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Maximal Operators Associated with Vector
Polynomials of Lacunary Coefficients

Sunggeum Hong, Joonil Kim, Chan Woo Yang

Abstract. We prove the Lp(R
d) (1 < p ≤ ∞) boundedness of the maximal operators associated with

a family of vector polynomials given by the form {(2k1 p1(t), . . . , 2kd pd(t)) : t ∈ R}. Furthermore,

by using the lifting argument, we extend this result to a general class of vector polynomials whose

coefficients are of the form constant times 2k.

1 Introduction

Let f ∈ L1
loc(R

d) and consider a multi-parameter maximal function defined by

M
lac
d f (x) = sup

K∈Zd ,r>0

1

2r

∫ r

−r

∣∣ f
(

x1 − 2k1 p1(t), . . . , xd − 2kd pd(t)
)∣∣ dt,

where K = (k1, . . . , kd) ∈ Z
d, and pτ is a polynomial of the form

(1.1) pτ (t) =

q∑

ℓ=1

aτℓ tℓ for each τ = 1, . . . , d.

We are interested in the Lp boundedness of this operator. The history of our prob-

lem goes back to the case where p1(t) = · · · = pd(t) = t , which has been studied

by many authors [1, 2, 4, 7]. Cordoba, Fefferman, and Strömberg developed the Lp

(p ≥ 2) theory for Mlac
2 by using a suitable geometric argument [2, 7]. Nagel, Stein,

and Wainger [4] used the Littlewood–Paley decompositions to prove the remaining

range 1 < p ≤ ∞. Furthermore, Carbery [1] extended this result to arbitrary di-

mension d ≥ 3.

Recently, Hare and Ricci [3] showed the Lp boundedness of the operator Mlac
2

when the density of the measure on the line is changed. They considered the case

that the line LK = {(2k1t, 2k2t) : t ∈ R} is replaced by the polynomial curve

{(2k1 p1(t), 2k2 p2(t)) : t ∈ R} ⊂ LK with p1(t) = p2(t).

In this paper we consider a general polynomial curve on R
d. The purpose of this

paper is to show the Lp boundedness of Mlac
d for all d ≥ 1 and arbitrary polynomials

{pτ (t)}d
τ=1.
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Theorem 1.1 For 1 < p ≤ ∞, there exists a constant Cp > 0, independent of the

coefficients of p1, . . . , pd, such that

‖Mlac
d f ‖Lp(Rd) ≤ Cp‖ f ‖Lp(Rd).

Next we consider more general maximal operators. We set a vector polynomial

PK(t) =

( q∑

ℓ=1

2k1,ℓa1
ℓt
ℓ, . . . ,

q∑

ℓ=1

2kd,ℓad
ℓ t
ℓ
)
,

where K = (kτ ,ℓ) ∈ Z
qd. Associated with PK , we define a multi-parameter maximal

operator S by

(1.2) S f (x) = sup
K∈Zqd ,r>0

1

2r

∫ r

−r

| f
(

x − PK(t)
)
| dt.

In the last section of this article we use an appropriate lifting lemma and the result of

Theorem 1.1 to obtain the following.

Theorem 1.2 For 1 < p ≤ ∞, there exists a constant Cp > 0 independent of the

coefficients of PK such that ‖S f ‖Lp(Rd) ≤ Cp‖ f ‖Lp(Rd).

In proving Theorem 1.1, we develop the idea of [4] to reduce the parameters used

for defining Mlac
d one by one. In Section 2, we briefly sketch the proof of Theorem 1.1

by introducing the reduction scheme. In Section 3, we give some vector valued and

Littlewood–Paley inequalities which will be used frequently in the proof of Theorem

1.1. In Section 4, we discuss the angular decomposition of the frequency part which

enables us to control the bad region having no decay property. The angular decom-

position is crucial in performing the reduction process successively. In Sections 5 and

6, we handle the operators corresponding to bad and good decay properties respec-

tively. In Section 7, we finish the proof of Theorem 1.1 by using the similar bootstrap

argument used in [4]. Finally in Section 8, we give a proof of Theorem 1.2.

Throughout the remainder of this paper, we shall use the notation A . B when

A ≤ CB with a constant C depending only on the dimension d and the degrees of

polynomials p1, . . . , pd. We also write A ≈ B if A . B and B . A.

2 Sketch for the Proof of Theorem 1.1

Let P be a collection of vector polynomials of the form p(t) = (p1(t), . . . , pd(t))

where pτ is a polynomial of degree at most q of the form (1.1). Put

ϕ j(u) = ϕ(u/2 j)/2 j,

where ϕ is a nonnegative smooth function such that suppϕ ∈ [1/4, 4] and ϕ(x) = 1

for all x ∈ [1/2, 2]. Now for each vector polynomial p ∈ P and ( j,K) ∈ Z
d+1 we

define a measure µp
j,K on R

d by

µp
j,K ( f ) =

∫
f
(

2k1 p1(t), . . . , 2kd pd(t)
)
ϕ j(t) dt.
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We express the region of integration [0, r] in the definition of M
lac
d as the union of

[2 j−1, 2 j]’s. Then we can write the average of f over the line as

∑

2 j≤r

2 j

r

( 1

2 j

∫ 2 j

2 j−1

| f
(

x1 − 2k1 p1(t), . . . , xd − 2kd pd(t)
)
| dt

)
.

