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Abstract

Given an integer d ≥ 2, a d-normal number, or simply a normal number, is an irrational number whose
d-ary expansion is such that any preassigned sequence, of length k ≥ 1, taken within this expansion
occurs at the expected limiting frequency, namely 1/dk . Answering questions raised by Igor Shparlinski,
we show that 0.P(2)P(3)P(4) . . . P(n) . . . and 0.P(2+ 1)P(3+ 1)P(5+ 1) . . . P(p + 1) . . . , where
P(n) stands for the largest prime factor of n, are both normal numbers.

2010 Mathematics subject classification: primary 11K16; secondary 11A41, 11N37.
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1. Introduction

In 1909, Borel [2] introduced the concept of a normal number. Given an integer d ≥ 2,
we say that an irrational number η is a d-normal number, or simply a normal number,
if the d-ary expansion of η is such that any preassigned sequence, of length k ≥ 1,
taken within this expansion occurs with the expected limiting frequency, namely 1/dk .
Equivalently, given a positive real number η < 1 whose expansion is η = 0.a1a2 . . . ,
where each a j ∈ {0, 1, . . . , d − 1}, that is, η =

∑
∞

j=1(a j/d j ), we say that η is a d-
normal number if the sequence {dmη}, m = 1, 2, . . . (here {y} stands for the fractional
part of y) is uniformly distributed in the interval [0, 1). Clearly, both definitions are
equivalent.

The problem of determining if a given number is normal is unresolved. For instance,
fundamental constants such as π , e,

√
2, log 2, as well as the famous Apéry constant

ζ(3), have not yet been proven to be normal numbers, although numerical evidence
tends to indicate that they are. Interestingly, Borel [2] has shown that almost all
numbers are normal.

Even constructing specific normal numbers is no small challenge.
Several authors have studied the problem of constructing normal numbers. One of

the first was Champernowne [3] who, in 1933, showed that the number made up of the
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concatenation of the natural numbers, namely the number

0.123456789101112131415161718192021 . . . ,

is normal in base 10. In 1946, Copeland and Erdős [4] proved that the same is true if
one replaces the sequence of natural numbers by the sequence of primes, namely for
the number

0.23571113171923293137 . . . .

In the same paper, they conjectured that if f (x) is any nonconstant polynomial whose
values at x = 1, 2, 3, . . . are positive integers, then the decimal 0. f (1) f (2) f (3) . . . ,
where f (n) is written in base 10, is a normal number. Six years later, Davenport and
Erdős [5] proved this conjecture. In 1997, Nakai and Shiokawa [10] showed that if
f (x) is any nonconstant polynomial taking only positive integral values for positive
integral arguments, then the number 0. f (2) f (3) f (5) f (7) . . . f (p) . . . ,where p runs
through the prime numbers, is normal. In 2008, Madritsch et al. [9] extended the
results of Nakai and Shiokawa by showing that, if f is an entire function of logarithmic
order, then the numbers

0.[ f (1)]q [ f (2)]q [ f (3)]q . . . and 0.[ f (2)]q [ f (3)]q [ f (5)]q [ f (7)]q . . . ,

where [ f (n)]q stands for the base q expansion of the integer part of f (n), are normal.
Recently, using our results [7] on the distribution of subsets of primes in the prime

factorization of integers, we [6] constructed large families of normal numbers using
classified prime divisors of integers. This motivated Igor Shparlinski to raise the
following questions.

(1) Letting P(n) stand for the largest prime factor of the integer n ≥ 2, is it possible
to show that the number formed by the concatenation of the largest prime factors
of the sequence of natural numbers n ≥ 2, namely

0.P(2)P(3)P(4) . . . P(n) . . . ,

is a normal number?
(2) Similarly, is the number formed by the concatenation of the largest prime factor

of the shifted primes, that is,

0.P(2+ 1)P(3+ 1)P(5+ 1)P(7+ 1)P(11+ 1) . . . P(p + 1) . . . ,

a normal number?

Here, we answer in the affirmative to both these questions and actually prove more.

