds of
particles in the internal lines.

Take for example the case of N = 3. The same scattering can be represented in
two ways, as is shown in Fig. 5.3. These two differ only by a parallel translation
of a line, and thus represent the same process.

5.7 Yang–Baxter equations

The amplitudes and phases of the two diagrams should be the same. The require-
ment that they are indeed the same imposes cubic equations on the two-particle
matrix elements which are called factorization equations or Yang–Baxter equa-
tions. We now proceed to analyze these conditions of factorization.
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It is more convenient to discuss the S-matrix in terms of the rapidities of the
massive particles. The rapidity β of a particle of mass m is defined via,2

p± = m exp(±β). (5.73)

The scattering amplitude of a system of two particles S(p1 , p2) is a function
of the rapidity difference β = β1 − β2 as can be seen from the fact that the
s-channel invariant

s = (p1 + p2)2 , (5.74)

is given by

s = m2
1 + m2

2 + 2m1m2 cosh(β1 − β2). (5.75)

We now analytically continue s and define the amplitude S(s) as an analytic
function in the complex s-plane. This function has two cuts along the real axis for
s ≥ (ma + mb)2 and s ≤ (ma −mb)2 . The points s = (ma −mb)2 and s = (ma +
mb)2 are square root branching points of S(s). Using (5.75), S(s) is mapped to
S(β), where β = β1 − β2 . The physical sheet is mapped into the strip of 0 <

Imβ < π, the branch cuts to the lines Imβ = 0 and Imβ = π, and the crossing
transformation of s→ 2m2

1 + 2m2
2 − s to β → iπ− β. If one assumes that there

are no other cuts, then S(β) is a meromorphic function in the above strip. In
the non-relativistic limit, for mi � p1

i , the rapidity goes into the velocity βi →
vi = pi

m i
.

5.8 The general solution of the S-matrix

Consider the two-particle S-matrix,

ikSjl = <Aj (β′
1)Al(β′

2), out|Ai(β1)Ak (β2), in>

= δ(β′
1 − β1)δ(β′

2 − β2)[δik δj lS1(s) + δij δklS2(s) + δilδkjS3(s)]

± [i↔ k, β1 ↔ β2 ], (5.76)

where i, j, k, l = 1, 2 so that the particles are in doublets of O(2), and the ± refers
to bosons (+) and fermions (−). This can be generalized to O(N) in a straightfor-
ward way. Here we analyze only the case of the doublet. The amplitudes S2 , S3

are the transition and reflection amplitudes, respectively, and S1 corresponds
to the process Ai + Ai → Aj + Aj for (i 	= j). The Ai(β), non-commutative

2 Please note, that the β we had before, in the term cos(βφ) in the action, is not to be confused
with the present one, which denotes the rapidity.
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variables representing the particles, obey the relation,

Ai(β1)Aj (β2) = δijS1(β)
∑

n

An (β2)An (β1) + S2(β)Aj (β2)Ai(β1)

+ S3(β)Ai(β2)Aj (β1). (5.77)

Incoming states are represented by products arranged by order of decreasing
rapidities, while outgoing by increasing rapidities. The crossing symmetry rela-
tions are,

S2(β) = S2(iπ− β) S1(β) = S3(iπ− β). (5.78)

The unitarity conditions for the two-particle S-matrix are,

S2(β)S2(−β) + S3(β)S3(−β) = 1

S2(β)S3(−β) + S2(−β)S3(β) = 0

2S1(β)S1(−β) + S1(β)S2(−β)+ S1(β)S3(−β)+ S2(β)S1(−β)

+ S3(β)S1(−β) = 0. (5.79)

Unitarity (5.79) and crossing symmetry (5.78) do not fix the S-matrix. The addi-
tional conditions one has to impose are those of the factorization or Yang–Baxter
equations. The latter are obtained by considering all possible three-particle in-
products Ai(β1)Aj (β2)Ak (β3), reordering them to get out-products using (5.77),
and requiring that the results be independent of the order of successions of the
two particle commutations, one then finds,

S2S1S3 + S2S3S3 + S3S3S2 = S3S2S3 + S1S2S3 + S1S1S2

S3S1S3 + S3S2S3 = S3S3S1 + S3S3S2 + S2S3S1

+S2S3S3 + 2S1S3S1 + S1S3S2 + S1S3S3 + S1S2S1 + S1S1S1 , (5.80)

where, for each of the terms, the arguments for the three S factors are β, β +
β′, β′, respectively.

The general solution of the factorization equations is expressed in terms of one
function which we take to be S2(β). The solution reads,

S3(β) = ictg

(
4πδ

γ

)
cth

(
4πβ

γ

)
S2(β)

S1(β) = ictg

(
4πδ

γ

)
cth

(
4π(iδ − β)

γ

)
S2(β) (5.81)

with γ and δ real, but so far arbitrary. This solution as well as the restriction from
unitarity (5.79) is valid also for a non-relativistic system. Crossing symmetry is a
restriction that shows up only in the relativistic case. Imposing the latter (5.78)
on the general solution fixes δ = π. A “minimum” solution for S2(β) then takes
the form,

S2(β) =
2
π

sin
(

4π2

γ

)
sh
(

4πβ

γ

)
sin
(

4π(iπ − β)
γ

)
U(β), (5.82)
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where,

U(β) = Γ
(

8π

γ

)
Γ
(

1 + i
8β

γ

)
Γ
(

1− 8π

γ
− i

8β

γ

) ∞∏
n=1

Rn (β)Rn (iπ− β)
Rn (0)Rn (iπ)

,

Rn (β) =
Γ
(
2n 8π

γ + i 8β
γ

)
Γ
(
1 + 2n 8π

γ + i 8β
γ )
)

Γ
(
(2n + 1)8π

γ + i 8β
γ

)
Γ
(
1 + (2n− 1) 8π

γ + i 8β
γ

) . (5.83)

It is a “minimal” in the number of singularities along the imaginary β axis, and
more general solutions can be obtained from it by multiplying with a meromor-
phic function of the form f(β) =

∏L
k=1

shβ+i sin αk

shβ−i sin αk
for arbitrary real numbers

αk .

5.8.1 The S-matrix of the sine-Gordon model

The sine-Gordon model has a hidden O(2) invariance, which is simplest to see
via the soliton solutions, where the soliton and anti-soliton are incorporated in
an O(2) doublet. In terms of the A1(β) and A2(β) the soliton and anti-soliton
amplitudes are,

A(β) = A1(β) + iA2(β) Ā(β) = A1(β)− iA2(β). (5.84)

In terms of A and Ā, (5.77) takes the form,

A(β1)Ā(β2) = ST (β)Ā(β2)A(β1) + SR (β)A(β2)Ā(β1)

A(β1)A(β2) = S(β)A(β2)A(β1)

Ā(β1)Ā(β2) = S(β)Ā(β2)Ā(β1), (5.85)

where S(β), ST (β) and SR (β) are the scattering amplitude of identical solitons,
transition and reflection amplitude for soliton anti-soliton, which are related to
S1(β), S2(β) and S3(β) as,

S(β) = S3(β) + S2(β)

ST (β) = S1(β) + S2(β)

SR (β) = S1(β) + S3(β). (5.86)

It follows from crossing symmetry (5.78) that,

S(β) = ST (iπ− β) SR (β) = SR (iπ− β). (5.87)
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Fig. 5.4. The zeros (crosses) and poles (dots) of ST (β) (upper) and SR (β)
(lower). All the singularities have pure imaginary values even though some of
them are displaced from the imaginary axis for clarity [235].

Substituting these relations in the general solution derived in the previous
section one finds for the SG model,

ST (β) = −i
sh
(

8πβ
γ

)
sin
(

8π2

γ

)SR (β)

S(β) = −i
sh
(

8π(iπ−β )
γ

)
sin
(

8π2

γ

) SR (β), (5.88)

where,

SR (β) =
1
π

sin
(

8π2

γ

)
U(β). (5.89)

The zeros and the poles of ST (β) and SR (β) are shown in Fig. 5.4.
The solution (5.88) is in fact the exact solution of the S-matrix of the SG

model. This assertion is supported by the following properties:

� The poles of ST (β) are located at equidistance, and their values are in accor-
dance with the semi-classical mass spectrum if one equates γ = 8ξ.

� Note that for the value of ξ = π where the coupling of the associated Thirring
model vanishes, and the SG model is a bosonized version of a free Dirac fermion,

ST (β) ≡ S(β) = 1 SR (β) = 0. (5.90)

� At ξ ≥ π all bound states, including the “elementary particle” associated with
the field of the SG model, become unstable and the spectrum includes only
soliton and anti-soliton. This situation follows from the fact that at this region
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the Thirring coupling is negative and there is a repulsion between the solition
and anti-soliton.

� At ξ = π
n the reflection amplitude vanishes identically.

� Expanding (5.88) in powers of [( 8π
γ )− 1], which means small coupling of the

massive Thirring model, matches the perturbative expansion of the latter
model.

� The limit β2 → 0 of the exact result (5.88) is equal to the semi-classical expres-
sion of the two-particle S-matrix.