Thus we see that Mlac
d f with t integral restricted on [0,∞), is majorized by the max-

imal function defined by sup j,K µ
p
j,K ∗ | f |, Therefore in showing Theorem 1.1, we

prove that for 1 < p ≤ 2

(2.1)
∥∥ sup

j,K
µp

j,K ∗ | f |
∥∥

Lp(Rd)
≤ Cp‖ f ‖Lp(Rd).

The other range is obtained by the interpolation with p = ∞ and p = 2.

2.1 Reduction Scheme

By using the class of measures {µp
j,K : p ∈ P and ( j,K) ∈ Z

d+1}, we shall define Ar as

a family of maximal operators for each r = 0, 1, . . . , d. We consider a set of r integers

{d(1), . . . , d(r)} satisfying 1 ≤ d(1) < d(2) < · · · < d(r) = d. To each collection of

r integers {d(1), . . . , d(r)}, we assign a set

Z(d(1), . . . , d(r))

=
{

K = (k1, . . . , kd) ∈ Z
d : kn = kd(ν)when d(ν − 1) < n ≤ d(ν)

}
,

where ν = 1, . . . , r and d(0) = 0. Associated with each {d(1), . . . , d(r)}, we define

the maximal operator

(2.2) Mp
(d(1),...,d(r)) f (x) = sup

j∈Z

K∈Z(d(1),...,d(r))

|µp
j,K ∗ f (x)|.

Note that the maximal operator Mp
(d(1),...,d(r)) is determined by r + 1 parameters

kd(1), . . . , kd(r) and j.

Definition 2.1 We define Ar as the family of maximal operators given by

Ar = {Mp
(d(1),...,d(r)) : p ∈ P and 0 = d(0) < d(1) < · · · < d(r) = d}.

Example We see that the maximal operator M defined by

M f (x) = sup
j,k

∫
| f (x1 − 2kp1(t), . . . , xd − 2kpd(t))|ϕ j(t) dt

belongs to the class A1. The maximal function M defined by

M f (x) = sup
j,k,ℓ

∫
| f (x1 − 2kp1(t), . . . , xd−1 − 2kpd−1(t), xd − 2ℓpd(t))|ϕ j(t) dt

is in the class A2. The maximal operator f 7→ sup j,K µ
p
j,K ∗ | f | is in Ad.
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Definition 2.2 We also define a number ‖Ar‖p associated with Ar as follows:

‖Ar‖p = sup{‖M‖Lp(Rd)→Lp(Rd) : M ∈ Ar}.

We see that ‖Ar‖p ≤ ‖Ar+1‖p, since the supremum over the larger index set is

greater than that over the smaller index set.

In order to prove (2.1), we show the following estimates.

Proposition 2.3 For 1 < p ≤ 2, ‖A1‖p ≤ B(p). For 1 < p ≤ 2 and r ∈ {2, . . . , d},

there exists a constant B(p, r − 1) > 0 such that

(2.3) ‖Ar‖p ≤ B(p, r − 1)

where B(p, r − 1) is of the form

(2.4) Cp

Np∏
i=1

(‖Ar−1‖ai(p) + 1)ci
p ,

where Cp > 0, Np ≥ 1, ci
p ≥ 0 and 1 < ai(p) ≤ 2.

In what follows, B(p, r − 1) will be chosen to be different constants of the form

(2.4) line by line. Hence Theorem 1.1 which is the case r = d follows inductively

from Proposition 2.3.

Remark 1 For fixed K , the maximal operator defined by sup j∈Z
µp

j,K ∗ | f |(x) is

known to be bounded in Lp(R
d). For the proof, see [5, pp. 477–486].

2.2 Sketch for the Proof of Proposition 2.3

Let us consider r = m in Proposition 2.3. Here we show how the reduction is per-

formed by using the angular decomposition in the spirit of [4]. To simplify the no-

tation, we write µ j,K instead of µp
j,K . We write the Fourier transform of the measure

µ j,K as

µ̂ j,K (ξ1, . . . , ξd) =

∫
e2πiP j,K (ξ,t)ϕ(t) dt,

where

P j,K (ξ, t) = 2k1ξ1p1(2 jt) + · · · + 2kdξdpd(2 jt)

= 2k1ξ1

(
a1

12 jt + a1
222 jt2 + · · · + a1

ℓ2
ℓ jtℓ + · · · + a1

q2q jtq
)

...

+ 2kτ ξτ
(

aτ1 2 jt + aτ222 jt2 + · · · + aτℓ 2ℓ jtℓ + · · · + aτq 2q jtq
)

...