2. Notations

Let ℘ stand for the set of all the prime numbers. The letter p with or without a
subscript will always denote a prime number.
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Given a real number x ≥ 2 and coprime integers k and `, we let π(x; k, `) stand
for the number of prime numbers p ≤ x such that p ≡ `mod k. For each real number
x ≥ 2, we set li(x) :=

∫ x
2 dt/log t , a function often called the logarithmic integral. We

will also be using the well-known function

9(x, y) := #{n ≤ x : P(n)≤ y} (2≤ y ≤ x).

Given an interval of real numbers I , we write π(I ) for the number of prime numbers
located in the interval I , and we write π(I ; k, `) for the number of primes p ∈ I such
that p ≡ `mod k.

Given an integer t ≥ 1, an expression of the form i1i2 · · · it , where each i j is one
of the numbers 0, 1, . . . , d − 1, is called a word of length t . Given a word α, we will
write λ(α)= t to indicate that α is a word of length t . We will also use the symbol
3 to denote the empty word. Finally, we will say that α is a prefix of a word γ if for
some δ we have γ = αδ.

Let d ≥ 2 be a fixed integer and let E = Ed = {0, 1, 2, . . . , d − 1}. Then, E t will
stand for the set of words of length t over E , and E∗ will stand for the set of words
over E , including the empty word 3. Moreover, the concatenation of two words
α, β ∈ E∗, written αβ, also belongs to E∗.

Given a positive integer n, we write its d-ary expansion as

n = ε0(n)+ ε1(n)d + · · · + εt (n)d
t ,

where εi (n) ∈ E for 0≤ i ≤ t and εt (n) 6= 0. To this representation, we associate the
words

n = ε0(n)ε1(n) · · · εt (n) ∈ E t+1

and
n = εt (n)εt−1(n) · · · ε0(n) ∈ E t+1.

Let k be a fixed positive integer. For each word β = b1 · · · bk ∈ Ek , we let νβ(n)
stand for the number of occurrences of β in the d-ary expansion of the positive integer
n, that is, the number of times that ε j (n) · · · ε j+k−1(n)= β as j varies from 0 to
t − (k − 1).

For convenience, we also introduce the function L(n)= Ld(n)= [log n/log d],
which represents roughly the number of digits in the d-ary expansion of the positive
integer n.

Finally, the letter c, with or without a subscript, always denotes a positive constant,
but not necessarily the same at each occurrence.

3. Main results

THEOREM 3.1. Let F ∈ Z[x] be a polynomial with positive leading coefficient and of
positive degree r . Then, the numbers

η = 0.F(P(2+ 1)) F(P(3+ 1)) F(P(5+ 1)) . . . F(P(p + 1)) . . .
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and

η̃ = 0.F(P(2+ 1)) F(P(3+ 1)) F(P(5+ 1)) . . . F(P(p + 1)) . . .

are normal numbers.

THEOREM 3.2. Let F be as in Theorem 3.1. Then, the numbers

ξ = 0.F(P(2)) F(P(3)) F(P(4)) . . . F(P(n)) . . .

and
ξ∗ = 0.F(P(2)) F(P(3)) F(P(4)) . . . F(P(n)) . . .

are normal numbers.

4. Preliminary lemmas

The following preliminary results are fundamental for the proof of our theorems.

LEMMA 4.1. Let F be as in the statement of Theorem 3.1 (with deg(F)= r ≥ 1).
Assume that κu is a function of u such that κu > 1 for all u. Setting

Vβ(u) := #
{

Q ∈ ℘ ∩ [u, 2u] :

∣∣∣∣νβ(F(Q))− L(ur )

dk

∣∣∣∣> κu
√

L(ur )

}
,

then there exists a positive constant c such that

Vβ(u)≤
cu

(log u)κ2
u
.

PROOF. This result can be obtained as a particular case of Bassily and Kátai [1,
Theorem 1] when

Fk(γ ) :=

{
1 if γ = β,
0 otherwise.

This completes the proof. 2

LEMMA 4.2. Let F be as in Lemma 4.1. Given β1, β2 ∈ Ek with β1 6= β2, set

1β1,β2(u) := #{Q ∈ ℘ ∩ [u, 2u] : |νβ1(F(Q))− νβ2(F(Q))|> κu
√

L(ur )}.