The explicit expression for the two-particle S-matrix (5.88) enables one to also
write down the S-matrix for any number of solitons and anti-solitons and the
scattering of any number of bound states. This general approach to solving the
S-matrix can be applied to the various integrable models. Here we demonstrate
it on the sine-Gordon model. For soliton and anti-solitons we find the following
S-matrix elements:

S
1
2 , 1

2
1
2 , 1

2
(β) = S

− 1
2 ,− 1

2
− 1

2 ,− 1
2
(β) = S(β)

S
1
2 ,− 1

2
1
2 ,− 1

2
(β) = S

− 1
2 , 1

2
− 1

2 , 1
2
(β) = −

sh
(

π
ξ β
)

sh
(

π
ξ (β − πi)

)S(β)

S
1
2 ,− 1

2
− 1

2 , 1
2
(β) = S

− 1
2 , 1

2
1
2 ,− 1

2
(β) =

sh
(

π2 i
ξ

)
sh
(

π
ξ (β − πi)

)S(β)

S
ε′1 ,ε′2
ε1 ,ε2 (β) = 0 ε1 + ε2 	= ε′1 + ε′2 . (5.91)

S can also be expressed as an exponential of an integral,

S(β) = − exp

⎡⎣−i

∫ ∞

0

sin(κβ) sh
(

π−ξ
2 κ
)

κch
(

πκ
2

)
sh
(

ξκ
2

) dκ

⎤⎦. (5.92)

5.9 From conformal field theories to integrable models

So far we have analyzed integrable theories based on a scalar field theory with
an integrable interacting potential. As was mentioned in Section 1 there is a
more general scheme of constructing integrable models. This scheme is based
on perturbing conformal field theories with relevant primary fields so that the
action takes the form,

S = SCFT +
∑

i

λi

∫
d2zΦi(z, z̄). (5.93)

Note that just as for the conformal field theories we use here complex
two-dimensional coordinates. The Φi(z, z̄) are primary fields of conformal
dimension Δi + Δ̄i < 2, namely relevant operators. Since these operators are
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super-renormalizable, they do not affect the short distance behavior but do affect
the structure of the IR domain. In the analogy with statistical mechanical sys-
tems, where the CFT describes the behavior of the system at its fixed point, the
perturbation with the relevant primary fields describes the scaling region around
the fixed point.

A system described by an action of the form (5.93), is integrable provided that
one can identify a set of infinitely many conserved charges just as for the sys-
tems described previously. An important class of such theories are the integrable
minimal models, for example the tricritical Ising modelM4,5 perturbed by Φ3

5 , 3
5

and the tricritical Potts modelM6,7 perturbed by Φ1
7 , 1

7
.

The renormalization group (RG) flow of the integrable systems follows a tra-
jectory that starts at a fixed point and may end on another one in the IR, or
on a point that corresponds to a massive QFT. An important property of these
flows is the c-theorem3 which states the following:

Quantum field theories which possess rotational invariance, reflection pos-
itivity, and conservation of the energy momentum tensor admit a function
c(λi) of the coupling constants λi which is non-increasing along the RG
trajectories and is stationary only at fixed points.

The proof of the theorem is as follows. Consider the correlators of T ≡ Tzz

and Tzz̄ ,

<T (z, z̄)T (0, 0)> =
F (zz̄)

z4 , <T (z, z̄)Tzz̄ (0, 0)> =
G(zz̄)
z3 z̄

,

<Tzz̄ (z, z̄)Tzz̄ (0, 0)> =
H(zz̄)
z2 z̄2 . (5.94)

We now use the conservation law,

∂̄T + ∂Tzz̄ = 0, ∂T̄ + ∂̄Tz z̄ = 0, (5.95)

to deduce the following differential equations for F,G and H,

Ḟ + (Ġ− 3G) = 0 Ġ−G + Ḣ − 2H = 0, (5.96)

where Ȧ = dA(x)
d log x . Since the positivity condition implies that H ≥ 0, the following

c function is non-increasing,

c = 2F − 4G− 6H, ċ = −12H. (5.97)

At the fixed points Tzz̄ = 0, hence G = H = 0 and c = 2F , as indeed it should
be. Recall that the OPE in CFT is of the form T (zz̄)T (0, 0) = ( c

2 )
z 4 + . . .

One can further write down an expression for the integral of ċ, namely for
the difference of c in the UV and IR regions. For the case of a perturba-
tion with a single operator Φ, the trace of the energy-momentum tensor is

3 Zamolodchikov c-theorem was derived in [232].
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Tzz̄ = πλ(1−Δ)Φ, where the total conformal dimension is 2Δ. Using (5.97) it
was shown that,

cUV − cIR = 12πλ2(1−Δ)2
∫

d2x|x|2 <Φ(x)Φ(0)> . (5.98)

This result has been applied to integrable minimal models yielding the cor-
rect difference in the Virasoro anomalies. Another example where this relation
between the conformal data and the properties of the non-conformal theory can
be tested is the sine-Gordon model. The model can be thought of as a pertur-
bation on a free massless scalar field which has c = 1, and the massive model
has c = 0. Let us check for this case the outcome of the relation (5.97). The
perturbation now is,

λΦ =
m2

β2 : (cos βφ− 1) : 2Δ =
β2

4π
. (5.99)

If we expand λΦ in β, then the leading order λΦ is 1
2 m2φ2 for which Δ = 0 and,

<λΦ(x)λΦ(0)>=
1
4
m2 <φ(x)φ(0)>2=

m4

8π2 K2
0 (m|x|), (5.100)

where K0 is a Bessel function. Inserting this into (5.97) we get,

cUV − cIR = 3π
m4

2π2

∫
d2x|x|2K2

0 (m|x|) = 3
∫ ∞

0
drr3K2

0 (r) = 1, (5.101)

which verifies our data about the Virasoro anomalies at the two ends of the
trajectory. One can further show that higher-order terms in β are in accordance
with the fact that cUV − cIR is β independent.

5.10 Conserved charges and classical integrability

We will now show that the classical sine-Gordon theory incorporates an infinite
set of conserved charges. This will imply an exact determination of any S-matrix
element of the theory. This property of having a set of an infinite number of
conserved currents and charges is referred to as classical integrability. In the
next section we will discuss the fate of the integrability in the quantum domain.
We choose here to describe the sine-Gordon model, however this structure applies
to a class of models.

There are several methods to determine these classically conserved charges.
Here we will follow two of them: The Lax pair approach and a method based on
a generating function.

The infinitely many charges of the integrable models were analyzed using var-
ious different techniques. The Lax pair method applied to the sine-Gordon is
described in [61]. The method of multilocal charges from an integral equation
was presented in [153]. The inductive method was introduced in [45].
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5.10.1 The Lax pair method

In the Lax pair approach the idea is to rewrite the sine-Gordon equation of
motion in terms of a commutator relation between two operators. Let us first
rewrite the equation of motion of the sine-Gordon system in the light-cone coor-
dinates,

∂̃+ ∂̃−φ̃ = − sin(φ̃), (5.102)

where φ̃ = βφ and ∂̃± = m∂±.
Next we define the following pair of 2× 2 matrix Lax operators,

L = 2σ3 ∂̃− + σ2(∂̃−φ̃)

B =
1
2
[σ3 cos(φ̃) + σ2 sin(φ̃)]L−1 . (5.103)

In terms of these operators the sine Gordon equation takes the form,

∂̃+L = [L,B]. (5.104)

The reason for rewriting the equation of motion in this form is the fact that the
spectrum of L is conserved. To realize this property of the Lax pair, notice first
that the solution of (5.104) can be parameterized as,

L(x+) = S(x+)L(0)S−1(x+) ∂+S = −BS. (5.105)

Now consider the eigenvalue problem,

L(x+)v(x+) = λv(x+). (5.106)

It is easy to check that if v(0) is an eigenfunction of L(0) with eigenvalue λ, then
v(x+) is an eigenfunction of L(x+) with the same eigenvalue λ, where,

v(x+) = S(x+)v(0). (5.107)

Since x+ is the light-cone time direction, this implies the conservation of the
eigenvalues. This conservation of the spectrum is the origin of the infinite set of
conserved charges.

For the case that L can be represented by a finite matrix, it is obvious from
(5.105), using the cyclicity of the trace, that Qn = Tr[Ln ] are conserved charges.
In general, and in particular in our case, L does not act only in a space of
finite-dimensional matrices but also in the continuous space whose base vectors
are |x−>. Thus the trace takes the form of the integral

∫∞
−∞ dx−. Due to the

unitarity of S(x+) the cyclicity property of the trace is maintained and hence
Qn = Tr[Ln ] are indeed conserved charges.

It turns out that one can map the Lax pair of the sine-Gordon system to that
of the Korteweg-deVries (KdV) equation ∂0u(x, t) = 6u∂1u− ∂3

1 u. This map is
useful since it is more convenient to express the conserved charges of the sine-
Gordon system in terms of the L operator of the KdV equation. In this format
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the first four charges of the set of infinite charges which are classically conserved
are,

Q1 = −
(

1
4

)∫ ∞

−∞
(∂−φ̃)2dx−

Q2 = +
(

1
4

)2 ∫ ∞

−∞
[(∂−φ̃)4 − 4(∂2

−φ̃)2 ]dx−

Q3 = −
(

1
4

)3 ∫ ∞

−∞
[(∂−φ̃)6 − 20(∂−φ̃)2(∂2

−φ̃)2 + 8(∂3
−φ̃)2 ]dx−

Q4 = +
(

1
4

)4 ∫ ∞

−∞
[(∂−φ̃)8 − 112

5
(∂2

−φ̃)4 − 56(∂−φ̃)4(∂2
−φ̃)2

+
224
5

(∂−φ̃)2(∂3
−φ̃)2 − 64

5
(∂4

−φ̃)2 ]dx−. (5.108)

5.10.2 The generating function method

A second method to determine the set of infinite conserved charges is based on
a generating function. Define the generating function,

ψ = φ +
1
β

sin−1(εβ∂−ψ). (5.109)

When φ obeys the sine-Gordon equation, ψ obeys the following equation,

∂+

(
1−
√

1− β2ε2(∂−ψ)2

ε2

)
−m2∂− (cos(βψ)− 1) . (5.110)

Equation (5.109) determines ψ as a power series in φ and ε. Upon substituting
this into (5.110), we get an infinite set of conserved charges, that are the coef-
ficients of the even powers of ε. A dual sequence of charges can be obtained by
interchanging ∂+ and ∂− in the equations above. The set of conserved currents
is labeled as,

∂+J+
2n + ∂−J−

2n = 0, (5.111)

where 2n relates to the power of ε. The lowest-order current is the energy-
momentum tensor,

J+
0 ≡ T−− =

1
2
(∂−φ)2 , J−

0 ≡ T+− = −m2

β2 (cos(βφ)− 1). (5.112)

The second-order currents are,

J+
2 =

1
2
(∂2

−φ)2 − β2

8
(∂−φ)2 , J−

2 =
m2

2
(φ−)2 cos(βφ), (5.113)

and similarly one can write the expressions for the higher order currents J2n .
One can map the charges derived by the Lax pair procedure to those derived

by the generating function method.
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5.11 Multilocal conserved charges

In the previous section we analyzed the set of infinitely many conserved charges
associated with local currents. It will be shown later that these conservation
laws are responsible for the fact that the system is integrable, namely there is no
particle production and the S-matrix is factorizable. We would like to show now
that this type of structure may also follow from conservation laws associated with
multilocal currents. The construction of the multi-local currents will be presented
in two ways: (i) via an integral equation, (ii) by an inductive procedure.