+ 2kdξd

(
ad

12 jt + ad
222 jt2 + · · · + ad

ℓ2ℓ jtℓ + · · · + ad
q2q jtq

)
.
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We note that if d(ν − 1) < τ ≤ d(ν), then kτ = kd(ν). Thus we can write

P j,K (ξ, t) =

q∑

ℓ=1

( m∑

ν=1

2kd(ν)ξ(ℓ, ν)
)

2 jℓtℓ,

where ξ(ℓ, ν) = (ad(ν−1)+1
ℓ ξd(ν−1)+1 + · · · + ad(ν)

ℓ ξd(ν)). By using the Van der Corput

lemma in [5, Chapter 8], we obtain that for some σ > 0,

|µ̂ j,K (ξ1, . . . , ξd)| ≤ C min
{∣∣∣

m∑

ν=1

2kd(ν)+ jℓξ(ℓ, ν)
∣∣∣
−σ

: ℓ = 1, . . . , q
}
.

Since we do not have good decay property in the set

(2.5)
{
ξ :

∣∣∣
m∑

ν=1

2kd(ν)+ jℓξ(ℓ, ν)
∣∣∣ = 0

}
,

we need to split the frequency domain into two regions: one is the bad region con-

taining (2.5) and the other is the good region away from (2.5). Precisely, the bad

region is defined as the set

B(K) =

q⋃
ℓ=1

⋃
ν 6=µ

B(kd(ν), kd(µ), ℓ),

where K = (k1, . . . , kd). The first union above is taken over ν, µ ∈ {1, . . . ,m} and

B(kd(ν), kd(µ), ℓ) = {ξ : 2kd(ν)+ jℓ|ξ(ℓ, ν)| ∼ 2kd(µ)+ jℓ|ξ(ℓ, µ)|},

where in what follows we denote a ∼ b if (2d+1d!)−1 ≤ | a
b
| ≤ 2d+1d! .

The good region is defined as the set

G(K) =

q⋂
ℓ=1

⋂
ν 6=µ

G(kd(ν), kd(µ), ℓ),

where

G(kd(ν), kd(µ), ℓ) = {ξ : 2kd(ν)+ jℓ|ξ(ℓ, ν)| ≁ 2kd(µ)+ jℓ|ξ(ℓ, µ)|}.

Let χA be the characteristic function of the set A. On the good region we have

good decay properties such as

|µ̂ j,K (ξ1, . . . , ξd)|χG(K)(ξ)

≤ C min{|2kd(ν)+ jℓξ(ℓ, ν)|−σ : ν = 1, . . . ,m, and ℓ = 1, . . . , q}.

This leads us to the Lp boundedness of the maximal operator

(2.6) f 7→ sup
j∈Z

K∈Z(d(1),...,d(m))

|µ j,K ∗ χ∨
G(K) ∗ f |,
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where g∨ denotes an inverse Fourier transform of g.

Before considering the bad part, we note that B(kd(ν), kd(µ), ℓ) defined above does

not depend on the parameter j. Moreover, we can observe that it is determined by

the parameter kd(µ) − kd(ν).

For the bad region, we need to handle the maximal operator for each ν 6= µ and ℓ

(2.7) f 7→ sup
j∈Z

K∈Z(d(1),...,d(m))

|µ j,K ∗ χ∨
B(kd(ν),kd(µ),ℓ)

∗ f |.

By using a new parameter k, we write kd(µ) = kd(ν) + k and put Ak = χ∨
B(kd(ν),kd(µ),ℓ)

. We

then replace the supremum over one parameter k by the square summation

sup
j∈Z

K∈Z(d(1),...,d(m))

|µ j,K ∗ χ∨
B(kd(ν),kd(µ),ℓ)

∗ f (x)|

.
(∑

k∈Z

|M(d(1),...,d(m))
ν,µ,k (Ak ∗ f )(x)|2

) 1
2

,

where

M
(d(1),...,d(m))
ν,µ,k f (x) = sup

j∈Z

K∈Z(d(1),...,d(m))
kd(µ)=kd(ν)+k

|µ j,K ∗ f (x)|.

We can check that the operator M
(d(1),...,d(m))
ν,µ,k belongs to the class Am−1. If we have

the following vector valued inequality

(2.8)
∥∥∥

(∑

k∈Z

|M(d(1),...,d(m))
ν,µ,k (Ak ∗ f )|2

) 1
2
∥∥∥

Lp(Rd)

. B(p,m − 1)
∥∥∥

(∑

k∈Z

|Ak ∗ f |2
) 1

2
∥∥∥

Lp(Rd)
,

where B(p,m − 1) is of the form (2.4), then the desired Lp estimate is obtained from

the inequality ∥∥∥
(∑

k∈Z

|Ak ∗ f |2
) 1

2
∥∥∥

Lp (Rd)
. ‖ f ‖Lp(Rd).

This is a variant of the Littlewood–Paley inequality on the angular sectors and will be

shown in Lemma 3.4 in the next section.

We can easily see that (2.8) holds for p = 2 with the bound ‖Am−1‖2, which leads

us to the L2 boundedness of the operator defined in (2.7). Combined with the L2

boundedness of the operator in (2.6), we obtain that the maximal operator defined

by sup j∈Z,K∈Z(d(1),...,d(m)) |µ j,K ∗ f | is bounded in L2(R
d). In order to treat the range

1 < p < 2, we shall use this L2 estimate and the vector valued inequalities (2.8) in

Lemma 3.6, as we shall see.
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3 Preliminary Lemmas

Let us choose an even nonnegative function ψ ∈ C∞
0 (−1, 1) such that ψ ≡ 1 on

[−1/2, 1/2]. Set χ(t) = ψ(t/2) − ψ(t). We define a function Ω by

Ω(t) =

2dd!∑

ℓ=−2dd!

χ(t/2ℓ).

For τ = 1, . . . , d, we define a dyadic decomposition on each τ-th coordinate of R
d by

L̂τj (ξ) = χ(2 jξτ ) where ξ = (ξ1, . . . , ξd). Let us define Ω j on R
2 away from R

1 ×{0}
by

(3.1) Ω j(s, t) = Ω(s/(2 jt)).

Then Ω j is supported in {2 j−2dd!−1 ≤ |s/t| ≤ 2 j+2dd!+1}. We define a dyadic decom-

position on the angular sectors by using the following measures in R
d:

̂
A

(α,β)
j (ξ) = Ω j(ξα, ξβ).

Let K = (k1, . . . , km) in what follows. By the Marcinkiewicz multiplier theorem in

[6] we have the following Littlewood–Paley type inequalities.

Lemma 3.1 Let 1 ≤ τi , αi 6= βi ≤ d with i = 1, . . . ,m. Then we have for

1 < p < ∞,

∥∥∥
( ∑

K∈Zm

|Lτ1

k1
∗ · · · ∗ Lτm

km
∗ f |2

) 1
2
∥∥∥

Lp(Rd)
. ‖ f ‖Lp(Rd),

∥∥∥
( ∑

K∈Zm

|A(α1,β1)
k1

∗ · · · ∗ A(αm,βm)
km

∗ f |2
) 1

2
∥∥∥

Lp (Rd)
. ‖ f ‖Lp(Rd).

Proof We use the Rademacher functions to switch the square sums above into linear

sums.

Then, by applying the multiparameter Marcinkiewicz multiplier theorem, we ob-

tain the above desired inequalities.

For a nonzero vector a = (a1, . . . , ad) ∈ R
d, we define a measure Pa

j which re-

stricts the frequency variable 2 j |ξ · a| . 1 so that

P̂a
j ∗ f (ξ) = ψ(2 jξ · a) f̂ (ξ),

where ξ · a = ξ1a1 + · · · + ξdad.

Lemma 3.2 For each x ∈ R
d, sup j∈Z

|Pa
j ∗ f (x)| . Ma f (x), where Ma is a directional

maximal function along the line {ta : t ∈ R} in R
d.
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Proof The proof is obvious from the following inequality

Pa
j ∗ f (x) =

∫
f (x1 − a1t, . . . , xd − adt)

1

2 j
|ψ∨|

( t

2 j

)
dt . Ma f (x),

because ψ∨ is a Schwartz function in R.

Let {a1, . . . , am} be a collection of nonzero vectors in R
d and define a measure by

L̂ai

k (ξ) = χ(2kai · ξ).

Then we have the Littlewood–Paley type inequality corresponding to the above mea-

sures.

Lemma 3.3 For 1 < p <∞, we have

∥∥∥
(∑

ki∈Z

|Lai

ki
∗ f |2

) 1
2
∥∥∥

Lp(Rd)
. ‖ f ‖Lp(Rd),

∥∥∥
( ∑

K∈Zm

|La1

k1
∗ · · · ∗ Lam

km
∗ f |2

) 1
2
∥∥∥

Lp(Rd)
. ‖ f ‖Lp(Rd).

Proof We may assume that ai
ν 6= 0 for some ν = 1, . . . , d. Then the first inequality

follows from Lemma 3.1 and the fact that

L̂ai

ki
(ξ) = L̂νki

(Giξ),

where L̂νki
(ξ) = χ(2kiξν) where Gi is the invertible d × d matrix defined by

Gi =




1 0 · · · 0 · · · 0 0

0 1 · · · 0 · · · 0 0

0 0
. . .

... 0 0

ai
1 ai

2 · · · ai
ν · · · ai

d−1 ai
d

0 0
...

. . . 0 0

0 0 · · · 0 · · · 1 0

0 0 · · · 0 · · · 0 1




.

We obtain the second inequality by switching it to linear sums via Rademacher func-

tions.

For each i = 1, . . . ,m, let ai and bi be two nonzero vectors in R
d and set

(3.2) Â
ai ,bi

k (ξ) = Ωk(ξ · ai , ξ · bi).
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Lemma 3.4 For 1 < p <∞,

∥∥∥
(∑

ki∈Z

|Aai ,bi

ki
∗ f |2

) 1
2
∥∥∥

Lp(Rd)
. ‖ f ‖Lp(Rd),

∥∥∥
( ∑

K∈Zm

|Aa1,b1

k1
∗ · · · ∗ A

am,bm

km
∗ f |2

) 1
2
∥∥∥

Lp (Rd)
. ‖ f ‖Lp(Rd).

Proof Suppose that ai and bi are linearly dependent. Then there exists a nonzero c

such that ξ · ai
= c ξ · bi for ξ ∈ R

d. Then by (3.1), for all x ∈ R
d we have

(∣∣∣
∑

k

|Aai ,bi

k f (x)
∣∣∣

2) 1/2

. | f (x)|.

Thus we assume that ai and bi are linearly independent vectors. Without loss of gen-

erality we may assume that (ai
1, a

i
2) in ai and (bi

1, b
i
2) in bi are linearly independent.

Then the d × d matrix

Ri =




ai
1 ai

2 ai
3 · · · ai

d

bi
1 bi

2 bi
3 · · · bi

d

0 0 1 0 0

0
... 0

. . .
...

0
... 0 · · · 1




is invertible. For each i = 1, . . . , d, we use the fact Â
ai ,bi

ki
(ξ) = Â

1,2
ki

(Riξ) and the

known corresponding estimate for A
1,2
ki

in Lemma 3.1 to obtain the first inequality.

We obtain the second inequality by switching the square sum into a linear sum.

For the Lp estimate, we shall use the following vector valued inequality.

Lemma 3.5 Suppose that σ J with each J ∈ Z
ℓ is an operator satisfying the positivity

condition such that |σ J( f )(x)| ≤ |σ J(g)(x)| if | f (x)| ≤ |g(x)| for all x ∈ R
d. We as-

sume that ‖ sup J∈Zℓ
|σ J( f )|‖Lq(Rd) ≤ C1‖ f ‖Lq(Rd) for some q ≤ 2, and ‖σ J( f )‖Lr(Rd) ≤

C2‖ f ‖Lr(Rd) for all r > 1. Then for 1
p
< 1

2
(1 + 1

q
) we have

∥∥∥
( ∑

J∈Zℓ

|σ J( f J)|
2
) 1

2
∥∥∥

Lp (Rd)
≤ C

∥∥∥
( ∑

J∈Zℓ

| f J|
2
) 1

2
∥∥∥

Lp (Rd)
,

where C = C
1− r

2

1 C
r/2
2 with r satisfying 1

p
=

1
2

+ 1
q
(1− r

2
), that is, r = 2[1− ( 1

p
− 1

2
)q].

Proof This lemma follows from the interpolation of Lr(lr(R
d)) with any r > 1 and

Lq(l∞(R
d)) for the vector valued operator T given by { f J} → {σ J( f J)}. We can see

that

‖T‖Lq(l∞(Rd))→Lq(l∞(Rd)) ≤ C1, ‖T‖Lr(lr(Rd))→Lr(lr(Rd)) ≤ C2.

By using 1
p

=
1−θ

q
+ θ

r
and 1

2
=

1−θ
∞ + θ

r
, we obtain the desired bound.
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This lemma is applied to the following situation. We recall the maximal operator

M
(d(1),...,d(m))
ν,µ,k that appeared in Section 1,

M
(d(1),...,d(m))
ν,µ,k f (x) = sup

j∈Z

K∈Z(d(1),...,d(m))
kd(µ)=kd(ν)+k

|µ j,K ∗ f (x)|.

Thus we can write

M
(d(1),...,d(m)) f (x) = sup

j∈Z

K∈Z(d(1),...,d(m))

|µ j,K ∗ f (x)| = sup
k∈Z

M
(d(1),...,d(m))
ν,µ,k f (x).

Lemma 3.6 Suppose that M(d(1),...,d(m)) is bounded in Lq(R
d) for some q > 1 and

M
(d(1),...,d(m))
ν,µ,k is bounded in Lr(R

d) for all r > 1. Then for 1
p
< 1

2
(1 + 1

q
), we have

∥∥∥
(∑

k∈Z

|M(d(1),...,d(m))
ν,µ,k fk|

2
) 1/2∥∥∥

Lp (Rd)
. C

∥∥∥
(∑

k∈Z

| fk|
2
) 1/2∥∥∥

Lp (Rd)
,

where the constant C is chosen to be

C = ‖M(d(1),...,d(m))‖
1− r

2

Lq(Rd)→Lq(Rd)
‖M(d(1),...,d(m))

ν,µ,k ‖
r/2

Lr(Rd)→Lr(Rd)
,

where r satisfies 1
p

=
1
2

+ 1
q
(1 − r

2
), that is, r = 2[1 − ( 1

p
− 1

2
)q].

4 Reduction and Angular Decomposition

In this section we set up the reduction process and angular decompositions which are

used for the proof of (2.3) with r = m in Proposition 2.3.

4.1 Reduction

We recall that the Fourier transform of the measure µ j,K is

µ̂ j,K (ξ1, . . . , ξd) =

∫
e2πiP j,K (ξ,t)ϕ(t) dt,

where

P j,K (ξ, t) =

q∑

ℓ=1

( m∑

ν=1

2kd(ν)ξ(ℓ, ν)
)

2 jℓtℓ.

Let Λ0 = {(ℓ, ν) : (ad(ν−1)+1
ℓ , . . . , ad(ν)

ℓ ) 6= 0 where ν = 1, . . . ,m, and ℓ = 1, . . . , q}.

We take an arbitrary subset Λ ⊂ Λ0 and define

M̂Λ

j,K (ξ) =

∫
e2πiPΛ

j,K (ξ,t)ϕ(t) dt, PΛ

j,K (ξ, t) =

∑

(ℓ,ν)∈Λ

ξ(ℓ, ν)2kd(ν)+ jℓtℓ.
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Let us define a maximal operator M
Λ associated with Λ ⊂ Λ0 as

M
Λ f (x) = sup

( j,K)∈Z×Z(d(1),...,d(m))

|MΛ

j,K ∗ f (x)|.

In showing (2.3), we shall prove the following lemmas in Sections 4 through 6.

Lemma 4.1 For 1 < p ≤ 2,

‖MΛ‖Lp(Rd)→Lp(Rd) . B(p,m − 1)
∑

D∈P(Λ)

‖MΛ−D‖Lp(Rd)→Lp(Rd),

where P(Λ) is a family of all nonempty subsets of Λ, and B(p,m − 1) is of the form

(2.4).

By applying Lemma 4.1 finitely many times, we see that the set Λ will be exhausted

down to ∅. Therefore Lemma 4.1 leads to the following.

Lemma 4.2 For 1 < p ≤ 2, ‖MΛ‖Lp(Rd)→Lp (Rd) . B(p,m− 1) where B(p,m − 1) is

of the form (2.4).

Note that Lemma 4.2 implies Proposition 2.3, since Λ is an arbitrary subset of Λ0.

4.2 Angular Decomposition

Since M̂Λ
j,K (ξ) is of the form of oscillatory integrals, we split M̂Λ

j,K (ξ) into a good part

and a bad part based on whether the size of the phase function is dominated by one

term or not. The bad region is defined as the set of frequency variables such that for

some (ℓ, ν) and (ℓ, µ) in Λ with ν 6= µ

(4.1) 2kd(ν)+ jℓ|ξ(ℓ, ν)| ∼ 2kd(µ)+ jℓ|ξ(ℓ, µ)|.

The good region is defined as the set of frequency variables such that

(4.2) 2kd(ν)+ jℓ|ξ(ℓ, ν)| ≁ 2kd(µ)+ jℓ|ξ(ℓ, µ)|,

for any (ℓ, ν) and (ℓ, µ) in Λ with ν 6= µ. We define a good maximal function by

MΛ f (x) = sup
( j,K)∈Z×Z(d(1),...,d(m))

|MΛ

j,K ∗ f (x)|.

The Fourier transform of the measure MΛ
j,K is restricted to the region (4.2), and writ-

ten as

M̂Λ
j,K (ξ) = M̂Λ

j,K (ξ) ·
∏

(ℓ,ν),(ℓ,µ)∈Λ

ν 6=µ

(
1 − Ωkd(µ)−kd(ν)

(ξ(ℓ, ν), ξ(ℓ, µ))
)
.
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On the other hand, a bad maximal function NΛ f is also defined by

NΛ f (x) = sup
( j,K)∈Z×Z(d(1),...,d(m))

|NΛ

j,K ∗ f (x)|.

The Fourier transform of the measure NΛ
j,K is restricted to the region (4.1) and writ-

ten as

N̂Λ
j,K (ξ) = M̂Λ

j,K (ξ) ·
(

1 −
∏

(ℓ,ν),(ℓ,µ)∈Λ

ν 6=µ

(
1 − Ωkd(µ)−kd(ν)

(ξ(ℓ, ν), ξ(ℓ, µ))
))
.

From the fact that MΛ f ≤ MΛ f + NΛ f we show that the Lp bounds of NΛ and MΛ

are majorized by certain powers of ‖Am−1‖a(p) and
∑

D∈P(Λ) ‖M
Λ−D‖Lp(Rd)→Lp(Rd),

respectively, for the proof of Lemma 4.1.

5 L2 Estimate for the Bad Maximal Operator NΛ

In this section, as a part of the proof of Lemma 4.1, we show that for p = 2,

(5.1) ‖NΛ‖Lp(Rd)→Lp (Rd) . B(p,m − 1),

where B(p,m − 1) is of the form (2.4). The case p 6= 2 will be treated in Section 7.

Proof of (5.1) for p = 2 Our proof is based on the angular Littlewood–Paley de-

composition. We can write N̂Λ
j,K (ξ) as the sum of

(5.2) M̂Λ
j,K (ξ) ·

∏

(ℓ,ν),(ℓ,µ)∈G×G ′,ν 6=µ

Ωkd(µ)−kd(ν)
(ξ(ℓ, ν), ξ(ℓ, µ)),

where G and G ′ are subsets of Λ. Let us consider the simple case

(5.3) M̂Λ
j,K (ξ)Ωkd(µ)−kd(ν)

(ξ(ℓ, ν), ξ(ℓ, µ))

with fixed ν, µ, and ℓ. Let

(5.4) aνℓ = (0, . . . , 0, ad(ν−1)+1
ℓ , . . . , ad(ν)

ℓ , 0, . . . , 0),

where nonzero terms are located from the (d(ν−1)+1)-th entry to the d(ν)-th entry.

We also let

(5.5) a
µ
ℓ = (0, . . . , 0, ad(µ−1)+1

ℓ , . . . , ad(µ)
ℓ , 0, . . . , 0),

where nonzero terms are located from the (d(µ − 1) + 1)-th coordinate to d(µ)-

th coordinate. Then it is immediate thatthe two vectors defined above are linearly
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independent. In view of (5.3), (5.4), (5.5) and (3.2) the maximal function NΛ
j,K f can

be written as

NΛ

j,K f (x) = sup
( j,K)∈Z×Z(d(1),...,d(m))

|MΛ

j,K ∗ A
aνℓ ,a

µ
ℓ

kd(µ)−kd(ν)
∗ f (x)|.

Let us define a new parameter k as k = kd(µ) − kd(ν). Then

NΛ

j,K f (x) ≤
(∑

k

∣∣M(d(1),...,d(m))
ν,µ,k

(
A

aνℓ ,a
µ
ℓ

k ∗ f (x)
)∣∣ 2

) 1
2

,

where

(5.6) M
(d(1),...,d(m))
ν,µ,k f (x) = sup

( j,K)∈Rk

|MΛ

j,K ∗ f (x)|,

with Rk = {( j,K) ∈ Z
d+1 : ( j,K) ∈ Z × Z(d(1), . . . , d(m)) and kd(µ) = kd(ν) + k}.

Note that the maximal operator M
(d(1),...,d(m))
ν,µ,k is the operator in the class Am−1, as

we have seen in (2.2). In this way our maximal function corresponding to (5.2) is

majorized by
(∑

k∈Z

∣∣M(d(1),...,d(m))
ν,µ,k (Gk f (x))

∣∣ 2
) 1

2

,

where

Gk f (x) =
(

sup
K=(kℓ,τ ,σ)∈Zcard(H)

|A
aνℓ∗ ,a

µ
ℓ∗

k ∗
(

⊛
[(ℓ,τ ),(ℓ,σ)]∈H

A
aτℓ ,a

σ
ℓ

kℓ,τ ,σ

)
∗ f (x)|

)

and H = G × G ′ − [(ℓ∗, ν), (ℓ∗, µ)] with the notation ⊛N
i=1 Ai = A1 ∗ · · · ∗ AN. By

changing the supremum into square summation and using Lemma 3.4, we obtain

∥∥∥
(∑

k

|Gk f |2
) 1

2
∥∥∥

Lp(Rd)
. ‖ f ‖Lp(Rd).

In view of the bound B(2,m − 1) = ‖Am−1‖2, we obtain that for p = 2,

(5.7)
∥∥∥

(∑

k

∣∣M(d(1),...,d(m))
ν,µ,k (Gk f )

∣∣ 2
) 1

2
∥∥∥

Lp (Rd)
. B(p,m − 1)‖ f ‖Lp (Rd),

which implies (5.1) when p = 2.

Remark 2 For the case A1, we do not deal with the bad part and regard the operator

sup j∈Z,K∈Z(d(1)) |M j,K ∗ f | as the good maximal function MΛ f .
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6 L2 Estimate for the Good Maximal Operator MΛ

In this subsection we prove that for p = 2,

(6.1) ‖MΛ‖Lp(Rd)→Lp(Rd) . B(p,m − 1) +
∑

D∈P(Λ)

‖MΛ−D‖Lp (Rd)→Lp(Rd),

where P(Λ) is a family of nonempty subset of Λ and B(p,m− 1) is of the form (2.4).

We shall treat the case p 6= 2 in Section 6. Let ψc
= 1 − ψ and decompose M̂Λ

j,K (ξ)

as

M̂Λ
j,K (ξ) =

∏

(ℓ,ν)∈Λ

(ψ(2kd(ν)+ jℓξ(ℓ, ν)) + ψc(2kd(ν)+ jℓξ(ℓ, ν)) · M̂Λ
j,K (ξ)

=

∑

A∪B=Λ,A∩B=∅

̂
M

A,B
j,K (ξ),

where
̂
M

A,B
j,K (ξ) is defined by

̂
M

A,B
j,K (ξ) =

∏

(ℓ,ν)∈A

ψ(2kd(ν)+ jℓξ(ℓ, ν))
∏

(ℓ,ν)∈B

ψc(2kd(ν)+ jℓξ(ℓ, ν)) · M̂Λ
j,K (ξ).

We define a maximal operator MA,B by

MA,B f (x) = sup
( j,K)∈Z×Z(d(1),...,d(m))

|MA,B
j,K ∗ f (x)|.

In order to prove (6.1), it suffices to show that for any choice of two subsets A and B

of Λ such that A ∪ B = Λ and A ∩ B = ∅,

(6.2) ‖MA,B‖Lp(Rd) 7→Lp(Rd) . B(p,m − 1) +
∑

D∈P(Λ)

‖MΛ−D‖Lp (Rd) 7→Lp(Rd).

Let us define a measure T
A,B
j,K whose Fourier transform T̂

A,B
j,K (ξ) is given by

(6.3) T̂
A,B
j,K (ξ) =

∫
ei

P

(ℓ,ν)∈B ξ(ℓ,ν)2
kd(ν)+ jℓ

tℓ
∏

(ℓ,ν)∈A

(eiξ(ℓ,ν)2
kd(ν)+ jℓ

tℓ − 1)ϕ(t) dt.

We note that

(6.4) T̂
A,B
j,K (ξ) = M̂Λ

j,K (ξ) +
∑

D∈P(A)

±̂MΛ−D
j,K (ξ).

In view of (6.4) and Lemma 3.2, we obtain

(6.5) ‖MA,B f ‖Lp(Rd) . ‖ sup
( j,K)∈Z×Z(d(1),...,d(m))

|TA,B
j,K ∗ f |‖Lp(Rd)

+
∑

D∈P(A)

‖MΛ−D(G f )‖Lp(Rd),
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where

T̂
A,B
j,K (ξ) = T̂A,B

j,K (ξ)
∏

ℓ

∏

ν 6=µ

(
1 − Ωkd(µ)−kd(ν)

(ξ(ℓ, ν), ξ(ℓ, µ))
)

×
∏

(ℓ,ν)∈A

ψ(2kd(ν)+ jℓξ(ℓ, ν))
∏

(ℓ,ν)∈B

ψc(2kd(ν)+ jℓξ(ℓ, ν))

and G f is the composition of directional maximal functions in Lemma 3.2. The

second term in the right-hand side of (6.5) is bounded by

(6.6)
∑

D∈P(A)

‖MΛ−D‖Lp(Rd)→Lp(Rd)‖ f ‖Lp(Rd).

Thus in proving (6.2), it suffices to show that

(6.7)
∥∥ sup

( j,K)∈Z×Z(d(1),...,d(m))

|TA,B
j,K ∗ f |

∥∥
Lp (Rd)

. B(p,m − 1)‖ f ‖Lp(Rd).

To establish (6.7) we proceed to a dyadic decomposition based on the size of the phase

function. We set

L̂
ℓ,ν
n (ξ) = χ(2nξ(ℓ, ν)).

Denote card(Λ) by the cardinality of the set Λ. For each n = (nℓ,ν)(ℓ,ν)∈Λ ∈ Z
card(Λ),

we define L j,K,n = ⊛(ℓ,ν)∈Λ L
ℓ,ν
kd(ν)+ j·ℓ−nℓ,ν

where ⊛N

i=1 Ai = A1 ∗ · · · ∗ AN . Then we

can decompose

T
A,B
j,K ∗ f =

∑

n∈Zcard(Λ)

T
A,B
j,K ∗ L j,K,n ∗ f .

It is easy to see that the support of L̂ j,K,n is contained in

2−nℓ,ν−2 ≤ 2kd(ν)+ jℓ|ξ(ℓ, ν)| ≤ 2−nℓ,ν+1

for each (ℓ, ν) ∈ Λ.

In order to show (6.7), we prove that for each fixed n = (nℓ,ν),

(6.9) ‖ sup
( j,K)∈Z×[Z(d(1),...,d(m))]

|TA,B
j,K ∗ L j,K,n ∗ f |‖Lp(Rd)

. 2−ǫ
P

(ℓ,ν)∈Λ
|nℓ,ν |B(p,m − 1)‖ f ‖Lp(Rd).

We shall prove (6.9) in the rest of our paper. To do this we first claim that in the

region {ξ :
̂

T
A,B
j,K ∗ L j,K,n(ξ) 6= 0}

|T̂A,B
j,K (ξ)| . 2−ǫ

P

(ℓ,ν)∈B |nℓ,ν |(6.10)

|T̂A,B
j,K (ξ)| . 2−ǫ

P

(ℓ,ν)∈A |nℓ,ν |.(6.11)
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Proof of (6.10) and (6.11) Recall that

T̂A,B
j,K (ξ) =

∫
ei

P

(ℓ,ν)∈B ξ(ℓ,ν)2
kd(ν)+ jℓ

tℓ
∏

(ℓ,ν)∈A

(eiξ(ℓ,ν)2
kd(ν)+ jℓ

tℓ − 1)ϕ(t) dt,

where

|ξ(ℓ, ν)|2kd(ν)+ jℓ ≈ 2nℓ,ν & 1 for (ℓ, ν) ∈ B,

|ξ(ℓ, ν)|2kd(ν)+ jℓ ≈ 2nℓ,ν . 1 for (ℓ, ν) ∈ A.

Let n(ℓ) = max{nℓ,ν : (ℓ, ν) ∈ Bℓ} where Bℓ = {(ℓ, ν) ∈ B : ℓ is fixed}. Then from

the conditions (4.2) and (6.8), we can observe

∣∣∣
∑

(ℓ,ν)∈Bