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Abstract
We propose a flexible lattice model to evaluate the fair value of insurance contracts embedding both financial
and actuarial risk factors. Flexibility relies on the ability of the model to manage different specifications of the
correlated processes governing interest rate, mortality, and fund dynamics, thus allowing the insurer to make the
most appropriate choices. The model is also able to handle additional guarantees like a surrender opportunity for
which explicit formulae are not available being it similar to an American derivative. The model discretizes mortality
and interest rate dynamics through two different binomial lattices and then combines them into a bivariate tree
characterized by the presence of four branches for each node. The probability of each branch is defined to replicate
the correlation affecting the two processes. The bivariate model is useful to compute the value of survival zero
coupon bond. When adding another source of risk, such as the fund dynamics for evaluating fund-linked insurance
products, we model it through a bivariate tree that captures the influence of the interest rate on its drift term. Then,
the mortality risk is embedded by defining a trivariate tree presenting eight branches emanating from each node
with probabilities defined in order to capture the correlations of the processes. Extensive numerical experiments
assess the model accuracy by considering some stylized policies, but the model application is not limited to them
being it able to manage different contract specifications.

1. Introduction
Currently, the actuarial market is permeated by several innovative insurance products that have been
proposed by insurance companies with a twofold aim: to satisfy the demand of protection in old age and
to provide new investment instruments with benefits linked to the lifetime of an individual. The academic
contributions developed in the last decades evidence how, during years, all the proposed innovative
insurance products have been characterized by an increasing and consistent financial content. According
to this evidence, their fair evaluation models have to be established in a framework where both the
financial and actuarial risk factors of the contract are accurately taken into account.

A very general framework would be characterized by an economy in which interest rates are stochastic
since, as evidenced by the dynamics displayed by interest rates in the last fifteen years, they are far away
from being flat and sometimes become negative for several reasons like the financial crises in 2008, the
sovereign debt crisis in 2010, the pandemic in 2020 and the recent war in Ukraine. Clearly, this is not the
only aspect to look at since, generally, the insurer invests the policy premiums in a reference portfolio
made up of equities and bonds whose performance affects substantially the amount of the benefits paid
by the insurer. Hence, the policyholder bears the uncertainty characterizing financial markets, which
could also show a negative performance and reduce the investment outcomes. Under this perspective, if
on one hand it is necessary to model the reference portfolio behaviour by a stochastic process to capture
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the financial market fluctuations, on the other hand the insurer must provide additional guarantees to
make the product more appealing and to mitigate the risk affecting the policyholder investment in the
policy contract. Finally, last but not least, mortality risk needs to be modelled accurately in order to
understand its impact on the magnitude of the payments made by the insurer to the policyholder and
linked to the events of the insured course of life.

To sum up, a complete evaluation framework for insurance contracts should consider all the sources
of risk detailed above and their correlation structure in order to allow the insurer to obtain the fair policy
evaluation, once the processes to accurately describe the interest rate, the reference portfolio, and the
mortality patterns have been identified. The consideration of such a multiple risk factor model has the
appealing feature of being quite realistic and allows insurers to obtain also accurate evaluation of long-
term policies that are becoming more and more popular in the actuarial market. Indeed, the long-term
exposure makes such policies more sensitive to changes in the economy that are reflected by interest
rate and reference portfolio dynamics. In this sense, it is worth mentioning the work of Van-Haastrecht
et al. (2009), who consider the pricing of long-dated insurance contracts focusing on the valuation of
insurance options with foreign exchange exposures or long-term equity.

One methodology to model simultaneously financial and actuarial risk in a unified way is to consider
continuous time processes for all the risks involved in the analysis. An example of such a multiple risk
factor model can be found in Hanna and Devolder (2023) where a multidimensional affine Brownian
model has been proposed, permitting to model interest rates (Hull and White model), investment funds
(Black and Scholes feature), and mortality (Hull and White model). The affine structure of the model
permits to introduce easily correlations, including dependence between financial and actuarial risks.
Indeed, if traditionally actuarial and financial risks are assumed to be independent, some evidence tends
to prove that some dependence exists between finance and mortality (see, for instance, Dacorogna and
Cadena, 2015, and Dacorogna and Apicella, 2016) and modern actuarial models analyse the conse-
quences of this potential dependence (see, among others, Dhaene et al., 2013, Liu et al., 2014, and
Deelstra et al., 2016).

Traditionally, actuarial models are based on a basic assumption of independence between financial
and actuarial components; this allows us to build specific models for each of the components without
being obliged to create connections between these risk factors (e.g., between interest rates and force of
mortality). In particular, using continuous time models, the valuation is greatly facilitated in presence of
affine models. However, separate affine models for the different risk factors do not guarantee to have a
global affine structure which is often necessary to obtain closed form expressions. For instance, if we use
for interest rates a classical Hull and White (1993) model and for mortality a Cox et al. (1985) model, and
if we introduce some correlations between the two underlying Brownian motions, it is easy to see that
even if the two components of the process are affine, we lose in general a global affine structure for the
multiple factor model. Another difficulty is the ability to evaluate additional guarantees like surrender
opportunity, which has the feature of an American-style option and cannot be in general evaluated by
explicit formulas due to the fact that the distribution of the optimal exercise time is not known. In order
to be able to compute fair valuations in such circumstances, a natural solution is to discretize these
continuous time processes.

The contribution of this paper aims at providing an evaluation model for insurance contracts where
multiple correlated risk factors may affect the policy fair value, by using a flexible lattice model obtained
as a discretization of a continuous time model and able to embed financial and actuarial risks, including
their correlations. Flexibility relies on the ability of the model to manage different specifications of
the correlated processes governing interest rate, mortality, and reference fund dynamics, thus allowing
the insurer to make the most appropriate choices among the processes commonly used in financial and
actuarial markets. The advantage of using a lattice approach with respect to the other existing analytical
and numerical methods relies also on computational efficiency and accuracy and on the fact that it is
able to handle additional guarantees like a surrender opportunity. In this sense, it simplifies matters for
what concerns the valuation of American-style guarantees, being other numerical approaches generally
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more complicated to implement than lattice-based methods. In addition, for instance, lattice methods
do not suffer the bias characterizing the least squares Monte Carlo (LSM) approach of Longstaff and
Schwartz (2001). Indeed, to deduce the optimal early strategy of an American option, the LSM method
approximates the holding value function by simple least squares regressions based on the cross-sectional
information from simulated paths. As a result, the algorithm accuracy is affected by the number of
regressors in the cross-sectional regressions and the number of simulated paths. The convergence of the
estimated price to the exact one is guaranteed only when these two numbers tend to infinity, and finite
choices of them return estimated prices that are likely biased, as reported in Létourneau and Stentoft
(2014). However, we would like to evidence that as suggested, among others, in Glasserman (2003)
and Korn et al. (2010), such a bias may be eliminated by determining, at first, an approximation for
the optimal exercise boundary on the basis of a set of simulated prices of the underlyings and then by
calculating the approximate value of the derivative with a huge number of newly simulated paths by
using the approximate exercise boundary. Concerning a lattice approach, it has the appealing feature
of returning prices that converges fast to the exact ones as the number of points discretizing the option
lifetime increases. The only drawback with an approach of this kind is represented by the computational
complexity, which is exponential in the number of factors as evidenced by Stentoft (2004). However,
since our lattice model has as many risk factors as three at most, it may be preferable to the LSM method
because its computational complexity does not constitute a problem, as shown in the numerical results.

The model starts discretizing mortality and interest rate dynamics through two different binomial
recombining lattices. The values associated with the lattice nodes are generated in order to replicate the
diffusion part of each process, while the probability associated with each branch is defined in a way
that the first and second order local moments of the discrete model replicate, at least within the limit,
the corresponding continuous-time versions. Such a methodology, originally proposed by Costabile and
Massabó (2010), has been already applied in the field of financial and actuarial mathematics to discretize
the processes appearing in more complex models used to solve different evaluation problems as reported
in Russo and Staino (2018b), Costabile et al. (2021), and De Angelis et al. (2022), to name just a few.
The latter models develop different bivariate lattice models to evaluate interest sensitive claims under
stochastic volatility or, when considering stochastic interest rates like the framework proposed in this
manuscript, options paying discrete dividends, variable annuities in presence of guaranteed minimum
withdrawal benefit, and participating policies. They represent the main source of inspiration to develop
the bivariate model presented hereafter that allows to embed mortality risk when evaluating, for instance,
survival zero coupon bonds. Indeed, the construction of the bivariate model is based as usual on the
combination of the lattice values for the interest rate and mortality rate in order to generate a lattice
presenting four branches emanating from each node, in which the joint probability of each jump is
defined in order to capture the correlation between the two processes.