We then show that the two types of charges are in fact equivalent.

5.11.1 Multilocal charges from integral equation

Consider first the O(N) non-linear sigma model defined by the Lagrangian den-
sity,

SO (N ) =
1

2g2
0

∫
d2x
[
(∂+�n) · (∂−�n)− u(�n2 − 1)

]
, (5.114)

where �n is an N -dimensional real vector and g0 is the coupling constant. The
fact that the field �n is constrained �n2 = nin

i = 1 i = 1, . . . , N is incorporated via
the Lagrange multiplier u. The equations of motion that follow from this action
are,

∂−∂+�n + u�n = 0, �n2 = 1. (5.115)

So u is actually the action density u = (∂+�n) · (∂−�n). Instead we can write the
equation of motion as,

∂μ∂μ�n + �n(∂μ�n · ∂μ�n) = 0. (5.116)

The action is classically invariant under O(N) global symmetry, by construc-
tion. For the special case of n = 3, namely O(3), the current takes the form,

jk
μ = εijk (ni∂μnj − ∂μninj ). (5.117)

It is easy to check, using the equations of motion, that this current is indeed
conserved. In addition the energy-momentum is conserved,

∂+T−− = ∂+

[
1
2
(∂−�n)2

]
= ∂−�n∂−∂+�n = −u∂−

[
1
2
(�n)2

]
= 0. (5.118)

Thus classically the trace of the energy-momentum tensor vanishes T+− = 0.
In addition there is an infinite set of currents, the simplest of which takes the

form,

J− =
1

2|∂−�n|

[
∂−

(
∂−�n

|∂−�n|

)]2

, J+ = − u

|∂−�n| . (5.119)
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An alternative way to write down a set of non-local classically conserved
charges is the following. We define at any given t the (2× 2) U(t, x) operator via
the equation,

∂xU(t, x) = i
w

1− w2

[
ji
1 − wji

0
]
σiU(t, x), (5.120)

and the boundary condition U(t,−∞) = 1, for any Cauchy data
ni(t, x), ∂tn

i(t, x), where w is the “spectral parameter” which is a com-
plex parameter with w 	= ±1. Following this definition and using the equations
of motion one can show that,

d
dt

Q(w) ≡ d
dt

U(t,∞) = 0. (5.121)

If one expands Q in terms of the spectral parameter one finds a set of infinitely
many conserved charges,

Q(w) =
∞∑

n=0

Qnwn d
dt

Qn = 0. (5.122)

We can now rewrite the differential equation (5.120) in terms of the integral
equation,

U(t, x) = 1 +
w

1− w2

∫ x

−∞
dy
[
ji
0 − wji

1
]
(t, y)σiU(t, y). (5.123)

Inserting the expansion,

U(t, x) =
∞∑

n=0

Unwn , (5.124)

into the integral equation for U(t, x), we find the following recurrence relation,

Un (t, x) = i

∫ x

−∞
dy

[
ji
0(t, y)σi

∑
0≤k≤ (n −1 )

2

Un−2k−1(t, y)

− ji
1(t, y)σi

∑
1≤l≤ (n )

2

Un−2l(t, y)
]
, (5.125)

with U0(t, x) = 1. Thus we can calculate Qn recursively deriving explicit non-
local expressions for the set of infinitely many conserved charges. The “lowest”
charges are given by,

Q0
1 = 0 Qi

1 =
∫

dyji
0(t, y)

Q0
2 = −1

2
Qi

1Q
i
1

Qi
2 =

∫
dx

∫
dydy′εijk jj

0 (t, y)jk
0 (t, y′)θ(y − y′)−

∫
dyji

1(t, y). (5.126)

The algebraic structure associated with these charges is the Yangian symmetry,
the description of which is beyond the scope of this book. In the reference list we
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mention several that deal with these algebras. In Section 5.12 it will be further
shown that both the charges of the form (5.119) as well as (5.126) are quantum
mechanically conserved.

5.11.2 Charges by inductive procedure

The second method of obtaining non-local currents is as follows. Assume that
the system admits a (non-abelian) conserved current which is also a pure gauge,
namely,

Jμ = g−1∂μg, ∂μJμ = 0, (5.127)

where g is a non-singular matrix (for instance U(N) or O(N) matrix). It follows
that the current J is a flat gauge connection, since for Dμ = ∂μ + Jμ we find
that [Dμ,Dν ] = 0 and also ∂μDμ = Dμ∂μ . Using the terminology of differential
forms these properties can be rewritten as,

DJ ≡ dJ + J ∧ J = 0 d ∗ J = 0, (5.128)

together with [D,D] = 0 and D ∗ d = d ∗D. Now let us assume that there is an
n-th conserved current J

(n)
μ , then there is a function χ(n) such that,

J (n)
μ = εμν ∂ν χ(n) . (5.129)

Then there is an (n+1)-th conserved current,

J (n+1)
μ = Dμχ(n) , ∂μJ (n+1)

μ = 0. (5.130)

The conservation follows easily,

d ∗ J (n+1) = d ∗Dχ(n) = D ∗ dχ(n) = DJ (n) = DDχ(n−1) = 0, (5.131)

or directly,

∂μJ (n+1)
μ = Dμ∂μχ(n) = −εμν DμJ (n)

ν = −εμν DμDν χ(n−1) = 0. (5.132)

The sequence of χ(n) starts with χ(0) = 1 and J
(1)
μ = Jμ .

Associated with the set of infinitely many conserved currents, there is obviously
also a set of infinite number of conserved charges,

Q(n) =
∫

dxJ
(n)
0 (t, x). (5.133)

Consider the special case n = 2,

Q(2)(t) =
∫

dxJ
(2)
0 =

∫
dx(∂0 + j

(1)
0 )χ(1)

= −
∫

dxj
(1)
1 (t, x) +

∫
dxj

(1)
0 (t, x)χ(1)(t, x). (5.134)
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We can now re-express χ(1) as χ(1)(t, x) =
∫

dx′j
(1)
0 (t, x′). When substituting

this to the previous equation we discover the structure of multi-local charges of
(5.126).

5.12 Quantum integrable charges in the O(N) model

In Section 5.11 it was demonstrated that certain two-dimensional interacting
models have an infinite set of conserved classical charges. This property consti-
tutes the classical integrability of a given system. A natural question to ask is
whether this integrability persists also in the quantum regime. We will analyze
this question in the context of two models, the O(N) sigma model in this sec-
tion and the sine-Gordon model in the following one. In fact we have already
seen in Section 5.8 how the quantum integrability of the sine-Gordon model fully
determines the S-matrix of the theory.4

In Section 5.11.1 it was shown that classically the O(N) model is scale invari-
ant as the trace of the energy-momentum vanishes. Following our discussion of
the Virasoro anomaly in Chapter 2, it is clear that quantum mechanically the
classical conformal invariance of the O(N) model is broken by an anomaly. The
right-hand side of (5.118) should not vanish any more but rather be equal to some
local terms. These terms can be determined by Lorentz x+ → ax+ , x− → a−1x−

and scale invariance x+ → ax+ , x− → ax− . It turns out that up to a constant
the quantum relation is,

∂+

[
1
2
(∂−�n)2

]
= β̂∂−u = β̂∂−(∂−�n∂+�n). (5.135)

In fact one can show that the constant β̂ is the one-loop beta function.
Consider now the next conservation law. Classically it reads,

∂−

[
1
2
u(∂−�n)2

]
+ ∂+

[
1
2
(∂2

−�n)2
]

=
3
2
(∂−�n)2(∂−u). (5.136)

One can show that this classical conservation is directly related to the conserva-
tion of the current in (5.119). For this make use of the classical scale invariance
x− → f(x−) and the classical conservation ∂+(∂−�n)2 = 0, to choose a gauge
where (∂−�n)2 = 1. Now the classical conservation law takes the form,

∂+

[
1
2
(∂2

−�n)2
]

= (∂−u). (5.137)

This is exactly the conservation of the current (5.119), when inserting the gauge
(∂−�n)2 = 1. To get to the form in general coordinates, namely the form as in

4 Quantum integrability was discussed in [176].
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(5.119), make the substitution,

∂− →
1
|∂−�n|∂−, (5.138)

noting that it also implies u→ u
|∂−�n | .