Then, for some positive constant c,

1β1,β2(u)≤
cu

(log u)κ2
u
.

PROOF. This result is an immediate consequence of Lemma 4.1. 2

From here on, we let Ix stand for the interval [x, 2x].
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LEMMA 4.3. For all x ≥ 2,

1
π(x)

#{p ∈ Ix : P(p + 1) 6∈ [xδ, x1−δ
]}<

1
2
,

provided δ > 0 is sufficiently small.

PROOF. Let x ≥ 2. We will first prove that

A := #{p ∈ Ix : P(p + 1) > x1−δ
}< 1

4π(x), (4.1)

provided δ is sufficiently small.
If P(p + 1) > x1−δ for some p ∈ Ix , then there exist a prime number q > x1−δ and

a positive integer a < 2xδ such that p + 1= aq. Using Corollary 2.4.1 from the book
of Halberstam and Richert [8], we have that for each fixed a, the number of pairs p, q
with p ∈ Ix and p + 1= aq is less than cx/ϕ(a) log2 x , where ϕ stands for the Euler
function. Hence, summing over all positive integers a < 2xδ , we obtain

A <
cx

log2 x

∑
a<2xδ

1
ϕ(a)

≤ c1
x

log2 x
δ log x <

1
4
π(x), (4.2)

provided δ is small enough, thus proving (4.1).
We will now prove that

B := #{p ∈ Ix : P(p + 1) < xδ}< 1
4π(x), (4.3)

provided δ is sufficiently small.
To do so, given k ≥ 1, we first introduce the strongly additive function defined on

primes q by

f (q)=

{
1 if xδ ≤ q < xkδ,

0 otherwise.

Assume that kδ ≤ 1
3 . Now, by using the Bombieri–Vinogradov inequality, one can

deduce a Turán–Kubilius type of inequality, namely∑
p∈Ix

∣∣∣∣ f (p + 1)−
∑

xδ<q<xkδ

1
q

∣∣∣∣2 ≤ cπ(x)
∑

xδ<q<xkδ

1
q
.

Hence, setting S =
∑

xδ<q<xkδ 1/q and observing that

S = log
(

kδ log x

δ log x

)
+ o(1)= log k + o(1),

and that P(p + 1) < xδ implies that f (p + 1)= 0, it follows that BS2
≤ cπ(x)S, so

that

B ≤
cπ(x)

log k + o(1)
<

1
4
π(x),

if k = 1/3δ and δ is small enough, thus proving (4.3).
Combining (4.1) and (4.3) ends the proof of Lemma 4.3. 2
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5. Proof of Theorem 3.1

Given a fixed real number x , we write p1 < p2 < · · ·< pT for the whole list of
primes belonging to Ix ; for each Q ∈ ℘, let

M(Q) := #{p ∈ Ix : P(p + 1)= Q}

and observe that by the Brun–Titchmarsh theorem,

M(Q)≤ π(Ix ; Q,−1)≤
cx

Q log(x/Q)
. (5.1)

Let δ be a small positive number. Then, as we did in order to establish (4.2), it is
easy to see that, for some absolute positive constant c > 0,

#{p ∈ Ix : P(p + 1) > x1−δ
} ≤

cδx

log x
. (5.2)

With the primes p1 < p2 < · · ·< pT defined above, consider the number θ
defined by

θ = F(P(p1 + 1)) F(P(p2 + 1)) · · · F(P(pT + 1)).

Since, for each j ∈ {1, . . . , T },

λ(F(P(p j + 1)))= L(F(P(p j + 1)))+ O(1)= r L(P(p j + 1))+ O(1),

it follows that

λ(θ)= r
T∑

j=1

L(P(p j + 1))+ O(T ). (5.3)

Now, since L(P(p j + 1))≤ L(p j + 1)≤ L(2x), it follows, combining (5.2) and
(5.3), that ∑

P(p j+1)>x1−δ

L(P(p j + 1))≤ L(2x)
∑

P(p j+1)>x1−δ

1≤
cδx

log x
L(2x). (5.4)