To introduce an additional source of risk, such as the fund dynamic in order to evaluate fund-linked
insurance products, we have to observe that its drift term depends upon the interest rate process. Hence,
to discretize the fund process, we develop a similar bivariate tree but now the branching probabilities
depend upon the interest rate values and are computed in order to ensure that the discrete first and
second order local moments replicate their continuous-time counterparts, at least within the limit, for
each possible determination of the interest rate. Finally, in order to embed mortality risk, we build up a
trivariate tree with eight branches for each node where the jump probabilities capture the correlations
of the three processes. The developed trivariate model represents the main novel part of the paper pro-
viding the insurer with an instrument that is able to manage simultaneously the financial and actuarial
risks by choosing the most appropriate processes to capture interest rate, mortality, and fund dynamics.
Trivariate lattice-based methodologies have been already applied in financial literature to solve the eval-
uation problem of American-style contingent claims when the interest rate and the volatility affecting
the underlying asset dynamics are stochastic, as in Hilliard and Schwartz (1997) and Russo and Staino
(2018a) but, to the best of the authors’ knowledge, their possible application has not yet been analysed in
the field of actuarial sciences as proposed in this manuscript. However, it is worth noting that the overall
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framework and the processes considered in Hilliard and Schwartz (1997) and Russo and Staino (2018a)
are different with respect to the ones analysed here that require different discretization approaches before
constructing the trivariate model. To complete the analysis, extensive numerical experiments assess the
model accuracy by considering some stylized policies, but the model application is not limited to them
being it able to manage different contract specifications.

The paper is organized as follows. Section 2 is divided into subsections in order to introduce the
framework and to provide a step-by-step description of the discretizations of the processes involved
in the evaluation algorithms. Then, in Section 3, we present a preliminary bivariate model generated
starting from the discretizations proposed for the interest rate and mortality rate processes. The model
is used to evaluate survival zero coupon bonds in order to show the impact of considering correlated
processes. In Section 4, we propose a trivariate tree used to evaluate fund-linked insurance products
and provide some examples of application to equity-linked policies with or without the presence of a
surrender option. Finally, in Section 5, we provide extensive numerical experiments aiming at assessing
the accuracy of the proposed models and, in Section 6, we draw the conclusions.

2. Framework and process discretizations
2.1. The framework
We will consider various kinds of life insurance contracts, issued at time 0 and with maturity T , for
an insured initially aged x. Our aim is to compute the fair value of these contracts. A first basic life
insurance product is a pure endowment contract (without bonus), which can be also called by analogy
with finance “survival zero coupon”. This product pays a fixed sum in case of survival at maturity T
(therefore at age x + T) and nothing in case of death before maturity. Clearly, to evaluate this product,
we need a two-factor model for interest rates and mortality (with an eventual dependence between the
two factors). Other forms of contracts such as equity-linked products will also be considered later in
the paper, where the liabilities of the insurer in case of survival or in case of death (or even in case of
surrender) are linked to the value of a stochastic equity fund. This will now motivate the development
of three-factor models (interest rates, investment fund and mortality). In order to model these various
risk factors, we start from a continuous time approach.

We suppose that all the sources of risk are defined on a filtered probability space (�, F , F, P), where
the filtration F= (Ft)t≥0 satisfies the usual condition of right continuity and completeness, and there
exists an equivalent martingale measure Q chosen as a risk-neutral pricing measure, that is, under Q
the market value of a security equals the expected value of the cash-flows discounted at the risk-free
rate. Hence, under Q, we define a framework in which the interest rate process at time t, rt, and the
mortality intensity process related to a doubly-stochastic stopping time modelling the time of death of
an individual of age x, μx

t , are described by the following dynamics, respectively,

drt = mr(rt)dt + σr(rt)dW1
t , (2.1)

dμx
t = mμ(μx

t )dt + σμ(μx
t )dW2

t , (2.2)

while, without loss of generality and to simplify matters, the reference fund where the insurer invests
the policy premiums is supposed to be made up of equities of the same kind, having value St at time t
and fluctuations described under Q by the equation

dSt = mS(rt, St)dt + σS(St)dW3
t . (2.3)

The Brownian motions Wi
t , with i = 1, 2, 3, are pairwise correlated with correlation coefficient

ρij, with i, j = 1, 2, 3, i �= j. This structure allows introducing correlations also between financial and
actuarial risks. Clearly, the existence of an equivalent martingale measure Q has to be verified for
special choices of the market coefficients in the SDEs of rt, μx

t , and St with the help of Girsanov’s
theorem.
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In this framework, we may treat different models by simply specifying differently the form of mr(rt)
and σr(rt), mμ(μx

t ) and σμ(μx
t ), and mS(rt, St) and σS(St). This aspect is of great importance because, for

instance, it allows us to take into account more realistic models for capturing the interest rate fluctuations
in the financial market where, specially in Europe, sometimes they show a negative pattern, that is, the
Vasicek (1977) and the Hull and White (1993) models are examples of processes that can capture this
aspect. Indeed, for instance, defining in (2.1) mr(rt) = κr(θr − rt) and σr(rt) = σr or σr(rt) = σr

√
rt, with

κr, θr, σr constants and positive, we manage the Vasicek (1977) or the Cox et al. (1985) model for interest
rate, respectively. Similarly, it may be done for the mortality process in (2.2) detailing differently mμ(μx

t )
and σμ(μx

t ) (see, for instance, Dahl, 2004, Luciano and Vigna, 2005, and Zeddouk and Devolder, 2020),
and for the equity process (2.3) choosing opportunely mS(rt, St) and σS(St).

In the section devoted to the presentation of numerical experiments, we apply this framework to
evaluate, for instance, equity-linked term policies and equity-linked endowment policies with or without
embedding a surrender option. This is done to provide just some examples of the model applications but,
clearly, different contract specifications may be easily managed through the proposed method. Suppose
to consider, for example, an equity-linked term policy in absence of the possibility of surrendering the
contract early. In case of survival at maturity T , the policy pays an amount of money given by the maxi-
mum between the reference fund value at time T , ST , and the value of the minimum guaranteed amount
that, without loss of generality, we suppose to be constant at level G, that is, max (ST , G). Following the
decomposition suggested by Brennan and Schwartz (1976), the policy payoff at maturity may be written
as ST + (G − ST)+ where (G − ST)+ = max (G − ST , 0), that is, as the sum of the value of the reference
fund at maturity, ST , and of a put option written on the fund with strike price G, or as G + (ST − G)+

where (ST − G)+ = max (ST − G, 0), that is, as the sum of the value of the guaranteed amount, G, and
of a call option written on the fund with strike price G. For instance, supposing to consider the put-
decomposition, in absence of any surrender option, the equity-linked term policy value at time t under
the risk-neutral measure Q is computed as

EQ

[
e− ∫ T

t r(u)du−∫ T
t μx(v)dv max (ST , G)

∣∣∣Ft

]
=EQ

[
e− ∫ T

t r(u)du−∫ T
t μx(v)dvST |Ft

]

+EQ

[
e− ∫ T

t r(u)du−∫ T
t μx(v)dv(G − ST)+∣∣Ft

]
.

Whenever the equity-linked term policy embeds a surrender option, the policyholder may exercise
the option at any time before maturity thus escaping out of the contract by receiving a pre-specified
surrender amount. The exercise of the surrender option is optimal on a financial point of view since
the policyholder is a rational individual and, clearly, she/he follows a surrender strategy that is strictly
dependent upon the type of the embedded guarantee. Without loss of generality, we model the surrender
benefit as max (St, G) and the value of the policy contract at a generic time t may be written as

sup
τ∈S(t,T)

EQ

[
e− ∫ τ

t r(u)du−∫ τ
t μx(v)dv max (Sτ , G)

∣∣∣Ft

]
,

where S(t, T) indicates the set of all the stopping times of the filtration (Ft)0≤t≤T between t and T .
Different specifications of the framework may be easily included by considering, for example, a con-

tinuous fee paid by the policyholder to have the minimum guarantee that fulfils the role of providing
protection against the risk of a negative performance of the reference fund during the policy lifetime.
In this case, part of the policy premium is paid by the policyholder for the guarantee and it may be
supposed to be collected as a fee continuously withdrawn from the fund at a constant rate α, that is, the
reference fund dynamics under the risk-neutral probability measure Q will be given by

dSt = mS(rt, α, St)dt + σS(St)dW3
t ,

in which, among others, by considering a Black-Scholes dynamics, we have mS(rt, α, St) = (rt − α)St

and σS(St) = σSSt where σS is a positive parameter. In addition, for what concerns the policy contract,
we can easily embed an early surrender penalty having, for example, the form e−κ(T−t), where κ > 0
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represents the constant penalty rate. The effect of the penalty decreases when t increases and vanishes if
the policyholder maintains the contract until its maturity so that, supposing to consider still the previous
equity-linked term policy, the surrender benefit has the form e−κ(T−t) max (St, Gt). In this particular case,
the value of the policy contract may be written as the following optimal stopping problem,

sup
τ∈S(t,T)

EQ

[
e− ∫ τ

t r(u)du−∫ τ
t μx(v)dv

(
e−κ(T−τ ) max (Sτ , G)

) ∣∣∣Ft

]
.

The proposed algorithm starts by discretizing the interest rate process (2.1) on the interval [0,T ]
through a recombining lattice, as detailed in Section 2.2. Then, a similar lattice is used to discretize the
mortality rate process (2.2), as reported in Section 2.3. Finally, in Section 2.4, we provide the discretiza-
tion of the equity process taking into account that its drift depends upon the interest rate process value.
We evidence that in all the proposed discretization, we always work under the risk-neutral probability
measure.