Quantum mechanically again the right-hand side of equation (5.136) can be
corrected by several terms. To eliminate possible terms that are total derivatives
it is convenient to analyze the integrated form of this conservation law,

∂+

∫
dx−

[
1
2
(∂2

−�n)2
]

= (3 + γ)
∫

dx− 1
2
(∂−�n)2(∂−u), (5.139)

and finally using (5.135) to eliminate ∂−u we get the quantum conservation law,

I =
∫

dx−
[
1
2
(∂2

−�n)2 − (3 + γ)

4β̂
(∂−�n)4

]
, ∂+I = 0. (5.140)

One can now show that this conservation law implies the conservation of∑
i

P−
3
i . Since I commutes with the S matrix [I, S] = 0 one has,

<b out|I|b out> <b out|a in> = <b out|a in> <a in|I|a in> . (5.141)

For asymptotic states with N particles and momenta P1 , . . . , PN we have

<N |I|N> = Constant
∑

i

P−
3
i . (5.142)

The reason that the conserved charge on an asymptotic state has to be pro-
portional to

∑
i P−

3
i is that its tensorial structure is of the form −−−, the only

conserved quantity with − Lorentz index is P− and there are no higher tensorial
charges that are not products of P−.

In a similar manner one has a similar conservation law for P+ so that,∑
in

P 3
− =

∑
out

P 3
−

∑
in

P 3
+ =

∑
out

P 3
+ . (5.143)

If we now write these conservation laws for a 2→ N process combined with
the ordinary conservation of momenta we get four equations for two quantities
which, combined with the analyticity of the S-matrix, implies that there cannot
be any multiple production, and the only allowed process is 2→ 2.

It can also be shown that the classically conserved charges constructed by an
integral equation (5.126) are also quantum mechanically conserved.

5.13 Non-local charges and quantum groups

The discussion of quantum groups and non-local charges follows the paper [39].
For a review see, for instance, [114].

In the previous sections we have derived in various forms sets of infinitely
many conserved charges and argued that they constitute the integrability of
the corresponding models. In particular we described in Section 5.11 non-local
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charges. Here we will establish the algebraic structure of these charges. It will
be shown that they involve non-trivial braiding and that they obey the algebra
associated with “quantum groups”.

Rather than discussing the generalities of this algebraic structure we analyze it
in the context of our laboratory model, the sine-Gordon model. We now rewrite
the Lagrangian density of the model as,

S =
1
4π

∫
d2z∂φ∂̄φ +

λ̂

π

∫
d2z : cos(β̂φ) : . (5.144)

It is straightforward to relate λ̂ of this formulation to m,β of (5.23), and β̂ here
equals β there.

Recall (Section 5.9) that this action can be considered as a conformal field
theory plus a relevant perturbation of the form (5.93). In such a case one can
identify a conserved current that obeys the relation,

∂̄J(z, z̄) = ∂H(z, z̄) ∂J̄(z, z̄) = ∂̄H̄(z, z̄), (5.145)

where for the conformal limit one has ∂̄J = ∂J̄ = 0, and H, H̄ are defined via,

Resz=w (φpert(w)Ja(z)) = ∂ha(z) Ha(z, z̄) = 2λ̂ha(z)φ̄pert(z̄), (5.146)

where the perturbation term is written, in the conformal limit, as
φpert(z)φ̄pert(z̄), and all this under the condition that the Res above are indeed
total derivatives. A similar construction applies also for the anti-holomorphic
current.

We can now identify a pair of non-local fields

φ̃±(t, x) =
1
2

[
φ(t, x)±

∫ x

−∞
dy∂0φ(t, y)

]
, (5.147)

with which we can write a pair of conserved currents J± of the form (5.145) as,

J± = e±
2 i
β̂

φ̃+ (t,x)

H± = λ
β̂2

β̂2 − 2
e±i

(
2
β̂
−β̂
)

φ̃+ (t,x)∓ i
β̂

φ̃−(t,x)
. (5.148)

The conserved charges associated with the pair of currents are

Q± =
1

2πi

(∫
dzJ± +

∫
dz̄H±

)
Q̄± =

1
2πi

(∫
dz̄J̄± +

∫
dzH̄±

)
. (5.149)

The charges Q± are non-local, as a consequence of being built from the non-local
field φ̃.

Using the basic canonical commutation relation [φ(t, x), ∂0φ(t, y)] = 4πiδ(x−
y) and eAeB = e[A,B ]eB eA (when [A,B] commutes with A and B) one finds the
following braiding relations,

J±(t, x)J̄∓(t, y) =
1
q2 J̄∓(t, y)J±(t, x)

J±(t, x)J̄±(t, y) = q2 J̄±(t, y)J±(t, x), (5.150)
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where,

q = e−
2 πi
β̂ 2 . (5.151)

These non-trivial braiding relations of the currents imply similar relations for
the conserved charges,

Q+ Q̄+ − q2Q̄+Q+ = 0

Q−Q̄− − q2Q̄−Q− = 0

Q+ Q̄− −
1
q2 Q̄−Q+ = a(1− q2Q t o p )

Q−Q̄+ −
1
q2 Q̄+Q− = a(1− q−2Q t o p )

[Qtop , Q±] = ±2Q± [Qtop , Q̄±] = ±2Q̄±, (5.152)

where a = λ
2πi γ

2 , γ−1 = Δ = −Δ̄(Q±) and the topological charge Qtop =
β̂
2π (φ(x =∞)− φ(x = −∞)) (compare with (5.6)).

This algebra of the charges is referred to as “q-deformation” ŜLq (2) of the
SL(2) affine Lie algebra with zero center. Recall the basic SL(2) algebra in the
Chevaley basis (3.5),

[H,E±] = ±2E± [E+ , E−] = H. (5.153)

Introducing the spectral parameter w the infinitely many generators of the SL(2)
affine Lie algebra are defined via Ja =

∑
n Ja

n wn with Ja = H,E±. We then
define the Chevaley basis of the affine algebra ˆSL(2) as,

E+1 = wE+ E−1 = w−1E−

E+0 = wE− E−0 = w−1E+

H1 = H H0 = −H. (5.154)

In terms of these generators the ŜLq (2) algebra reads,

[Hi,E+j ] = aijE+j

[Hi,E−j ] = −aijE−j

[E+i , E−j ] = δijE−j
qHi − q−Hi

q − q−1 , (5.155)

and aij is the Cartan matrix of SL(2).
The relations between the non-local charges Q± and Q̄± and the generators

of the ŜLq (2) algebra are,

Q+ = cE+1q
H 1
2 Q− = cE+0q

H 0
2

Q̄− = cE−1q
H 1
2 Q̄+ = cE−0q

H 0
2

Qtop = H1 = −H0 (5.156)

where c2 = λ
2πi γ

2(q−2 − 1).
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5.14 Integrable spin chain models and the algebraic Bethe ansatz

The discussion of the algebraic Bethe ansatz follows closely the pedagogical paper
of Faddeev [88] and also Beisert [31]. The use of the ansatz in a continuous system
that we present follows that of Zamolodchikov [234].

A very useful class of two-dimensional integrable models are the spin chain
models. In these models the space is divided into a discrete number of sites
where spin variables are placed. So far, and in fact also in the rest of this book,
we do not discuss discretized field theories. In this chapter we do since the spin
chain models will be shown, in Section 18, to be intimately related to integrable
sectors of gauge theories in four dimensions. We will demonstrate the techniques
used to solve the spin chain models by applying them to a prototype model,
the XXX1/2 model. We will describe the model, write down the Bethe ansatz
equations associated with it, solve them and extract the spectrum of the model.
We then apply the technique to the discretized sine-Gordon model.

A discrete circle with N ordered points is taken to be the space direction.
The “space” is periodic so that each site is identified with i ≡ i + N . The formal
continuum limit can be taken by introducing a lattice spacing Δ such that Δ→
0, N →∞ while x = NΔ is kept finite.

At each site there is a dynamical variable Xα
i where i denotes the site and α

is a set of finite number of values. One defines a quantum algebra of observables
A by fixing a set of commutation relations between the Xα

i . When [Xα
i ,Xβ

j ] = 0
for any i 	= j the algebra is called ultra local. Examples are canonical variables,
and spin variables which will be used in the XXX1/2 model we are about to
describe.

The Hilbert space of the representations of the ultra local algebra has a natural
tensor product,

H =
N∏

i=1

⊗
hi = h1

⊗
h2 . . .

⊗
hi . . .

⊗
hN , (5.157)

and the variables Xα
i act nontrivially only on hi .

5.14.1 The XXX1/2 model

The XXX1/2 describes a spin chain model with N sites. At each site there is
a spin variable Sα

i = �

2 σα where σα are the Pauli matrices. The Hilbert space
at each site is C2 , the two-dimensional complex numbers. The Hamiltonian that
defines the model is based on a nearest neighbor interaction of the form,

H =
∑
i,α

(
Sα

i Sα
i+1 −

1
4

)
. (5.158)

The spin of the system which is given by,

Sα =
∑

i

Sα
i , (5.159)
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and is conserved,

[H,Sα ] = 0. (5.160)

The notion XXX associates with the fact that the coefficient of (Sα
i Sα

i+1 − 1
4 )

is a constant independent on i and α. In the case where the coefficient is α

dependent, namely Jα (Sα
i Sα

i+1 − 1
4 ), the model is referred as the XYZ model.

To extract the spectrum of the model we make use of the Lax operator defined
by,

Lk,a(λ) = λIk

⊗
Ia + i

∑
α

Sα
k

⊗
σα , (5.161)

where λ is a complex parameter referred to as the spectral parameter, Ik , Sα
k are

the identity and spin operators acting on hk , and Ia , σα act on an auxiliary space
V which is also L2 .