On the other hand,∑
P(p j+1)<xδ

L(P(p j + 1))≤ L(2x)
∑

P(p j+1)<xδ
1≤

cδx

log x
L(2x). (5.5)

Using (5.4) and (5.5) in (5.3), we may conclude that there exist two positive numbers
d1 < d2 such that

d1 <
λ(θ)

r L(2x)π(Ix )
< d2,

where we used Lemma 4.3.
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We will now subdivide the interval [xδ, x1−δ
] into subintervals [u j , u j+1], where

u j = xδ2 j with j = 0, 1, . . . , Z , where Z is the unique positive integer satisfying
uZ ≤ x1−δ < uZ+1.

Our intention is to show that νβ(θ)∼ (1/dk)λ(θ) as λ(θ)→∞. We will do so by
establishing that νβ1(θ)− νβ2(θ) is small if β1 6= β2.

Let us now choose κu = log log u.
We will say that the prime Q ∈ [u j , u j+1] is a good prime (with respect to β1 and

β2) if

max
i=1,2

∣∣∣∣ νβi (F(Q))−
r L(u j )

dk

∣∣∣∣< κu j

√
L(u j ), (5.6)

and we say that it is a bad prime if (5.6) does not hold.
We then have

|νβ1(θ)− νβ2(θ)| ≤ c
Z∑

j=0

κu j

√
L(u j )

∑
Q∈[u j ,u j+1]

M(Q)

+ O

(
r

Z∑
j=0

L(u j )
∑

Q∈[u j ,u j+1]

Q bad prime

M(Q)

)
+ O(Z)

+ O

(
cδx

log x
L(2x)

)
, (5.7)

where the first term on the right-hand side of this inequality is concerned with the
good primes Q, and the fourth (and last) term is to account for the primes p for which
p < xδ or p > x1−δ .

Using inequality (5.1), we obtain∑
Q∈[u j ,u j+1]

Q bad prime

M(Q)≤
cx

u j log(x/u j )

∑
Q∈[u j ,u j+1]

Q bad prime

1
Q
. (5.8)

On the other hand, it follows from Lemma 4.2 that∑
Q∈[u j ,u j+1]

Q bad prime

1
Q
≤

cu j

(log u j )κ2
u j

. (5.9)

Hence, using (5.9) in (5.8), we obtain∑
Q∈[u j ,u j+1]

Q bad prime

M(Q)≤
cx

u j log(x/u j )
·

cu j

(log u j )κ2
u j

. (5.10)

Using (5.10) in (5.7), we may write

|νβ1(θ)− νβ2(θ)| ≤61 +62 + cZ + cδx, (5.11)
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where

61 = c
Z∑

j=0

x

κ2
u j

log(x/u j )
,

62 = c
Z∑

j=0

κu j√
log u j

·
x

u j log(x/u j )
.

It is clear that
62 = o(x). (5.12)

On the other hand, since

61 ≤ cx ·
1

κ2
u0

Z∑
j=0

1
log(x/u j )

,

it follows that
61 = o(x) (5.13)

as well.
Now, by the way we chose Z , it is clear that Z ≤ cx/log x . Hence, gathering (5.12)

and (5.13) in (5.11),
|νβ1(θ)− νβ2(θ)| ≤ cδx + o(x). (5.14)

Since
∑
γ∈Ek νγ (θ)= λ(θ)− k, it follows that

dkνβ(θ)− λ(θ)=
∑
γ∈Ek

(νβ(θ)− νγ (θ))+ O(1).

Using this last estimate in (5.14),∣∣∣∣νβ(θ)− λ(θ)dk

∣∣∣∣≤ cδx + o(x). (5.15)

Now, let ηN be the prefix of length N of the infinite sequence

F(P(2+ 1)) F(P(3+ 1)) F(P(5+ 1)) · · ·

and let p∗ be the largest prime for which

λ(F(P(2+ 1)) F(P(3+ 1)) · · · F(P(p∗ + 1))) < N .

Moreover, set

η∗N = F(P(2+ 1)) F(P(3+ 1)) · · · F(P(p∗ + 1)).

We then have
0≤ N − λ(η∗N )≤ cr log p∗ ≤ cr N/log N . (5.16)
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We now define the sequence Y0, Y−1, Y−2, . . . , Y−H as follows:

Y0 = p∗, Y−1 =
1
2 Y0, . . . , Y−( j+1) =

1
2 Y− j , . . . , Y−H ,

where H is the smallest integer for which 2H > log p∗, implying that H log 2∼
log log p∗ as p∗ grows.

Let us write η∗N as

η∗N = ρθ−Hθ−(H−1) · · · θ0 (≈ ηN ),

where ρ is the word F(P(2+ 1)) F(P(3+ 1)) · · · F(P(q0 + 1)), where q0 is the
largest prime number which is smaller than Y−H , and where

θ− j = F(P(p1 + 1)) F(P(p2 + 1)) · · · F(P(pr + 1)),

where p1 < p2 < · · ·< pr are all the primes contained in the interval [Y−( j+1), Y− j ].
With this set up, it is clear that

νβ(η
∗

N )= νβ(ρ)+ νβ(θ−H )+ · · · + νβ(θ0)+ O((H + 1)k). (5.17)

But, since

νβ(ρ)≤ crq0 ≤ crY−H < c
p∗

log p∗
,

it follows from (5.17) that

νβ1(η
∗

N )− νβ2(η
∗

N ) =

0∑
j=−H

(νβ1(θ j )− νβ2(θ j ))

+ O(log log p∗)+ O

(
p∗

log p∗

)
. (5.18)

In light of (5.14), we obtain from (5.18) that

|νβ1(η
∗

N )− νβ2(η
∗

N )| ≤ cδ
H∑

j=0

(Y− j − Y−( j+1))+ O

(
p∗

log p∗

)
≤ cδY0 = cδp∗,

so that ∣∣∣∣νβ(ηN )−
λ(ηN )

dk

∣∣∣∣≤ cδp∗. (5.19)

Since

λ(ηN )=
∑
p≤p∗

L(P(p + 1))=
r p∗

log d
+ O(π(p∗)),
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it follows from (5.19) that

lim
N→∞

∣∣∣∣νβ(ηN )

λ(ηN )
−

1
dk

∣∣∣∣≤ cδ. (5.20)

Since δ > 0 is arbitrary, we may conclude that the left-hand side of (5.20) is 0.
This completes the proof that the number η is normal. The proof that η̃ is normal

can be obtained along the same lines.

6. Proof of Theorem 3.2

The proof is much easier than that of Theorem 3.1. As previously, let Ix = [x, 2x]
and set

θ = F(P(n0)) · · · F(P(nT )),

where n0 is the smallest integer in Ix , and nT is the largest. We then have

λ(θ)= r x
log x

log d
+ O(x).

Let δ be a small positive number. One can easily show that the number of integers
n ∈ Ix for which either P(n) < xδ or P(n) > x1−δ is ≤ cδx . In light of this,

νβ(θ)=
∑
n∈Ix

xδ≤P(n)≤x1−δ

νβ(F(P(n)))+ O(T )+ O(δx log x). (6.1)

Let us choose

u0 = xδ and thereafter u j = 2u j−1 for each 1≤ j ≤ H, (6.2)

where H is the smallest positive integer for which 2H u0 > x1−δ , so that

H =

[
(1− 2δ) log x

log 2

]
+ O(1). (6.3)

Letting z = log x/log y, it is known that

9(x, y)= α(z)x + O

(
x

log y

)
uniformly for 2≤ y ≤ x, (6.4)

where α stands for the Dickman function (see for instance Tenenbaum [11]).
Hence, if for each prime q we let R(q) := #{n ∈ Ix : P(n)= q}, it follows

from (6.4) that

R(q) = 9

(
2x

q
, q

)
−9

(
x

q
, q

)
= α

(
log(2x/q)

log q

)
2x

q
− α

(
log(x/q)

log q

)
x

q
+ O

(
x

q log q

)
= (1+ o(1))α

(
log x

log q
− 1

)
x

q
, (6.5)

where we used the fact that q ∈ [xδ, x1−δ
].
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Now, it follows from (6.1) that

νβ(θ)=
∑

xδ≤q≤x1−δ

νβ(F(q))R(q)+ O(T )+ O(δx log x). (6.6)

Let β1, β2 ∈ Ek with β1 6= β2. Then, it follows from (6.6) that

|νβ1(θ)− νβ2(θ)| ≤
∑

xδ≤q≤x1−δ

|νβ1(F(q))− νβ2(F(q))|R(q)+ O(x)+ O(δx log x).

(6.7)
Taking u0, u1, . . . , u H as in (6.2), with H as in (6.3), the sum on the right-hand

side of (6.7), which we will denote by S∗(x), can be rewritten and handled as follows:

S∗(x)=
H−1∑
j=0

∑
u j≤q<u j+1

|νβ1(F(q))− νβ2(F(q))|R(q)=
H−1∑
j=0

S j , (6.8)

say. Now, clearly, in light of (6.5),

S j ≤
2α(u j )

u j
x

∑
u j≤q<u j+1

|νβ1(F(q))− νβ2(F(q))|, (6.9)

say. We now define κu := log log u and classify the primes q ∈ [u j , u j+1) as good or
bad primes. We say that q ∈ [u j , u j+1) is a good prime if

|νβ1(F(q))− νβ2(F(q))| ≤ κu
√

L(ur ),

and we say that it is a bad prime otherwise.
Splitting the sum on the right-hand side of (6.9) into two sums, one running on the

good primes and one running on the bad primes, it follows from Lemma 4.2 that

S j ≤
2α(u j )

u j
xκu j

√
L(ur

j )
u j

log u j
+

2α(u j )

u j
x

u j

(log u j )κ2
u j

= 2α(u j )x ·

{κu j

√
L(ur

j )

log u j
+

1

(log u j )κ2
u j

}
≤ 4rα(u j )x

log log u j√
log u j

. (6.10)

Summing the inequalities in (6.10) for j = 0, 1, . . . , H − 1, we obtain from (6.8) that
S∗(x)= o(li(x)) as x→∞. Using this estimate in (6.7), we obtain that

|νβ1(θ)− νβ2(θ)| ≤ cδx log x + o(x log x). (6.11)

Now let ξN be the prefix of length N of

F(P(2)) F(P(3)) · · ·
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and let
ξ̃N = F(P(2)) F(P(3)) · · · F(P(m)),

where λ(ξ̃N )≤ N < λ(ξ̃N F(P(m + 1))).
It is clear that m ∼ c(N/log N ) for some constant c > 0, which implies that

λ(F(P(m + 1)))� r log m.
Let 2x = m and consider the intervals Ix , Ix/2, Ix/(22), . . . , Ix/(2L ), where L =

2[log log x], and write

τ j = F(P(a)) · · · F(P(b)) ( j = 0, 1, . . . , L),

where a is the smallest and b the largest integer in Ix/(2 j ). Moreover, let

µ= F(P(2)) · · · F(P(s)),

where s is the largest integer which is less than the smallest integer in Ix/(2 j+1).
It is clear that

|νβ1(ξ̃N )− νβ2(ξ̃N )| ≤ |νβ1(µ)− νβ2(µ)| +

L∑
j=0

|νβ1(τ j )− νβ2(τ j )| (6.12)

and that
νβ(µ)≤ λ(µ)≤

x

2L · r log x = o(x). (6.13)

Applying estimate (6.11) L + 1 times by replacing successively 2x by x , x/2,
x/22, . . . , x/2L , we obtain from (6.12), and in light of (6.13), that

|νβ1(ξ̃N )− νβ2(ξ̃N )| ≤ cδN + o(N ) (N →∞). (6.14)

Then, using the same argument as in the proof of Theorem 3.1, it follows
from (6.14) that

lim sup
N→∞

∣∣∣∣νβ(ξN )

N
−

1
dk

∣∣∣∣≤ cδ.

Since δ > 0 can be chosen arbitrarily small, it follows that

lim sup
N→∞

νβ(ξN )

N
=

1
dk ,

thus establishing that ξ is normal.
The proof that ξ∗ is normal is similar.
This completes the proof of Theorem 3.2.
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