2.2. The interest rate process discretization
The interest rate process (2.1) is discretized by generating a binomial tree having a number of nodes
that grows up linearly with the number of time steps, as detailed in the Costabile and Massabó (2010)
approach. A similar discretization for the interest rate may be also found in Costabile et al. (2021) and
De Angelis et al. (2022).

As usual, the definition of a lattice method starts by splitting the time horizon [0,T ] into n intervals
with equal width 	t = T/n. For i = 0, . . . , n, node (i,0) is the lowest node at time i	t, node (i,1) is the
second lowest one and so on, while r(i, j), j = 0, . . . , i, is the value of the interest rate at node (i, j) of
the discrete process. Clearly, the tree is rooted at r(0, 0) = r0 and the other values that approximate the
r-process in (2.1) at the i-th time interval are generated as follows:

• on the highest path, r(i, i) = r(i − 1, i − 1) + σr(r(i − 1, i − 1))
√

	t;
• on the lowest path, two possible cases arise according to the form considered for σr(rt) in (2.1).

Among others, if σr(rt) = σr like in the Vasicek (1977) model, the interest rate process may
assume negative values, so that we generate r(i, 0) = r(i − 1, 0) − σr(r(i − 1, 0))

√
	t; if we

define σr(rt) = σr
√

rt, like in the Cox et al. (1985) model, the interest rate process may assume
only non-negative values and we generate r(i, 0) = max (r(i − 1, 0) − σr(r(i − 1, 0))

√
	t, 0);

• for all the nodes (i, j) falling between the highest and lowest path, where i = 2, . . . , n and j =
1, . . . , i − 1, we generate r(i, j) = r(i − 2, j − 1).

It means that the lattice node values are generated starting from the two edges where the construc-
tion coincides with the Cox and Rubinstein (1985) scheme, while the internal lattice node values are
defined by generating horizontal layers of nodes starting from the nodes on the two edges. In this way,
the resulting lattice is characterized by a recombining shape that allows retaining the computational
simplicity of the discretization in that the number of nodes grows linearly in the number of time steps.
To complete the definition of the discrete-time approximating process, we need to define the transition
probabilities associated with each node (i, j). Transition probabilities of an upward, pr(i, j), or a down-
ward, qr(i, j) = 1 − pr(i, j), movement (when starting from a generic value r(i, j)) are defined in order to
replicate the interest rate expected value in the next time interval, that is,

pr(i, j) = r(i, j) + mr(r(i, j))	t − r(i + 1, j)

r(i + 1, j + 1) − r(i + 1, j)
, (2.4)

and ensure also to replicate the second order local moment of the continuous-time distribution, at least
within the limit.

Whenever relation (2.4) does not return a legitimate probability, that is, a number between 0 and
1, multiple upward or downward jumps are allowed. It happens when r(i, j) + mr(r(i, j))	t does not
lay between r(i + 1, j + 1) and r(i + 1, j) and an example is given in Figure 1. Here, when the discrete
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r(0, 0)

r(1, 1)

r(2, 2)

r(3, 3)

r(1, 0)

r(2, 0)

r(3, 0)

r(2, 1)

r(3, 2)

r(3, 1)

•r(2, 0) + mr(r(2, 0))Δt

Figure 1. Example of multiple jumps in the r-process.

process is at node (2, 0), its expected value is r(2, 0) + mr(r(2, 0))	t. Hence, the successors cannot be
r(3, 1) and r(3, 0) because they do not bracket the expected value, and the resulting transition probability
will fall outside the interval [0, 1]. The algorithm chooses the successors of r(2, 0) as the two closest
values r(3, j), j = 0, . . . , 3, bracketing the expected value of the process (in Figure 1, they are r(3, 2) and
r(3, 1)). In formulae, a multiple jump when the process is located at node (i, j) is obtained by defining
jm as

jm =

⎧⎪⎨
⎪⎩

0 if r(i, j) + mr(r(i, j))	t < r(i + 1, 0),

i if r(i, j) + mr(r(i, j))	t > r(i + 1, i + 1),

the largest integer j′ ∈ [0, i] : r(i, j) + mr(r(i, j))	t ≥ r(i + 1, j′) otherwise,

so that the successors are identified as r(i + 1, jm + 1) and r(i + 1, jm) with transition probabilities

pr(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if r(i, j) + mr(r(i, j))	t < r(i + 1, 0),

1 if r(i, j) + mr(r(i, j))	t > r(i + 1, i + 1),

r(i, j) + mr(r(i, j))	t − r(i + 1, jm)

r(i + 1, jm + 1) − r(i + 1, jm)
otherwise,

and qr(i, j) = 1 − pr(i, j), respectively.

2.3. The mortality rate process discretization
The procedure detailed in Section 2.2 is also applied to discretize the mortality rate process (2.2) but,
in this case, we evidence that it is reasonable to consider only non-negative values for such a process.
As a consequence, the lattice is cut at zero on the lowest path.1 Briefly, denoting by μx(i, l), i = 0, . . . ,

1Instead of cutting the lattice at zero, an alternative possibility is to consider positive value processes for the mortality intensity
as, for instance, d log (μx(t)) that may be easily managed by the proposed discretization.
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n, l = 0, . . . , i, the value of the mortality rate at node (i, l), and rooting the tree at μx(0, 0) = μx
0, we

directly approximate the μx-process in (2.2) as follows:

• on the highest path, μx(i, i) = μx(i − 1, i − 1) + σμ(μx(i − 1, i − 1))
√

	t;
• on the lowest path, μx(i, 0) = max (μx(i − 1, 0) − σμ(μx(i − 1, 0))

√
	t, 0); and

• on the inner nodes (i, l), where i = 2, . . . , n and l = 1, . . . , i − 1, μx(i, l) = μx(i − 2, l − 1).

Upward, pμ(i, l), and downward, qμ(i, j) = 1 − pμ(i, l), transition probabilities are defined in order to
replicate the mortality intensity expected value in the next time interval, that is,

pμ(i, l) = μx(i, l) + mμ(μx(i, l))	t − μx(i + 1, l)

μx(i + 1, l + 1) − μx(i + 1, l)
, (2.5)

and they replicate also the second order local moment of the continuous-time distribution, at least within
the limit. Whenever relation (2.5) does not ensure that pμ(i, l) is between 0 and 1, as before we define
multiple jumps as

lm =

⎧⎪⎨
⎪⎩

0 if μx(i, l) + mμ(μx(i, l))	t < μx(i + 1, 0),

i if μx(i, l) + mμ(μx(i, l))	t > μx(i + 1, i + 1),

the largest integer l′ ∈ [0, i] : μx(i, l) + mμ(μx(i, l))	t ≥ μx(i + 1, l′) otherwise,

and transition probabilities as

pμ(i, l) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if μx(i, l) + mμ(μx(i, l))	t < μx(i + 1, 0),

1 if μx(i, l) + mμ(μx(i, l))	t > μx(i + 1, i + 1),

μx(i, l) + mμ(μx(i, l))	t − μx(i + 1, lm)

μx(i + 1, lm + 1) − μx(i + 1, lm)
otherwise,

and qμ(i, l) = 1 − pμ(i, l), respectively.

2.4. The equity process discretization
To discretize the equity process (2.3), we have to take into account that its drift depends upon the value
registered for the interest rate at a given time step. Hence, at first, as already done above, we proceed
to discretize the diffusion part of the process and, then, we will capture the drift effect when computing
the transition probabilities associated with each jump.

Denoting by S(i, h), i = 0, . . . , n, h = 0, . . . , i, the equity value of the approximating process at node
(i, h), and rooting the tree at S(0, 0) = S0, we approximate the diffusion part S-process in (2.3) as follows:

• on the highest path, S(i, i) = S(i − 1, i − 1) + σS(S(i − 1, i − 1))
√

	t;
• as before, on the lowest path, we can give attention to the specification given for σS(St). For

instance, supposing that σS(St) = σSSt as in the standard Brownian motion, we compute at each
step the quantity S(i, 0) = S(i − 1, 0) − σS(S(i − 1, 0))

√
	t;

• on the inner nodes (i, h), where i = 2, . . . , n and h = 1, . . . , i − 1, S(i, h) = S(i − 2, h − 1).

To define the probability that the equity value shows an upward or a downward jump, we have to take
into account that the asset price process (2.3) is affected by the stochastic interest rate dynamic. Hence,
for each possible interest rate determination, transition probabilities in the discrete model are defined in
order to match the first and second order local moments of the continuous-time model, at least within
the limit. With this aim, we define a “state of nature” as the triplet (i, j, h) in which the interest rate value
is r(i, j) and the equity value is S(i, h), thus computing the upward probability as

pS(i, j, h) = S(i, h) + mS(r(i, j), S(i, h))	t − S(i + 1, h)

S(i + 1, h + 1) − S(i + 1, h)
,

and downward probability as qS(i, j, h) = 1 − pS(i, j, h).
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Whenever, multiple jumps are required to keep the value of pS(i, j, h) within the interval [0, 1], we
define hm as

hm =

⎧⎪⎨
⎪⎩

0 if S(i, h) + mS(r(i, j), S(i, h))	t < S(i + 1, 0),

i if S(i, h) + mS(r(i, j), S(i, h))	t > S(i + 1, i + 1),

the largest integer h′ ∈ [0, i]:S(i, h) + mS(r(i, j), S(i, h))	t ≥ S(i + 1, h′) otherwise,

so that the successors are S(i + 1, lm + 1) and S(i + 1, lm) with transition probabilities

pS(i, j, h) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if S(i, h) + mS(r(i, j), S(i, h))	t < S(i + 1, 0),

1 if S(i, h) + mS(r(i, j), S(i, h))	t > S(i + 1, i + 1),

S(i, h) + mS(r(i, j), S(i, h))	t − S(i + 1, hm)

S(i + 1, hm + 1) − S(i + 1, hm)
otherwise,

and qS(i, j, h) = 1 − pS(i, j, h), respectively.

3. Valuation of bonds through a bivariate discrete model
The discretizations of the three processes provided in Section 2 may be combined in order to create
evaluation models for insurance products. A first application we would like to propose is relative to the
construction of a bivariate model that combines the two discretizations of the interest and mortality rates.
The idea is similar to the one adopted by Costabile et al. (2021) and De Angelis et al. (2022) to develop
their bivariate lattice, but the lattice construction is different on some aspects as detailed hereafter and,
more important, it has a different aim, that is, the introduction of the mortality risk in the evaluation
process. Under this perspective, we choose to evaluate survival zero coupon bonds paying one unit of
money at maturity in case of survival and mortality bonds characterized by traditional fixed coupons
at regular intervals and a principal at maturity becoming random and linked with realized longevity or
mortality experiences. The aim is to show the impact of the correlation structure characterizing the two
processes upon the bond values but, clearly, other products like interest sensitive claims may be easily
evaluated by the generated model embedding the mortality risk.

3.1. The bivariate lattice and the joint branching probabilities
The lattices discretizing the r-process and the μ-process are combined into a sort of pyramid where each
node is linked to four branches. The probability associated with each branch is computed by the product
of the corresponding marginal probabilities in the lattice for rt and μx

t plus an adjusting addendum in
order to take into account the process correlation. The pyramid is obtained by defining a state of nature as
a triplet (i, j, l) with i = 0, . . . , n, and j, l = 0, . . . , i, in correspondence of which the interest rate assumes
value r(i, j) and the mortality rate has value μx(i, l). Starting from a generic state (i, j, l), all the possible
movements of the resulting joint process are captured by four scenarios labelled by a pair in which the
first element refers to the r-process movement, upward denoted by “u”, or downward denoted by “d”,
while the second element refers to the μ-movement. For instance, the pair ud identifies the branch with
an upward movement in the r-dynamic and a downward movement in the μ-dynamic.

The transition probabilities in correspondence of each scenario, puu, pud, pdu, and pdd, are obtained by
solving the linear system arising by considering the following four conditions:

1. the probabilities sum is equal to 1,

puu + pud + pdu + pdd = 1; (3.1)

2. the marginal probability of the r-process is replicated, that is,

puu + pud = pr(i, j); (3.2)
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3. the marginal probability of the μ-process is replicated, that is,

puu + pdu = pμ(i, l); and (3.3)

4. the covariance between the discrete r-process and μ-process must equal the covariance between
the continuous-time processes, that is,

puu − pud − pdu + pdd = ρ12. (3.4)

Solving simultaneously Equations (3.1)–(3.4), we obtain the following solutions:

puu = pr(i, j)pμ(i, l) + ρ12

4
; pud = pr(i, j)qμ(i, l) − ρ12

4
;

pdu = qr(i, j)pμ(i, l) − ρ12

4
; and pdd = qr(i, j)qμ(i, l) + ρ12

4
.

It is worth noting that all the probabilities above belong to the interval [0, 1] in the limit, that is,
when the number of time steps n used to discretize the r-process and the μx-process tends to infinity.
To show this aspect, consider for instance the probability puu for which we have 0 ≤ puu ≤ 1 if − ρ12

4
≤

pr(i, j)pμ(i, l) ≤ 1 − ρ12
4

, with −1 ≤ ρ12 ≤ 1. The previous double inequality is always satisfied for any
value of ρ12 if 1

4
≤ pr(i, j)pμ(i, l) ≤ 3

4
. The latter is always true when n → +∞ because pr(i, j) → 1

2
and

pμ(i, l) → 1
2

as n → +∞.2

3.2. Survival zero coupon bonds
We apply the proposed bivariate model for evaluating a survival zero coupon bond paying one unit of
money at maturity T in case of survival, which in a continuous time framework it is equivalent to com-
pute the expected value EQ

[
e− ∫ T

t r(u)du−∫ T
t μx(v)dv

]
under the risk-neutral probability measure Q imposing

t = 0. To compute the fair bond value at inception, we have to use the proposed discretization proceed-
ing backward on the bivariate tree. We label by B(i, j, l), i = 0, . . . , n; j, l = 0, . . . , i, the fair bond value
when the interest rate is located at node (i, j) and the mortality rate at node (i, l). At maturity, on the
terminal state of nature (n, j, l), the bond value is given by

B(n, j, l) = 1, (3.5)

and, proceeding backward, the fair bond value in state of nature (i, j, l) is computed as

B(i, j, l) = e−[r(i,j)+μx(i,l)]	t
[
puuB(i + 1, jm + 1, lm + 1) + pudB(i + 1, jm + 1, lm)

+pduB(i + 1, jm, lm + 1) + pddB(i + 1, jm, lm)
]

, (3.6)

where we consider properly the interest rate and mortality risks and, for instance, B(i + 1, jm + 1, lm + 1)
is the fair bond value when, starting from state of nature (i, j, l), all the processes show an upward
movement. The backward induction proceeds up to node (0, 0, 0) that contains the fair bond value at the
contract inception.

3.3. Mortality bonds
The discretization technique can also be used for the pricing of securitization products based on mortality
or longevity risks. Indeed, these products naturally combine financial and actuarial elements and the
correlations between them will have a direct influence on their valuation. Securitization for the insurer

2See Appendix for the proof that pr(i, j) → 1
2 and pμ(i, l) → 1

2 as n → +∞.
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is based on a mechanism of transfer of risk through financial markets instead of classical reinsurance.
For instance, let us consider a bond characterized by traditional fixed coupons at regular intervals and a
random principal at maturity, linked with realized longevity or mortality experiences as reported, among
others, in Cox and Pedersen (2000) or Lin and Cox (2008). Still denoting by T the maturity of the bond,
by c the fixed coupons annually paid, and by L(T ) the stochastic principal to be defined, the initial price
at time t (imposing t < 1 to capture the effect of all the coupons) of the instrument under the risk-neutral
probability measure Q is given by

BM(t, T) = c
T∑

z=1

P(t, z) +EQ

[
e− ∫ T

t r(u)duL(T)
]

, (3.7)

where P(t, z) is the value at time t of the classical zero coupon bond price with maturity z, that is,
P(t, z) =EQ

[
e− ∫ z

t r(u)du
]
.

The first term in the right-hand side of Equation (3.7) is very simple and explicit but the second one,
through the term L(T ), involves simultaneously interest rates and mortality risk with potential corre-
lation. Indeed, depending on the kind of protection asked by the issuer of the bond, the payoff L(T )
can be based on survival conditions (longevity risk) or on mortality results. Under this perspective, let
us consider here a mortality bond. The purpose of the product is to protect the issuer against possible
deviation of the observed mortality compared to a reference value defined ex ante. Assuming that we
follow an initial cohort aged x at time t, the payoff is assumed to be given by L(T) = Kl(T), where K is
the nominal of the bond and l(T ) is a random variable identifying a loss function comparing the realized
level of global mortality between age x and age x + (T − t) denoted by qT to a reference level fixed at
issuance and denoted by qt.

Let us consider, for instance, a linear product which can be seen as a Forward Rate Agreement at
maturity between the observed and the expected mortalities. The loss function is equal to 1 if the realized
mortality is equal to the expected one (in that case the bond will pay the normal nominal); if the realized
mortality is higher (lower) than the expected one, the bond will pay less (more) than the nominal. In
this case, the loss function is then given by l(T) = 1 + λ(qt − qT), where λ is a positive factor between
0 and 1 (if λ = 0, there is no correction for mortality; if λ = 1, there is a complete recovery of the
mortality spread; for 0 < λ < 1, we get a partial recovery). By introducing the corresponding survival
rates defined by pt = 1 − qt, the loss function becomes l(T) = 1 + λ(pT − pt), so that the payoff of the
principal at maturity is given by

L(T) = Kl(T) = K
[
1 + λ(pT − pt)

] = K − λKpt + λKpT ,

where pt is fixed while pT = e− ∫ T
t μx(v)dv.