The Lax operator can also be written in the form,

Lk,a(λ) =
(

λ− i

2

)
Ik,a + iPk,a , (5.162)

where Pi,a is the permutation operator in L2⊗L2 , namely,

Pa
⊗

b = b
⊗

a, (5.163)

and is given by,

P =
1
2
(I
⊗

I +
∑
α

σα
⊗

σα ). (5.164)

Equation (5.163) implies,

Pa1 ,a2 = Pa2 ,a1

Pn,a1 Pn,a2 = Pa1 ,a2 Pn,a1 = Pn,a2 Pa2 ,a1 . (5.165)

The Hamiltonian can also be expressed in terms of the permutation operator,

H =
1
2

∑
i

Pi,i+1 −
N

2
. (5.166)

The idea now is to relate the Hamiltonian and other conserved charges to the
monodromy of a string of Lax operators along the whole chain. For that we
have to analyze the commuting structure of the Lax operators. This structure is
controlled by the fundamental commutation relations (FCR) which will be shown
later to be part of the Yang–Baxter relations and read,

Ra1 ,a2 (λ− μ)Li,a1 (λ)Li,a2 (μ) = Li,a2 (μ)Li,a1 (λ)Ra1 ,a2 (λ− μ), (5.167)

where,

Ra1 ,a2 (λ) = λIa1 ,a2 + iPa1 ,a2 . (5.168)
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To prove this relation one makes use of the relations of the permutation operator
(5.165). The Lax operator can be interpreted as a connection along the chain in
the sense,

ψi+1 = Liψi. (5.169)

This can be generalized to an ordered product which transports from i1 to i2 ,

T i2
i1 ,a(λ) = Li2 −1,a(λ) . . . Li1 ,a(λ), (5.170)

and to the full monodromy along the spin chain,

TN,a(λ) = LN,a(λ) . . . L1,a(λ). (5.171)

We parameterize this monodromy operator in terms of a 2× 2 matrix in the
auxiliary space as,

TN,a(λ) =
(

AN (λ) a†
N (λ)

ãN (λ) DN (λ)

)
, (5.172)

with entries in the full Hilbert space H. In analogy to the FCR of the basic Lax
operator it is straightforward to realize that there is a similar relation for the
monodromy operator,

Ra1 ,a2 (λ− μ)Ta1 (λ))Ta2 (μ) = Ta2 (μ)Ta1 (λ)Ra1 ,a2 (λ− μ). (5.173)

From this relation it follows that the trace of the monodromy operator,

F (λ) ≡ Tr[T (λ)] = A(λ) + D(λ), (5.174)

is commuting, namely [F (λ), F (μ)] = 0. We can now expand both TN and F (λ)
as a polynomial of order N in λ as,

Ta,N (λ) = λN + iλN −1
∑
α

Sα
⊗

σα + . . .

F (λ) = 2λN +
N −2∑
l=0

Qlλ
l. (5.175)

We will see shortly that the set of N − 1 operators Ql are commuting and con-
stitute the set of conserved charges, including the Hamiltonian. Next we expand
the monodromy at λ = i

2 ,

Ta,N

(
i

2

)
= iN PN,aPN −1,a . . . P1,a = iN P1,2P2,3 . . . PN −1,N PN,a . (5.176)

This follows from Li,a( i
2 ) = iPi,a and d

dλ Li,a = Ii,a and then taking the permu-
tations one after the other of the term in the middle. The trace over the auxiliary
space is Tr[PN,a ] = IN so that we can now define a shift operator in H,

U = eiP ≡ i−N Tra

[
TN

(
i

2

)]
= P1,2P2,3 . . . PN −1,N . (5.177)

https://doi.org/10.1017/9781009401654.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401654.006


114 Solitons and two-dimensional integrable models

Using the properties of the permutation operator that P ∗ = P and P 2 = 1, it
follows that U is a unitary operator. Moreover, one can show that indeed it is a
shift operator, namely,

U−1XiU = Xi−1 . (5.178)

To expand F (λ) in the vicinity of λ = i
2 we first observe that,

d
dλ

Ta(λ)|λ=1/2 = iN −1
∑

i

PN,a . . . P̂i,a . . . P1,a , (5.179)

whereˆmeans that the corresponding factor is absent. Using the same procedure
as above we find that,

d
dλ

Fa(λ)|λ=i/2 = iN −1
∑

i

P1,2P2,3 . . . PN −1,N . (5.180)

Most of the permutations can be cancelled by multiplying with U−1 so that[
d
dλ

Fa(λ)
]

Fa(λ)−1 |λ=i/2 =
d
dλ

ln(Fa(λ))|λ=i/2 =
1
i

∑
i

Pi,i+1 . (5.181)

Recalling the expression we found earlier for the Hamiltonian (5.166) we can now
see that,

H =
i

2
d
dλ

ln(Fa(λ))|λ=i/2 −
N

2
. (5.182)

We have just shown that the Hamiltonian is part of a set of N − 1 commuting
operators generated by F (λ), the trace of the monodromy. In fact there are N

such conserved charges if we add also one component, say S3 , of the spin. The
model is characterized by its N degrees of freedom and is equipped with N

conserved charges and hence is (at least classically) integrable.

5.14.2 Bethe ansatz equations

To diagonalize the family of operators F (λ) one can generalize the procedure
used in the quantum harmonic oscillator. In that case we have a non-trivial
commutation relation [a, a†] = 1, a Hamiltonian which is H = a†a + 1 and a
ground state which is annihilated by a, namely a|0> = 0. Let us start first with
the commutation relations. These are determined from the FCR as,

[ã(λ), ã(μ)] = 0

A(λ)ã(μ) =
λ− μ− i

λ− μ
ã(μ)A(λ) +

i

λ− μ
ã(λ)A(μ)

D(λ)ã(μ) =
λ− μ + i

λ− μ
ã(μ)D(λ)− i

λ− μ
ã(λ)D(μ). (5.183)

The last two relations generalize the relations,

aH = (H + 1)a a†H = (H − 1)a†, (5.184)
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of the harmonic oscillator. To derive the above one uses an explicit 4× 4 matrix
formulation for the operators in V

⊗
V . A natural basis for these matrices is

e1 = e+

⊗
e+ , e2 = e+

⊗
e−, e3 = e−

⊗
e+ , e4 = e−

⊗
e−, (5.185)

where,

e+ =
(

1
0

)
, e− =

(
0
1

)
. (5.186)

In this basis the permutation operator and the R matrix read,

P =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ (5.187)

R(λ) =

⎛⎜⎜⎝
λ + i 0 0 0

0 λ i 0
0 i λ 0
0 0 0 λ + i

⎞⎟⎟⎠ . (5.188)

The matrices Ta1 (λ) and Ta2 (μ) read,

Ta1 (λ) =

⎛⎜⎜⎝
A(λ) a(λ)

A(λ) a(λ)
a†(λ) D(λ)

a†(λ) D(λ)

⎞⎟⎟⎠ (5.189)

Ta2 (λ) =

⎛⎜⎜⎝
A(μ) a(μ)
a†(μ) D(μ)

A(μ) a(μ)
a†(μ) D(μ)

⎞⎟⎟⎠ . (5.190)

Explicit multiplication of these matrices yields (5.183).
Similarly to the case of the harmonic oscillator we now define the ground state,

a(λ)|0> = a(λ)
∏

i

⊗
|0>i = 0. (5.191)

We choose |0>i = e+ so that,

S3 |0> =
N

2
|0> S+ |0> = 0. (5.192)

Thus this state is the “highest weight state”. It also follows that (the operator
* is left unspecified),

Ln (λ)|0>i =
(

λ + i
2 ∗

0 λ− i
2

)
|0>i, (5.193)

and hence,

T (λ)|0> =

((
λ + i

2

)N ∗
0

(
λ− i

2

)N
)
|0>, (5.194)
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which means that |0> is an eigenstate of both A(λ) and D(λ) and thus also of
F (λ). Higher excited states are created from the ground state |0> by a successive
action with creation operators,

Φ({λ}) = a†(λ1) . . . a†(λl)|0> . (5.195)

Requiring that the state Φ({λ}) is an eigenstate of F (λ) imposes a set of relations
on the λ1 , . . . , λl . In particular using the FCR relation (5.183) we find,

A(λ)a†(λ1) . . . a†(λl)|0>

=
l∏

k=1

λ− λk − i

λ− λk

(
λ +

i

2

)N

(λ)a†(λ1) . . . a†(λl)|0>

+
l∑

k=1

Mk (λ, {λ})a†(λ1) . . . â†(λk ) . . . a†(λl)|0> . (5.196)

The first term on the right-hand side of the equation has the form of an eigenstate
equations but the rest of the terms do not. The idea is to choose the set {λ} such
that these terms will cancel out against similar terms in D(λ)a†(λ1) . . . a†(λl)|0>.
To get the value of the coefficient M1(λ, {λ}) we use the second term on the right-
hand side of the second equation in (5.183) when interchanging A(λ) and a†(λ1)
and in all other exchanges we use the first term. In this way we find that,

M1(λ, {λ}) =
i

λ− λ1

l∏
k=2

λ1 − λk − i

λ1 − λk

(
λ1 +

i

2

)N

. (5.197)

Interchanging now λ1 → λj we get similarly the expressions for all Mj (λ, {λ}).
The same type of manipulations yield,

D(λ)a†(λ1) . . . a†(λl)|0>

=
l∏

k=1

λ− λk − i

λ− λk

(
λ− i

2

)N

(λ)a†(λ1) . . . a†(λl)|0>

+
l∑

k=1

Nk (λ, {λ})a†(λ1) . . . â†(λk ) . . . a†(λl)|0>, (5.198)

with,

Nj (λ, {λ}) =
i

λ− λ1

l∏
k=2

λ1 − λk − i

λ1 − λk

(
λ1 −

i

2

)N

. (5.199)

We now observe that if the set of {λ} obey the condition,
l∏

k �=j

λ1 − λk − i

λ1 − λk

(
λ1 +

i

2

)N

=
l∏

k �=j

λ1 − λk − i

λ1 − λk

(
λ1 −

i

2

)N

, (5.200)
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then the undesirable terms in (5.196) cancel out and we end with an eigenstate
of F (λ) and hence of the Hamiltonian. For the former it takes the form,

F (λ)Φ({λ}) =
(

λ +
i

2

)N l∏
j=1

λ− λj − i

λ− λj
+
(

λ− i

2

)N l∏
k �=j

λ− λj − i

λ− λj
Φ({λ}).

(5.201)
These conditions can be rewritten as,(

λj + i/2
λj − i/2

)N

=
l∏

k �=j

λj − λk + i

λj − λk − i
. (5.202)

These conditions on the eigenvectors were derived originally by Bethe, though
in a completely different way, and hence the names, the “Bethe ansatz equation”
(BAE) for (5.202) and the “Bethe vector” for Φ({λ}). It is straightforward to
observe that the poles in the eigenvalue of F (λ) cancel out so that it is a poly-
nomial in λ of degree N . One can further show that the full spectrum can be
recast just with nonequal λj .

We now want to determine the eigenvalues of spin, momentum and Hamilto-
nian operators of the eigenstates just found.

Using the FCR relation (5.173) in the limit of μ→∞ the SL(2) invariance of
the monodromy in H

⊗
V is determined via,[

Ta(λ),
1
2
σα + Sα

]
= 0, (5.203)

which means in particular that,

[S3 , a†] = −a† [S+ , a†] = A−D. (5.204)

The spin of the state is therefore given by,

S3Φ({λ}) =
(

N

2
− l

)
Φ({λ}). (5.205)

Furthermore it can be shown that the states Φ({λ}) are all highest weight states
provided that the BAE is obeyed, namely,

S+Φ({λ}) = 0. (5.206)

Since the S3 eigenvalue of the highest weight states is non-negative it is obvious
that l ≤ N

2 . When N is odd the spin of the state is half-integer, whereas when it
is even the spin is even and in particular for l = N

2 there is an SL(2) invariant
state with vanishing spin.

Let us determine now the eigenvalue of the momentum operator. From the
definition of the shift operator (5.177) it follows that,

UΦ({λ}) = iN F

(
i

2

)
Φ({λ}) =

∏ λj + i
2

λj − i
2

Φ({λ}). (5.207)
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The eigenvalue of the momentum operator is therefore given by,

PΦ({λ}) =
∑

j

p(λj )Φ({λ}) p(λ) =
1
i

log

[
λ + i

2

λ− i
2

]
. (5.208)

The energy eigenvalue is determined from (5.182),

HΦ({λ}) =
∑

j

e(λj )Φ({λ}) e(λ) = −1
2

1
λ2 + 1

4

. (5.209)

The last expressions calls for a “quasi particle” interpretation. The operator
a†(λ) creates a quasi particle which reduces the spin S3 by one unit and adds to
the momentum and energy p(λ) and e(λ), respectively. We further observe that,

e(λ) =
1
2

d
dλ

p(λ). (5.210)

It is also evident that we can eliminate the dependence on the rapidity of the
energy and momentum and read directly the dispersion relation,

e(p) = cos(p)− 1. (5.211)

Since this energy is always non-positive, the highest weight state |0> can be
considered a ground state only if we take −H as the Hamiltonian rather than
H. In fact it will be shown shortly that the latter corresponds to a system of an
antiferromagnet whereas the former corresponds to that of a ferromagnet.

5.14.3 The thermodynamic Bethe ansatz

The thermodynamic limit of the spin chain models is the limit of N →∞. Recall
that the continuum limit of the model when N →∞ and the spacing Δ→ 0. In
the BAE N appears only in the left-hand side. If we take the log of the ansatz
we find for real {λ},

Np(λj ) = 2πQj +
l∑

k=1

ϕ(λj − lk ), (5.212)

where Qi are integers 0 ≤ Qj ≤ N − 1 that define the branch of the log and ϕ(λ)
is a fixed branch of log( λ+i

λ−i ). For large N and Qj and fixed l one finds the usual
expression for the momentum of a free particle on the chain,

pj = 2π
Qj

N
, (5.213)

since the ϕ(λ) is negligible.
The second term in (5.212) associates with the scattering of these particles.

In fact by comparison with the quantum mechanics of a particle in a box we
see that ϕ(λi − λj ) stands for the corresponding phase shift of the particles with
rapidity λi and λj . Using this analogy we can now identify the S-matrix element
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with,

S(λ− μ) =
λ− μ + i

λ− μ− i
. (5.214)

The S-matrix also enters the large N commutation relations of the normalized
creation operators ã†(λ) = a†(λ)A−1(λ),

ã†(λ)ã†(μ) = S(λ− μ)ã†(μ)ã†(λ). (5.215)

In addition to the quasi-particle states in the Hilbert space, there are also
bound states of the quasi-particles. These states correspond to complex solutions
of the BAE. The simplest case is with two quasi-particles l = 2. In this case the
two BAE read,(

λ1 + i/2
λ1 − i/2

)N

=
λ1 − λ2 + i

λ1 − λ2 − i

(
λ2 + i/2
λ2 − i/2

)N
λ2 − λ1 + i

λ2 − λ1 − i
. (5.216)

Using (5.208) it follows that p(λ1) + p(λ2) is real. Furthermore, for N →∞ to
compensate the exponential increase (decrease) of the left-hand side of the last
equations, it is clear that the right-hand side must have Im(λ1 − λ2) = i (or − i)
and thus the final form of λ1 and λ2 are,

λ1 = λ1/2 +
i

2
λ2 = λ1/2 −

i

2
, (5.217)

where λ1/2 is real. The momentum and energy eigenvalues of the corresponding
Bethe vector are,

p1/2 =
1
i

ln
λ + i

λ− i
e1/2 =

1
2

d
dλ

[p1/2(λ)] =
1

λ2 + 1
. (5.218)

The state is considered as a bound state since its energy is less than the sum of
the energies of the two constituents,

e1/2 < [e0(p− p1) + e0(p1)], (5.219)

for any 0 ≤ p, p1 ≤ 2π.
The bound state of two quasi-particles l = 2 can be generalized for l > 2. The

roots λl are combined into complexes M , where M takes half integer values M =
0, 1/2, 1, . . . with l =

∑
M νM (2M + 1) where νM gives the number of complexes

of type M . Each complex has roots of the type,

λM,m = λM + im −M ≤ m ≤M, (5.220)

where λM is real and m are integers and half integers. The corresponding momen-
tum and energy are given by,

pM (λ) =
1
i

ln
λ + i(M + 1/2)
λ− i(M + 1/2)

eM (λ) =
1
2

2M + 1
λ2 + (M + 1/2)2 . (5.221)
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The S-matrix for scattering of complexes M and N are

SM,N =
M +N∏

L=|M −N |
S0,L (λ), (5.222)

where,

S0,M (λ) =
λ + iM

λ− iM

λ + i(M + 1)
λ− i(M + 1)

. (5.223)

To summarize, the ferromagnetic system with Hamiltonian −H in the ther-
modynamics limit has a Hilbert space HF with a ground state |0> =

∏
(e+)i .

The excitations are quasi-particles characterized by M, M = 0, 1/2, . . . and the
rapidity λ. The dispersion relation is given by eM = 1

2M +1 (1− cos(pM )) and the
S-matrix is (5.222). Out of Sα , only S3 makes sense as an operator on HF . The
operators S± change the ground state at each site. This may be viewed as a
symmetry-breaking phenomenon.

So far we have described the basic notions of the physics of the spin chain using
the example of the XXX1/2 . One can further generalize these considerations in
many directions such as the anti-ferromagnetic system, general spin states in the
XXX model, namely, the XXXs/2 model, the XXZ and many others.

The thermodynamic limit for the XXXs/2 model

So far we have described the basic notions of the physics of the spin chain using
the example of the XXX1/2 . One can further generalize these considerations
also to the XXXs/2 model. We state here the results without derivation. An
eigenstate characterized by the set λ1 , . . . , λl which are determined by a straight-
forward generalization of the BAE (5.202),(

λj + (i/2)s
λj − (i/2)s

)N

=
l∏

k �=j

λj − λk + i

λj − λk − i
. (5.224)

The eigenvalues of the Hamiltonian and momentum are given by,

E =
l∑

k=1

s

λ2
k + 1

4 s2
P =

1
i

l∑
k=1

ln

[
λk + i

2 s

λk − i
2 s

]
, (5.225)

and the higher conserved charges that render the model integrable are,

Qr =
i

r − 1

l∑
k=1

(
1

(λk + i
2 s)r−1

− 1
(λk − i

2 s)r−1

)
, (5.226)

where r ≤ N and in particular r = 2 is the Hamiltonian.

https://doi.org/10.1017/9781009401654.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401654.006


5.14 Integrable spin chain models and the algebraic Bethe ansatz 121

In the thermodynamic limit, N →∞ states with low energy and zero momen-
tum can be dealt with by introducing the scaling,

Ẽ = NE =
1
N

l∑
k=1

s

λ̃2
k

2πn =
1
N

l∑
k=1

s

λ̃k

2πnk −
s

λ̃k

=
1
N

l∑
j=1,j �=k

2
λ̃− λ̃k

,

(5.227)
where λk = Nλ̃k and where the second and third expressions were derived by
taking the log of the zero momentum condition U = 1 and of the BAE, respec-
tively. Using the same scaling one finds for the higher charges and the transfer
matrix the results,

Q̃r =
Qr

Nr−1 =
1
N

l∑
k=1

s

λ̃r
k

− i log T̃ (λ̃) = −i log T (Nλ̃) =
1
N

l∑
j=1,j �=k

s

λ̃j − λ̃k

.

(5.228)
For N →∞ it is plausible to assume that the Bethe roots accumulate on

smooth contours (C1 , . . . CA ) ≡ C which are referred to as “Bethe strings”. Thus
we replace the discrete λ̃k locations of the roots by a continuum variable λ̃

described by a density ρ(λ̃) so that the sum of the root translates into the
integral,

1
N

l∑
k=1

→
∫
C

dλ̃ρ(λ̃), (5.229)

with the normalization that
∫
C dλ̃ρ(λ̃) = 1

N . Using the continuum formulation
we can now rewrite the expressions for the Bethe ansatz, the energy and the
higher charges as,

2πn = s

∫
C

dλ̃ρ(λ̃)
λ̃

2πnλ̃ −
s

ũ
= 2
∫
C

dλ̃′ρ(λ̃′)
λ̃′ − λ

,

Ẽ = s

∫
C

dλ̃ρ(λ̃)
λ̃2

Q̃r = s

∫
C

dλ̃ρ(λ̃)
λ̃r

, (5.230)

where nλ̃ is the mode number nk at the point λ̃ = λ̃k . It is expected to be a
constant along each contour Ca . In the second integral of the first line, a principal
part prescription is implemented. An important result is that one can determine
the set of conserved charges Q̃r using a resolvent, as,

G(λ̃) = |s|
∫
C

dλ̃′ρ(λ̃′)
λ̃′ − λ

G(λ̃) =
∞∑

r=1

λ̃r−1Q̃r . (5.231)

The resolvent is related to the transfer matrix,

T̃ (λ) = eiG(λ̃) + e−iG(λ̃− i
λ̃

) = e−
i

2 ũ 2 cos
(

G(λ̃) +
1
2λ̃

)
. (5.232)

We wish to conclude this chapter with a model that will enable us to connect
the discussion of the spin chain models to continuum integrable models.
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Fig. 5.5. Saw path on the two dimensional lattice.

5.14.4 Spin chain model in discrete time

So far we have discussed the two-dimensional integrable model with a discretized
space dimension and a continuous time dimension. It turns out that to connect
the spin chain models to continuum two-dimensional field theory it is useful to
further also discretize the time direction. The shift operator (13.77) discussed
above was determined from a trace of the monodromy at a particular value of the
spectral parameter. To describe the system with both space and time discretized,
one needs to distinguish values of the spectral parameter λ± w for some fixed
w. We define now an inhomogeneous monodromy built from the Lax operator
Li,f acting on the quantum Hilbert space hi and the auxiliary space Vf ,

Tf (λ,w) = L2N,f (λ + w)L2N −1,f (λ− w) . . . L2,f (λ + w)L1,f (λ− w). (5.233)

The light-like shift operators U+ and U− are given by,

U+ = trf [Tf (w,w)] U− = trf [Tf (−w,w)]. (5.234)

The monodromy is along a saw path on the two-dimensional lattice as can be
seen in Fig. 5.5.

L2n,f (λ + w) is a transport along the NW direction and L2N −1,f (λ− w) along
the SW direction.

In analogy to the definition of the monodromy as a trace of T (λ) (13.77), we
now define the monodromy as,

F (λ,w|a, i, μ) = trf [Tf (λ,w|a, i, μ)], (5.235)

where

Tf (λ,w|a, i, μ) = L2N,f (λ + w)L2N −1,f (λ− w) . . .

. . . L2i,f (λ + w)L−1
f ,a(μ− λ)L2i−1,f (λ− w) . . . L2,f (λ + w)L1,f (λ− w).

(5.236)

It can be shown that Tf (λ,w|a, i, μ) is subjected to the FCR relations in a similar
manner to T (λ) (13.77). Due to the commutativity of F we get a zero curvature
condition on the transport around an elementary plaquette of the space-time

https://doi.org/10.1017/9781009401654.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401654.006


5.14 Integrable spin chain models and the algebraic Bethe ansatz 123

lattice,

L2i,a(λ + w)L2i−1,a(λ− w) = U−L2i−1,a(λ− w)U−1
− U−1

+ L2i,a(λ + w)U+ .

(5.237)
The light-like shifts U± are related to the shift in space and time in the usual
form, namely,

U+ = e−i(H−P )/2 U− = e−i(H +P )/2 . (5.238)

As for the case of only space dimension discretized, here too one finds that the
condition of having an eigenvector of the energy and momentum is the BAE
which takes the form,(

α(λj + w)α(λj − w)
δ(λj + w)δ(λj − w)

)N

=
∏
j �=k

S(λj − λk ), (5.239)

where α(λ), δ(λ) are local eigenvalues and S(λ) is the quasi particle phase factor.

5.14.5 The discretized version of the sine-Gordon model

As a particular example of an integrable lattice model, we consider a model with
Weyl variables rather than spin variables on the lattice sites. These variables
obey at each site the relations,

uivi = qviui, q = eiγ . (5.240)

The corresponding Lax operator is

Li,a(x) =
(

ui xvi

−xv−1
i u−1

i

)
. (5.241)

To reduce the number of degrees of freedom per site from two to one we impose
the constraint,

u2iu2i−1v2iv
−1
2i−1 = 1. (5.242)

The BAE for this case take the form,(
sinh(λj + w + iγ/2)sinh(λj − w + iγ/2)
sinh(λj + w − iγ/2)sinh(λj − w − iγ/2)

)N/2

=
l∏

k �=j

sinh(λj − λk + iγ)
sinh(λj − λk − iγ)

,

(5.243)
where we have substituted x = eλ and κ = ew .

The shift operator in the time direction related to the Hamiltonian can be
determined in the following manner. Using the explicit form of the Lax operator
we have,

Li2 ,a

(
1
x

)
Li1 ,a

(
1
y

)
r

(
x

y

)
= r

(
x

y

)
Li1 ,a

(
1
y

)
Li2 ,a

(
1
x

)
. (5.244)
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zN

zEzW

zS

Fig. 5.6. Elementary plaquette.

It can be shown that this condition reduces to the functional equation,

r(x, qw)
r(x, q−1w)

=
xw + 1
x + w

. (5.245)

Denoting

w2i = u2iu2i−1v
−1
2i v2i−1 w2i+1 = u2i+1u2iv

−1
2i+1v2i , (5.246)

we find that the time shift operator is given by,

e−iH =
∏

r(κ2 , w2i)
∏

r(κ2w2i+1). (5.247)

With this operator at hand we can now determine the equation of motion of the
model and show that it corresponds in the continuuum limit to the sine-Gordon
equation. To accomplish this we define now zi such that,

wi =
zi+1

zi−1
. (5.248)

It is easy to see that zi does not commute only with one w, namely wi for which
we have,

ziwi = q2wizi. (5.249)

Now we apply the time evolution operator on zi . It reads,

ẑi = eiH zie−iH . (5.250)

When we substitute (5.247) we get the equation of motion,

ẑ2i+1 = z2i+1
κ2q−1z2i+2 + z2i

q−1z2i+2 + κ2z2i
, (5.251)

and similarly for z2i . This equation connects z along an elementary plaquette
(see Fig. 5.6). The equation can also be rewritten as,

(q−1zN zW − zS zE ) = κ2(q−1zS zW − zN zE ). (5.252)
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If we now define the variable,

χ = eiϕ =
(

z

z−1

)
, (5.253)

alternatively on each second SE characteristic line on our lattice, then the equa-
tions of motion take the form,

χN = χ− S−1 κ2χW χE + 1
q−1χW χE + κ2 , (5.254)

so that for large κ2 and classical limit q = 1 we get,

χN χS

χE χW
= 1 +

1
κ2

(
1

χE χW
− χE χW

)
+ . . . , (5.255)

and in terms of ϕ,
χN χS

χE χW
= ei Δ 2

2 (∂ 2
t ϕ−∂ 2

x ϕ)+ ... , (5.256)

and with the scaling 1
κ2 = m2Δ2 we finally discover the sine-Gordon equation,

(∂2
t ϕ− ∂2

xϕ) + 2m2 sin(2ϕ) = 0. (5.257)

In the quantum version one modifies the scaling to take into account the mass
renormalization.

5.15 The continuum thermodynamic Bethe ansatz

Here we describe again the thermodynamic Bethe ansatz but now in the con-
text of continuous models. This will not be a straightforward transition from a
discretized to a continuous model via a certain limit, but rather a completely
different derivation. Obviously, here as well the Bethe wave-function, the ther-
modynamic limit and the interplay between the spectrum and S-matrix elements
will enter as essential ingredients.

Consider an integrable Euclidean field theory defined on a two-dimensional
torus. We denote the two cycles of the torus as cycle a and cycle b, with corre-
sponding circumferences of R and L and coordinates x and y, as shown in Fig.
5.7. Obviously, one can define in a twofold manner the states of the system and
its Hamiltonian. We can consider the space of states on a denoted by A with the
time direction along y, with the Hamiltonian,

Ha =
1
2π

∫
a

Tyydx, (5.258)

and with the momentum,

Pa =
1
2π

∫
a

Txydx, (5.259)

which has quantized eigenvalues 2πn
R .
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y

L
B

C

R

x

Fig. 5.7. Flat torus generated by two orthogonal geodesics C and B of
circumference R and L, respectively.

Alternatively, one can consider the space of states B along the contour b with
the time direction along −x, with the Hamiltonian,

Hb =
1
2π

∫
b

Txxdy, (5.260)

and with the momentum,

Pb = − 1
2π

∫
b

Tyxdy, (5.261)

where now the quantization condition is that the eigenvalues of Pb are quantized
in units of 2πn

L .
Let us consider the cylindrical geometry via the limit L→∞ (L� R). For

this case the partition function Z(L,R) is dominated by the ground state of Ha

with the ground state energy E0(R),

Z(R,L) ∼ e−LE0 (R) . (5.262)

On the other hand,

Z(R,L) = TrB[e−RHb ]. (5.263)

In B, the thermodynamic limit, namely infinite space L→∞ which is the
analog of the large N limit in Section 5.14.3, gives the free energy f(R) at
temperature 1/R, via log Z(R,L) ∼ −Lβf(β), where β = R is the inverse of the
temperature. Hence,

E0(R) = Rf(R). (5.264)

The ground state energy E0(R), which can be referred to also as the Casimir
energy, can be related in the limit of conformal field theory, to the Virasoro
anomaly. Define the scaling factor c̃(r) via,

E0(R) = −πc̃(r)
6R

, (5.265)

where the dimensionless quantity r = m1R, with m1 the lowest mass in the
theory. The scaling factor will be determined by the TBA. On the other hand,
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in the case of conformal invariance, when R→ 0, using the relation between the
Hamiltonian and L0 and L̄0 we have,

E0(R) =
2π

R

(
Δmin + Δ̄min −

1
12

c

)
, (5.266)

where Δmin denotes the conformal dimension of the lowest state. This means
that the scaling factor should reduce to the effective Virasoro anomaly,

lim
r→0

c̃(r) = c− 24Δmin . (5.267)

Here we took the cases of Δmin = Δ̄min .
The TBA method enables one to compute the spectrum of energies and

momenta by combining the thermodynamic limit with the factorizable scatter-
ing amplitudes. We consider first for simplicity the case with only one type of
particle of mass m with a pair scattering amplitude S(β1 − β2) (see Section 5.7).
Recall (5.73) that the energy and momentum are related to the rapidities βi as

ei(β) = m coshβi pi(β) = m sinhβi, (5.268)

and that the amplitudes obey the unitarity and crossing symmetry (5.78),

S(β)S(−β) = 1 S(β) = S(iπ− β). (5.269)

For regions of configuration space where the particles are highly separated,
namely where |xi − xj | � Rc, i, j = 1, . . . , N with Rc denoting the scale of the
interaction, the particles can be treated as approximately free. In these regions
it makes sense to introduce the wavefunction of the system Φ(x1 , . . . , xN ) (in
regions where the particles are not well separated, particle creation and annihi-
lation prevent the use of a single wavefunction).

For integrable systems at any free region the number of particles will be the
same, namely N , as well as the set of momenta pi . The set of particles in a
free region will be denoted by (i1 , i2 , . . . , iN ) where xi1 < xi2 < . . . < xiN

. A
scattering process that yields a transition between (i1 , i2 , . . . , ik , ik+1 , . . . , iN )
and (i1 , i2 , . . . , ik+1 , ik , . . . , iN ) affects the wavefunctions, such that the latter
wavefunction is given by the former multiplied by the scattering amplitude
S(βk − βk+1). These matching conditions on the wavefunctions combined with
the quantization of the momenta due to the fact that the “space” coordinate is
compact, lead to the relation,

eipi L
∏
j �=i

S(βi − βj ) = 1, Or mL sinhβi +
∑
j �=i

δ(βi − βj ) = 2πni, (5.270)

where for real β we rewrote the scattering amplitude in terms of a unimodular
function S(β)eiδ(β ) , with δ(β) a real phase.

This set of transcendental equations selects the admissible sets of rapidi-
ties and hence energies and momenta. The energy and momentum of the state
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(β1 , . . . , βN ) are given by,

Hb =
N∑

i=1

m coshβi, Pb =
N∑

i=1

m sinhβi. (5.271)

In the thermodynamic limit of L→∞ the set of equations (5.270) can be
simplified. In this limit the number of particles becomes large since it grows ∼ L

and the distance between adjacent levels behaves as (βi − βi+1) ∼ 1
mL . In that

case one naturally defines the notion of a continuous rapidity density of particles
ρ1(β). If there are n particles in a Δβ we take ρ1(β) = n

Δβ . We can now exchange
the sum over βi with an integral over β of the particle density, provided that the
latter is independent on Δβ for 1

mL � Δβ � 1, so that (5.270) takes the form,

mL sinhβi +
∫

δ(βi − β′)ρ1(β′)dβ′ = 2πni. (5.272)

If one further defines the level density ρ(β) such that n =
∫

ρ(β)dβ we get,

mL coshβ +
∫

ϕ(β − β′)ρ1(β′)dβ′ = 2πρ(β), (5.273)

where ϕ(β) = ∂δ(β )
∂β .

In terms of the particle density the energy of the system is,

Hb =
∫

m coshβρ1(β)dβ. (5.274)

At this point one has to distinguish between bosons and fermions. From the
unitarity condition one can have either S(0) = 1 or S(0) = −1. In the former case
bosons occupy each rapidity value in any number whereas for fermions the occu-
pation number is at most one. In the latter case the situation is in some sense
the opposite. S(0) = −1 implies that for two particles with the same rapidity
the wavefunction is antisymmetric in their coordinates, and since this is incom-
patible with bose statistics, this state should be excluded. Hence the bosonic
particles for S(0) = −1 behave like fermions, and indeed we will refer to this
case as “fermionic”. On the other hand identical particles that are fermion states
of identical rapidity are allowed, and will be referred to as part of a “bosonic”
system.

Now we would like to address the issue of the entropy for both the bosonic
and fermionic cases. For small intervals of the rapidity Δβα � 1 but such that

1
mL � Δβα there is a large number of levels Nα ∼ ρ(βα )Δβα and large number of
particles nα ∼ ρ1(βα )Δβα that are distributed among these levels. The number
of different distributions for the two cases are,

“fermionic” =
(Nα )!

(nα )!(Nα − nα )!
, “bosonic” =

(Nα + nα − 1)!
(nα )!(Nα − 1)!

. (5.275)
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The entropy S(ρ, ρ1) = logN (ρ, ρ1), whereN (ρ, ρ1) is the total number of states,
is given by,

SFermi =
∫

dβ[ρ log ρ− ρ1 log ρ1 − (ρ− ρ1) log(ρ− ρ1)],

SBose =
∫

dβ[−ρ log ρ− ρ1 log ρ1 + (ρ + ρ1) log(ρ + ρ1)]. (5.276)

Computing the partition function by performing the trace over all the states
of the system translates to the minimization of the free energy,

−RLf(ρ, ρ1) = −RHb(ρ1) + S(ρ, ρ1), (5.277)

with respect to the densities ρ and ρ1 , subjected to the constraints (5.273). Using
(5.273) the extremum equations take the form,

−Rm coshβ + ε(β)±
∫

ϕ(β − β′) log(1± e−ε(β ′))
dβ′

2π
= 0, (5.278)

where the upper sign is for the fermionic case, the lower for the bosonic, and the
“pseudoenergies” ε(β) are defined via,

ρ1

ρ
=

e−ε(β )

1± e−ε(β ) . (5.279)

The extremal free energy is,

Rf(R) = ∓m

∫
(coshβ) log(1± e−ε(β ))

dβ

2π
. (5.280)

Comparing (5.273) with (5.280) determines a useful relation,

ρ(β) =
L

2π

∂ε(β)
∂R

. (5.281)

Finally we can also write down the TBA expressions for the expectation values
of Tμ,ν . Using the last relation and (5.279) we get,

< Txx > = 2π
dE(R)

dR
=

2π

L
m

∫
ρ1(β) coshβdβ,

< Tμ
μ > =

2π

R

d[RE(R)]
dR

= m

∫
2π

L
[ρ1(β) coshβ − 1

R

ρ1

ρ

∂ε(β)
∂β

sinhβ]dβ. (5.282)

These relations generalize in a straightforward manner to the more general case
of N types of particles with masses ma, a = 1, . . . , N̂ and scattering amplitudes
Sab which are now N̂ × N̂ matrices.

For integrable models where one can take the limit of rRm1 → 0, with m1

being the lowest mass of the system, one can determine the scaling function c̃(r).
In this limit ε(β) become constant in the regime where − ln(2/r)� β � ln(2/r).
Their constant value is determined by the limit of equation (5.273) which now
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for the case of N particles reads,

εa = −
N̂∑

b=1

∫
dβφab(β) ln[1 + e−εb ] = − 1

2π

N̂∑
b=1

[δab(+∞)− δab(−∞)] ln[1 + e−εb ],

(5.283)
recall that φab(β) = ∂β δab(β).

Interpolating between these values of ε(β) for β � ln(2/r) and the values for
β →∞ where ε(β) go exponentially to infinity, and taking finally the r → 0
limit one finds the effective Virasoro anomaly using the relation between the free
energy and the scaling factor (5.265),

c̃(0) =
N∑

a=1

c̃a(εa) =
6
π2

N∑
a=1

L

(
1

1 + eεa

)
, (5.284)

where c̃a is the scaling factor associated with the particle of type a and L(x) is
the dilogarithm function,

L(x) = −1
2

∫ x

0

[
ln t

1− t
+

ln(1− t)
t

]
dt. (5.285)

Thus the determination of the Virasoro anomaly of the underlying CFT of our
massive integrable theory with a purely elastic S-matrix follows from the solution
for the pseudo-energies (5.283) and plugging it into the expression of the scaling
factor. One can proceed with the continuous TBA and determine not only the
ground state energy but also the full spectrum of energies as well as the spectrum
of the eigenvalues of all the conserved charges, as was described for the discretized
case discussed in Section 5.14. This is beyond the scope of this book. We refer
the reader to the relevant papers in the reference list.
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