To sum up, the second term in the right-hand side of Equation (3.7) may be written as

EQ

[
e− ∫ T

t r(u)duL(T)
]
= (K − λKpt)E

Q

[
e− ∫ T

t r(u)du
]
+ λKEQ

[
e− ∫ T

t r(u)du−∫ T
t μx(v)dv

]
,

so that the mortality bond value at time t is definitively given by

BM(t, T) = c
T∑

z=1

P(t, z) + (K − λKpt)E
Q

[
e− ∫ T

t r(u)du
]
+ λKEQ

[
e− ∫ T

t r(u)du−∫ T
t μx(v)dv

]
. (3.8)

To determine the mortality bond value at inception, that is, t = 0, through the proposed bivariate
model, we have to treat separately the addenda appearing in (3.8). With this aim, we need an additional
requirement concerning the number of time steps n used to discretize the time to maturity of the bond, T .
Indeed, the presence of the coupon c annually paid implies that we must have a layer of nodes coinciding
with each contract year in order to evaluate the present value of all the coupons consistently and without
generating biases in the pricing procedure. In this perspective, we choose n as a multiple of T so that
we are ensured that each calendar year is discretized through n

T
time steps and we have a layer of nodes

coinciding with each coupon payment epoch z ∈N with z ∈ [1, T].
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The last addendum in (3.8) may be easily evaluated by formula (3.6), imposing at maturity B(n, j, l) =
λK in formula (3.5). Indeed, it may be seen as a survival zero coupon bond paying the amount λK at
maturity. The valuation of the first two addenda may be done simultaneously in a univariate environ-
ment since there is not mortality effect to capture but only a stochastic interest rate dynamics to manage.
Hence, they may be seen together as parts of a coupon bond with annual coupon equal to c and nom-
inal value paid at maturity T equal to K − λKp0, which may be evaluated along the tree developed to
discretize the interest rate evolution. To determine the value at inception of such a coupon bond, at matu-
rity T we define the quantity Bc(n, j) = K − λKp0 + c, with j = 0, . . . , n, as the sum of the nominal value
plus the last paid coupon, and proceed backward by computing for i = n − 1, . . . , 0, and j = 0, . . . , i, the
quantity

Bc(i, j) = e−r(i,j)	t
[
pr(i, j)Bc(i + 1, jm + 1) + qr(i, j)Bc(i + 1, jm)

] + cI{z∈N|i	t=z,z∈[1,T−1]},

where I{·} is the indicator function assuming value 1 when i	t coincides with a contract year and 0
otherwise. Finally, the value of the mortality bond at inception is given by the sum Bc(0, 0) + B(0, 0, 0).

4. Valuation of equity-linked life insurances policies through a trivariate discrete model
A second application we would like to propose in this paper considers contemporaneously all the dis-
cretizations of the interest rate, mortality rate, and equity processes and develop an algorithm based on
the construction of a trivariate model inspired by a methodology presented in Hilliard and Schwartz
(1997) and Russo and Staino (2018a). The aim is to generate an algorithm that is able to evaluate the
linked products in the insurance markets and to easily manage the presence of a surrender option that
allows the policyholder to escape out of the contract early.

4.1. The trivariate lattice and the joint branching probabilities
The lattices discretizing the r-process, the μ-process, and the S-process are combined into a trivariate
environment where each node has eight branches each one presenting a probability computed by the
product of the marginal probabilities of the jumps in the lattice for rt, μx

t , and St, plus an adjusting
addendum to take into account the pairwise process correlations. In detail, here we define a state of
nature as a quadruplet (i, j, l, h) with i = 0, . . . , n, and j, l, h = 0, . . . , i, in correspondence of which the
interest rate assumes value r(i, j), the mortality rate has value μx(i, l), and the fund has value S(i, j, h).
Starting from a generic state (i, j, l, h), the trivariate lattice presents eight possible scenarios, each one
labelled with an ordered triplet. The first element of the triplet refers to the discrete interest rate process,
upward denoted by “u” or downward denoted by “d”, the second element refers to the μx-movement,
and the third element to the S-movement. For instance, the triplet uuu identifies the branch in which all
the processes show an upward movement, the triplet uud denotes the branch in which the discrete r-
dynamics and μx-dynamics show an upward movement and the discrete S-dynamics shows a downward
movement, and so on.

At this point, we have to define the joint transition probabilities of the resulting model,
puuu, puud, pudu, pudd, pduu, pdud, pddu, and pddd, which are computed by solving the linear system arising by
considering the conditions detailed hereafter:

1. the probabilities sum is equal to 1,

puuu + puud + pudu + pudd + pduu + pdud + pddu + pddd = 1; (4.1)

2. the marginal probability of the r-process is replicated, that is,

puuu + puud + pudu + pudd = pr(i, j); (4.2)
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3. the marginal probability of the μx-process is replicated, that is,

puuu + puud + pduu + pdud = pμ(i, l); (4.3)

4. the marginal probability of the S-process is replicated, that is,

puuu + pudu + pduu + pddu = pS(i, j, h); (4.4)

5. the covariance between the discrete r-process and μx-process matches the covariance between
the corresponding continuous-time processes, that is,

puuu + puud − pudu − pudd − pduu − pdud + pddu + pddd = ρ12; (4.5)

6. the covariance between the discrete r-process and S-process matches the covariance between
the corresponding continuous-time processes, that is,

puuu − puud + pudu − pudd − pduu + pdud − pddu + pddd = ρ13; (4.6)

7. the covariance between the discrete μx-process and S-process matches the covariance between
the corresponding continuous-time processes, that is,

puuu − puud − pudu + pudd + pduu − pdud − pddu + pddd = ρ23; (4.7)

8. the discrete triple cross product matches the corresponding continuous-time one, that is,

puuu − puud − pudu + pudd − pduu + pdud + pddu − pddd = 0. (4.8)

Solving simultaneously Equations (4.1)–(4.8), we obtain the following solutions:

puuu = pr(i, j)pμx (i, l)pS(i, j, h) + ρ12 + ρ13 + ρ23

8
;

puud = pr(i, j)pμx (i, l)qS(i, j, h) + ρ12 − ρ13 − ρ23

8
;

pudu = pr(i, j)qμx (i, l)pS(i, j, h) + −ρ12 + ρ13 − ρ23

8
;

pudd = pr(i, j)qμx (i, l)qS(i, j, h) + −ρ12 − ρ13 + ρ23

8
;

pduu = qr(i, j)pμx (i, l)pS(i, j, h) + −ρ12 − ρ13 + ρ23

8
;

pdud = qr(i, j)pμx (i, l)qS(i, j, h) + −ρ12 + ρ13 − ρ23

8
;

pddu = qr(i, j)qμx (i, l)pS(i, j, h) + ρ12 − ρ13 − ρ23

8
;

pddd = qr(i, j)qμx (i, l)qS(i, j, h) + ρ12 + ρ13 + ρ23

8
.

We have to observe that, substantially, we have four different values for the correction term added
to the product of the marginal process probabilities, and, in the solutions above, each one of these four
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terms is replicated two times. It is easy to prove that all the probabilities of the trivariate model belong
to the interval [0, 1], in the limit (i.e., when the number of time steps n used to discretize the r-process,
the μx-process and the S-process tends to infinity) when each one of the four different correction terms
is greater than − 1

8
. For instance, if we consider puuu, in the limit we have that lim

n→+∞
puuu = 1

8
+ ρ12+ρ13+ρ23

8

because pr(i, j) → 1
2
, pμ(i, l) → 1

2
, and pS(i, j, h) → 1

2
as n → +∞. Hence, 0 ≤ puuu ≤ 1 in the limit if

− 1
8
≤ ρ12+ρ13+ρ23

8
≤ 7

8
. The right-hand side inequality is always satisfied so that we have a legitimate prob-

ability when ρ12+ρ13+ρ23
8

≥ − 1
8
. Clearly, there are correlation structures that are admissible in our model

but do not satisfy the previous condition. These cases have to be preliminarily investigated if they are of
practical utility when valuing a given insurance contract but surely, on a theoretical point of view, they
may lead to possible negative probabilities in the trivariate model that can generate instabilities, a well
known fact in the literature of finite difference methods for solving PDEs.

4.2. Fair value computation of insurance contracts
To determine the fair value of an insurance contract in the proposed framework, we proceed backward
along the trivariate lattice computing the policy value in correspondence of each state of nature (i, j, l,
h), with i = 0, . . . , n; j, l, h = 0, . . . , i. In this sense, we provide a couple of examples of application of
the proposed algorithm. We start considering the simplest case of an equity-linked term policy with a
minimum guarantee in which, later, we embed a surrender option that allows the policyholder to escape
out of the contract before maturity. Then, we consider equity-linked endowment policies with minimum
guarantee and surrender option. What we propose are just some possible examples of application of the
proposed model but, clearly, it can be also applied to evaluate different contracts like variable annuities,
participating policies, etc.

4.2.1. Equity-linked term policies
We consider an equity-linked term policy characterized by a minimum guarantee having the function of
protecting the policyholder’s investment against a bad performance of the fund. It means that the insurer
pays at least a minimum amount G that, to simplify matters without loss of generality, we suppose equal
to the initial investment S0, that is, G = S0. More in detail, at maturity, T , the insurer has to pay an amount
given by max [S(T), G]. It is worth noting that, to evaluate the policy fair value, we can also refer to the
Brennan and Schwartz (1976) decomposition for the policy payoff at maturity, max [S(T), G], evidencing
that it is dependent upon a financial option payoff. In particular, they suggested both a put-decomposition
as

S(T) + max [G − S(T), 0], (4.9)

and a call-decomposition as

G + max [S(T) − G, 0]. (4.10)

The decomposition in (4.9) characterizes the policy payoff at maturity as the sum of the fund value
plus the payoff of a put option written on the fund with strike price G. Clearly, the option identifies
the cost of the guarantee embedded into the contract. On the other hand, the decomposition in (4.10)
characterizes the policy payoff at maturity as the sum of the amount G plus the value of a call option on
the fund with strike price G.

To compute the fair policy value at inception, we have to use the proposed discretization proceeding
backward on the trivariate tree. Supposing to work without considering the Brennan and Schwartz (1976)
decomposition,3 we label by FV (i, j, l, h), i = 0, . . . , n; j, l, h = 0, . . . , i, the policy fair value when the
interest rate is located at node (i, j), the mortality is located at node (i, l), and equity is located at node

3The method is the same if we work using the Brennan and Schwartz (1976) decomposition.
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(i, h). At maturity, on the terminal state of nature (n, j, l, h), the policy value is given by

FV(n, j, l, h) = max [S(n, h), G] ,

and, proceeding backward, the policy fair value in state of nature (i, j, l, h) is computed as

FV(i, j, l, h) = e−[r(i,j)+μx(i,l)]	t
[
puuuFV(i + 1, jm + 1, lm + 1, hm + 1)

+ puudFV(i + 1, jm + 1, lm + 1, hm) + puduFV(i + 1, jm + 1, lm, hm + 1)

+ puddFV(i + 1, jm + 1, lm, hm) + pduuFV(i + 1, jm, lm + 1, hm + 1)

+ pdudFV(i + 1, jm, lm + 1, hm) + pdduFV(i + 1, jm, lm, hm + 1)

+ pdddFV(i + 1, jm, lm, hm)
]

,

where we consider properly the interest rate and mortality risks and, for instance, FV(i + 1, jm + 1, lm +
1, hm + 1) is the policy fair value when, starting from state of nature (i, j, l, h), all the processes show
an upward movement. The backward induction proceeds up to node (0, 0, 0, 0) that contains the policy
fair value at the contract inception.

Now we add to the previous policy contract a surrender option providing the policyholder with the
right to terminate the contract early. If the policyholder exercises the surrender option, she/he will receive
the surrender value of the contract, SV , depending upon both the current value of the fund and the
minimum guaranteed amount, G. We hypothesize that the surrender value is defined as SV(i, j, l, h) =
max [S(i, h), G].

To compute the fair policy value at inception, we start again from maturity, where the policy value is
still given by

FV(n, j, l, h) = max [S(n, h), G] ,

and, proceeding backward, the policy fair value in state of nature (i, j, l, h) is computed as

FV(i, j, l, h) = max
{
e−[r(i,j)+μx(i,l)]	t

[
puuuFV(i + 1, jm + 1, lm + 1, hm + 1)

+ puudFV(i + 1, jm + 1, lm + 1, hm) + puduFV(i + 1, jm + 1, lm, hm + 1)+
+ puddFV(i + 1, jm + 1, lm, hm) + pduuFV(i + 1, jm, lm + 1, hm + 1)+
+ pdudFV(i + 1, jm, lm + 1, hm) + pdduFV(i + 1, jm, lm, hm + 1)+
+ pdddFV(i + 1, jm, lm, hm)

]
, SV(i, j, l, h)

}
,

where we insert the possibility for the insurer to escape out of the contract receiving the surrender
amount.

4.2.2. Equity-linked endowment policies
This section is devoted to generalize the previous analysis. Indeed, it provides a pricing algorithm for
an equity-linked endowment policy embedding both a minimum guarantee and a surrender option.
Whenever the insured is alive at the contract maturity, in each state of nature (n, j, l, h), the insurance
company has to pay max [S(n, h), G]. Reversely, the insurer pays an amount specified as fD(i, j, l, h) = G
whenever the insured dies before maturity. It is worth noting that different specifications of the capital
paid in case of death may be treated in the proposed framework.

Once again, our goal is to compute the fair policy value at inception, proceeding backward from
maturity where

FV(n, j, l, h) = max [S(n, h), G] .
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In this case, the policy fair value without surrender option in state of nature (i, j, l, h) is
computed as

FV(i, j, l, h) = e−r(i,j)	t
{
e−μx(i,l)	t

[
puuuFV(i + 1, jm + 1, lm + 1, hm + 1)

+ puudFV(i + 1, jm + 1, lm + 1, hm) + puduFV(i + 1, jm + 1, lm, hm + 1)

+ puddFV(i + 1, jm + 1, lm, hm) + pduuFV(i + 1, jm, lm + 1, hm + 1)

+ pdudFV(i + 1, jm, lm + 1, hm) + pdduFV(i + 1, jm, lm, hm + 1)

+ pdddFV(i + 1, jm, lm, hm)
] + (1 − e−μx(i,l)	t)

[
puuufD(i + 1, jm + 1, lm + 1, hm + 1)

+ puudfD(i + 1, jm + 1, lm + 1, hm) + pudufD(i + 1, jm + 1, lm, hm + 1)

+ puddfD(i + 1, jm + 1, lm, hm) + pduufD(i + 1, jm, lm + 1, hm + 1)

+pdudfD(i + 1, jm, lm + 1, hm) + pddufD(i + 1, jm, lm, hm + 1)pdddfD(i + 1, jm, lm, hm)
]}

,
(4.11)

while, whenever a surrender option is embedded in the endowment contract, the fair policy value in state
of nature (i, j, l, h) is computed as the maximum between the quantity in the right-hand side of Equation
(4.11) and the surrender value S(i, j, l, h).

5. Numerical results
In this section, we provide some numerical experiments supporting both the bivariate and the trivariate
models presented above. Hereafter, we start each section by specifying the form of the processes consid-
ered for the interest rate, the mortality rate, and the equity. Then, we provide valuations for the contracts
detailed in the previous sections. Clearly, other insurance contracts may be easily evaluated through the
proposed models by making different choices of the process dynamics. Indeed, the following represents
just a possible choice of the form assigned to processes (2.1), (2.2), and (2.3), but as already evidenced
the model is able to work under any specification of the three processes among the ones commonly used
in financial and actuarial markets.

5.1. Bond valuations through the bivariate model
To evaluate survival zero coupon bonds and mortality bonds, we specify the form of the dynamics
characterizing the processes (2.1) and (2.2) as follows:

• the r-process obeys to a Hull and White (1993) one-factor model with mr(rt) = θr(t) − a(t)rt

and σr(rt) = σr where, for the sake of simplicity and without loss of generality, we impose that
θr(t) and a(t) are positive constants, that is, θr(t) = θr and a(t) = a;

• the mortality μx-process obeys to a Hull and White (1993) model with mμ(μx
t ) = ξμ(t) − b(t)μx

t

and σμ(μx
t ) = σμ, where again we impose that ξμ(t) and b(t) are positive constants, that is,

ξμ(t) = ξμ and b(t) = b.

These choices relies on the fact that, under these conditions, it is possible to obtain an explicit solution
to compute both the survival zero coupon bond price and the mortality bond price.

5.1.1. Survival zero coupon bonds
As in Hanna and Devolder (2023), the value at time t of a survival zero coupon bond paying one unit of
money at maturity T is given by

B(t, T) = P(t, T)T−tpx+tρ(t, T), (5.1)
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Table 1. Fair survival bond values.

T Model ρ12 = −0.7 ρ12 = −0.3 ρ12 = 0 ρ12 = 0.3 ρ12 = 0.7
1 BM 0.928059 0.929545 0.930661 0.931779 0.933271

Exp. 0.9281 0.9295 0.9307 0.9318 0.9333
2 BM 0.835489 0.842691 0.848133 0.853610 0.860968

Exp. 0.8355 0.8427 0.8481 0.8536 0.8610
3 BM 0.732875 0.748506 0.760448 0.772580 0.789058

Exp. 0.7328 0.7485 0.7604 0.7726 0.7890
5 BM 0.539174 0.573163 0.600055 0.628208 0.667810

Exp. 0.5392 0.5732 0.6001 0.6282 0.6678
7 BM 0.393928 0.444000 0.485688 0.531290 0.598822

Exp. 0.3940 0.4441 0.4858 0.5314 0.5989
10 BM 0.272922 0.346813 0.415087 0.496802 0.631309

Exp. 0.2732 0.3471 0.4154 0.4972 0.6318

where

P(t, T) = eα(t,T)−β(t,T)rt , (5.2)

with

β(t, T) = 1

a

(
1 − e−a(T−t)

)
, (5.3)

and

α(t, T) = (β(t, T) − T + t)(aθr − 0.5σ 2
r )

a2
− σ 2

r β2(t, T)

4a
, (5.4)

while

T−tpx+t = eα
′
(t,T)−β

′
(t,T)μx

t , (5.5)

with

β ′(t, T) = 1

b

(
1 − e−b(T−t)

)
, (5.6)

and

α′(t, T) = (β ′(t, T) − T + t)(bξμ − 0.5σ 2
μ
)

b2
− σ 2

μ
β ′2(t, T)

4b
. (5.7)

Finally,

ρ(t, T) = e
σrσμρ12

ab

{
(T−t)− 1−e−a(T−t)

a − 1−e−b(T−t)
b + 1−e−(a+b)(T−t)

a+b

}
. (5.8)

Using the results provided by formula (5.1) as the benchmark, we assess the accuracy of the results
computed through the bivariate model and, then, conduct an analysis to show the effect of mortality on
bond prices when varying the correlation coefficient value ρ12. In detail, in Table 1, we report the fair
value at time t = 0 of a bond paying one unit of money at time T , when varying T and the correlation
value ρ12. The other parameter values are set up as: r0 = 0.04, θr = 0.04, a = 0.03, σr = 0.1, μx

0 = 0.02,
ξμ = 0.02, b = 1.5, and σμ = 0.2. The first row reports, for each case, the value computed by the bivariate
model (BM) when the number of time steps is fixed to n = 2000, while the second row reports the fair
bond value computed by the explicit formula (5.1) (Exp.).

In Table 1, it is worth noting the accuracy of the results provided by the bivariate approximation with
respect to the benchmark explicit values in all the analysed cases and the drastic effect of the correlation
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Figure 2. Fair bond values when varying ρ12 ∈ [ − 1, 1] and T ∈ [1, 5].
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Figure 3. Fair bond values when varying ρ12 ∈ [ − 1, 1] and T ∈ [6, 10].

coefficient on the fair bond value. Clearly, this effect is more evident when increasing the bond maturity
T and certifies how an accurate valuation of a product when embedding the mortality risk needs to be
conducted taking properly into account the correlation insisting between financial and actuarial risks,
that is, interest rate risk and mortality risk. To further show this evidence, in Figures 2 and 3, we show
the correlation impact when varying ρ12 ∈ [ − 1, 1] and T from 1 year to 5 years in Figure 2 and from 6
years to 10 years in Figure 3. Both the figures confirm that an accurate determination of the correlation
characterizing the two processes is absolutely requested in order to provide accurate fair bond value
evaluations. Indeed, varying ρ12 the fair bond value changes substantially and this effect is greater and
greater when increasing the bond time to maturity T .
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Table 2. Convergence patterns of the survival zero
coupon bond values.

T = 1, ρ = −0.7

n Price Difference Ratio
250 0.928110 –0.000030 0.466667
500 0.928080 –0.000014 0.500000
1000 0.928066 –0.000007
2000 0.928059

T = 10, ρ = 0.7

n Price Difference Ratio
250 0.628234 0.001752 0.502854
500 0.629986 0.000881 0.501703
1000 0.630867 0.000442
2000 0.631309

In Table 2, we provide a numerical analysis in order to show the convergence of the proposed bivariate
model. In detail, we consider two cases already analysed in Table 1 in correspondence of T = 1 and
ρ = −0.7, and of T = 10 and ρ = 0.7, and report the convergence pattern followed by the survival zero
coupon bond values when doubling the number of time steps in the bivariate model. In the column
“Difference”, we report the difference between two consecutive bond values, while in the column “Ratio”
we report the ratio between two consecutive differences. It is worth evidencing that in both cases the
ratios are closed to 0.5, the absolute value of the differences is about halved and the changes in bond
values tend to zero when doubling the number of time steps, thus confirming the convergent behaviour
of the values supplied by the bivariate model.

5.1.2. Mortality bonds
An explicit solution is also obtainable for the mortality bond characterized by traditional fixed coupons
yearly payed and a principal at maturity becoming random and linked with realized longevity or mor-
tality experiences. Denoting by T the maturity of the bond, c the fixed coupons and L(T ) the stochastic
principal, the price at time t (we impose t < 1 to give consistency to the contract) of the instrument is
given by

BM(t, T) = c
T∑

z=1

P(t, z) + (K − λKp0)P(t, T) + λKP(t, T)T−tpx+tρ(t, T), (5.9)

where the involved quantities have been already defined above in Equations (5.2)–(5.8). The results
provided by formula (5.9) are used as benchmark values to assess the accuracy of the results computed
through the bivariate model for the mortality bond. In detail, in Table 3, we report the fair value at time
t = 0 of a mortality bond maturing at time T , when varying T and the correlation value ρ12. We define the
initial value of the survival probability as p0 = e−μx

0T and set up the other parameter values as: r0 = 0.04,
θr = 0.04, a = 0.03, σr = 0.1, μx

0 = 0.02, ξμ = 0.02, b = 1.5, σμ = 0.2, K = 100, c = 2, and λ = 0.5. The
first row reports, for each case, the value computed by the bivariate model (BM) when the number of
time steps is fixed to n = 2000, while the second row reports the fair bond value computed by the explicit
formula (5.9) (Exp.). Similarly to Table 1, Table 3 confirms the accuracy of the results provided by the
bivariate approximation with respect to the benchmark explicit values in all the analysed cases and the
drastic effect of the correlation coefficient on the fair mortality bond value.

In Table 4, we provide a numerical analysis to show the convergence of the mortality bond values that
is similar to the one proposed in Table 2. Again, we consider two cases already analysed in Table 3 in
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Table 3. Fair mortality bond values.

T Model ρ12 = −0.7 ρ12 = −0.3 ρ12 = 0 ρ12 = 0.3 ρ12 = 0.7
2 BM 90.419277 90.779362 91.051461 91.325316 91.693209

Exp. 90.4170 90.7771 91.0493 91.3232 91.6912
5 BM 68.828469 70.527966 71.872530 73.280172 75.260284

Exp. 68.8262 70.5259 71.8706 73.2785 75.2589
10 BM 52.300430 55.994994 59.408678 63.494405 70.219780

Exp. 52.3248 56.0218 59.4376 63.5257 70.2547

Table 4. Convergence patterns of the mortality
bond values.

T = 2, ρ = −0.7

n Price Difference Ratio
250 90.435444 –0.009242 0.499567
500 90.426202 –0.004617 0.499892
1000 90.421585 –0.002308
2000 90.419277

T = 10, ρ = 0.7

n Price Difference Ratio
250 69.977045 0.138304 0.502907
500 70.115349 0.069554 0.501438
1000 70.184903 0.034877
2000 70.219780

correspondence of T = 2 and ρ = −0.7, and of T = 10 and ρ = 0.7, and show the convergence pattern
followed by the mortality bond values when doubling the number of time steps in the bivariate model.
As before, in both cases, the ratios are closed to 0.5, the absolute value of the differences is about halved
and the changes in bond values tend to zero when doubling the number of time steps, thus confirming
the convergent behaviour of the values supplied by the bivariate model.

5.2. Equity-linked policy valuations through the trivariate model
To provide some numerical experiments using the presented trivariate model, we specify the form of
the dynamics characterizing the processes (2.1), (2.2), and (2.3) as detailed hereafter:

• the r-process follows a Hull and White (1993) one-factor model with mr(rt) = κr(θr(t) − a(t)rt)
and σr(rt) = σr where, for the sake of simplicity and without loss of generality, we impose that
θr(t) and a(t) are positive constants, that is, θr(t) = θr and a(t) = a;

• the mortality μx-process follows a Cox et al. (1985) model with mμ(μx
t ) = ξμ(t) − bμx

t and
σμ(μx

t ) = σμ

√
μx

t , where ξμ(t) obeys to a Gompertz law of the form ξμ(t) = AeBt, with A and
B positive constants;

• the equity S-process follows a Black-Scholes dynamics with mS(rt, St) = rtSt and σS(St) = σSSt.

The numerical experiments aim at assessing the goodness of the proposed model and its applicability
for valuing different insurance policies. We analyse insurance policies with or without embedding a
surrender option in the policy contract in order to show the flexibility of the model and also consider
different correlation structures among the three processes in order to show their impact on the policy
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Table 5. Fair values of term policies.

ρ12 = ρ13 = ρ23 = 0 ρ12 = 0.5, ρ13 = −0.7, ρ23 = −0.3

T Model No surr. Surr. No surr. Surr.
1 TM 100.841061 102.509344 100.730193 102.498801

MC (SE) 100.8349 (0.0324) 100.6835 (0.03287)
2 TM 98.101360 102.565589 97.895848 102.551219

MC (SE) 98.0937 (0.0510) 97.8245 (0.0526)
5 TM 90.604720 102.565328 90.793928 102.550324

MC (SE) 91.7145 (0.0892) 90.8264 (0.0923)
10 TM 81.613194 102.563187 82.427539 102.548184

MC (SE) 81.9567 (0.1199) 82.8684 (0.1268)

values. To further support the numerical findings, in absence of the surrender option, we develop a
Monte Carlo method assumed to be the benchmark. All the Monte Carlo simulations used to generate
the results reported in this section are based on 400 observations and 100,000 trajectories.

In Table 5, we consider an equity-linked term policy with different times to maturity and provide a
comparison with Monte Carlo simulations, when we do not embed in the policy contract the possibility
for early surrender (No surr.). Whenever a surrender option is embedded in the policy contract, we define
the surrender value in each state of nature as SV(i, j, l, h) = max [S(i, h), G] and report the corresponding
policy value in the second column (Surr.) of each analysed case. We report the fair value at time t = 0 of
a policy maturing at time T , computed by the trivariate model (TM) with n = 400 and the Monte Carlo
(MC) simulations (standard errors (SE) are reported in brackets) when varying T and the correlation
values ρ12, ρ13, and ρ23. The other parameter values are set up as: r0 = 0.04, θr = 0.04, a = 0.03, σr =
0.01, μx

0 = 0.02, b = 0.1, σμ = 0.05, A = 0.002, B = 0.001, S0 = 100, σS = 0.1358.
The results reported in Table 5 show the accuracy of the policy values computed by the proposed

trivariate model with respect to the Monte Carlo benchmark values in absence of the surrender option.
When introducing the surrender option, the policy contract assumes the feature of an American-style
derivative that the trivariate model is able to manage and provides greater values with respect to the
no-surrender case, as expected. We do not implement a least square Monte Carlo method since it is very
complex to realize due to the presence of three different processes and very time consuming, while the
proposed model is of straightforward application. This aspect supports further the algorithm flexibility
of application.

In Table 6, we provide results for an equity-linked endowment policy using the same parameters of
Table 5. We still consider both cases, with and without surrender options, define the surrender value in
each state of nature as SV(i, j, l, h) = max [S(i, h), G], and in addition we define by fD(i, j, l, h) = G the
amount paid to the policyholder in case of death, as already specified in Section 4.2.

In this case too, the results provided by the trivariate model are really close to the ones generated by
the Monte Carlo simulations in absence of the surrender option, while they are greater with respect to
the no-surrender case when embedding a surrender option, as expected.

In Table 7, we provide a numerical analysis in order to show the convergence of the trivariate model.
In detail, we analyse the two cases reported in Tables 5 and 6 in correspondence of T = 1 and ρ12 = 0.5,
ρ13 = −0.7, ρ23 = −0.3, in absence of the surrender option. For both cases, we show the convergence
pattern followed by equity-linked policy values when doubling the number of time steps in the trivariate
model. Again, the column “Difference” shows the difference between two consecutive policy values,
while the column “Ratio” shows the ratio between two consecutive differences. In both analysed cases,
the ratios are closed to 0.5, the absolute value of the differences is about halved and the changes in
equity-linked policy values tend to zero when doubling the number of time steps, thus confirming the
convergent behaviour of the values supplied by the trivariate model, too.
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Table 6. Fair values of endowment policies.

ρ12 = ρ13 = ρ23 = 0 ρ12 = 0.5, ρ13 = −0.7, ρ23 = −0.3

T Model No surr. Surr. No surr. Surr.
1 TM 102.769256 103.562684 102.657870 103.540273

MC (SE) 102.7613 (0.0321) 102.6110 (0.0326)
2 TM 101.774546 103.932810 101.565461 103.897514

MC (SE) 101.8446 (0.0511) 101.4943 (0.0518)
5 TM 98.108097 103.991852 98.265298 103.947448

MC (SE) 98.2232 (0.0883) 98.3135 (0.0906)
10 TM 91.536639 103.986041 92.266992 103.941487

MC (SE) 91.8418 (0.1189) 92.8717 (0.1229)

Table 7. Convergence patterns of the equity-linked
policy values.

Term policy
n Price Difference Ratio
50 100.714305 0.009172 0.493022
100 100.723477 0.004522 0.485184
200 100.727999 0.002194
400 100.730193

Endowment policy
n Price Difference Ratio
50 102.641322 0.009547 0.491160
100 102.650869 0.004689 0.488153
200 102.655581 0.002289
400 102.657870

6. Conclusions
The paper proposes a lattice-based model that is able to combine financial and actuarial aspects when
valuing insurance policies. Indeed, all sources of risks are managed in the proposed framework where
interest rate, mortality, and equity dynamics move stochastically. An appealing feature of the model is its
flexibility that relies on its ability to manage different specifications of the three processes, thus allowing
the insurer to make the most appropriate choices concerning the dynamics to be used. The model is
also able to handle additional guarantees like a surrender opportunity. On a methodological point of
view, the paper provides both a bivariate and a trivariate model. The first case, in which we combine
the discretizations proposed for the interest and mortality rates, is useful to compute, for instance, the
value of survival zero coupon bond. Introducing an additional source of risk as the fund dynamic in
order to evaluate fund-linked insurance products, we obtain a trivariate tree presenting eight branches
emanating from each node in which the joint probability of each jump is defined in order to capture
the proper pairwise process correlation. Extensive numerical experiments assess the model accuracy
by considering some stylized policies, but the model application is not limited to them being it able to
manage different contract specifications.

Future works will be focused on the analysis of the extension of the proposed models to different
evaluation environments for which they are not of straightforward application. We may refer, for instance,
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to the frameworks currently used to evaluate products affected by climate risk where climate risk impacts
both actuarial and financial aspects, to mortality bonds with nonlinear loss functions generating path
dependent payoff, or to models that consider the impact of the inflation on the valuation of actuarial or
financial products and capture its dynamics along time through a stochastic process, inflation becoming
then an additional correlated risk factor. The latter is also of great interest due to the current evolution of
inflation rates that are affecting substantially the purchasing power of economic agents. Another aspect to
look at is the possibility to speed up the convergence rates of the proposed discretizations by introducing
in the algorithm an extrapolation method like the one proposed, among others, by Korn and Müller
(2009).
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Appendix
As evidenced in Sections 2.2 and 2.3, both the lattices for the r-process and the μ-process follow a simi-
lar construction that starts from the definition of the values for the nodes on the edges and, then, obtains
the values for the inner nodes by generating horizontal layers of nodes starting from the nodes located on
the two edges. Hence, we limit to prove that pr(i, j) → 1

2
as n → +∞ because similarly we may prove that

pμ(i, l) → 1
2

as n → +∞. To prove that pr(i, j) → 1
2

as n → +∞, it is equivalent to prove that the proba-
bility of an upward movement starting from a node of the lattice edge (i.e., node (i, i), i = 0, . . . , n) tends
to 1

2
because the inner node values replicate the values on the edges. To simplify matters, we suppose that

no multiple jumps occur so that, by considering a node (i, i) on the highest edge, the successors bracket-
ing the process expected value, that is, r(i, j) + mr(r(i, i))	t, are r(i + 1, i + 1) and r(i + 1, i). Due to the
proposed construction, their value coincide with r(i + 1, i + 1) = r(i, i) + σr(r(i, i))

√
	t, because it is

still on the upper edge, and r(i + 1, i) = r(i − 1, i − 1), being it an inner lattice node. Applying formula
(2.4), we can compute the probability of an upward movement as follows:

pr(i, i) = r(i, i) + mr(r(i, i))	t − r(i − 1, i − 1)

r(i + 1, i + 1) − r(i − 1, i − 1)
. (A1)

Recalling that by construction we have r(i + 1, i + 1) = r(i, i) + σr(r(i, i))
√

	t and, similarly, r(i, i) =
r(i − 1, i − 1) + σr(r(i − 1, i − 1))

√
	t, we may also obtain r(i + 1, i + 1) as a function of r(i − 1, i − 1),

that is, the value on the lattice edge two steps before:

r(i + 1, i + 1) = r(i − 1, i − 1) + σr(r(i − 1, i − 1))
√

	t

+ σr

(
r(i − 1, i − 1) + σr(r(i − 1, i − 1))

√
	t

) √
	t.

By substituting in formula (A1) the values of r(i + 1, i + 1) and r(i, i) written above as a function
of r(i − 1, i − 1) and by a little algebra, we may obtain pr(i, i) as the sum of two addenda as showed
hereafter:
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pr(i, i) =
r(i − 1, i − 1) + σr(r(i − 1, i − 1))

√
	t + mr

(
r(i − 1, i − 1) + σr(r(i − 1, i − 1))

√
	t

)
	t − r(i − 1, i − 1)

r(i − 1, i − 1) + σr(r(i − 1, i − 1))
√

	t + σr

(
r(i − 1, i − 1) + σr(r(i − 1, i − 1))

√
	t

) √
	t − r(i − 1, i − 1)

=
σr(r(i − 1, i − 1))

√
	t + mr

(
r(i − 1, i − 1) + σr(r(i − 1, i − 1))

√
	t

)
	t

σr(r(i − 1, i − 1))
√

	t + σr

(
r(i − 1, i − 1) + σr(r(i − 1, i − 1))

√
	t

) √
	t

= σr(r(i − 1, i − 1))

σr(r(i − 1, i − 1)) + σr

(
r(i − 1, i − 1) + σr(r(i − 1, i − 1))

√
	t

)

+
mr

(
r(i − 1, i − 1) + σr(r(i − 1, i − 1))

√
	t

) √
	t

σr(r(i − 1, i − 1)) + σr

(
r(i − 1, i − 1) + σr(r(i − 1, i − 1))

√
	t

) .

When n → +∞, 	t → 0 so that the first addendum tends to 1
2
, the second addendum tends to 0 under

the condition that the process drift and diffusion are finite, and to sum up pr(i, j) → 1
2
.
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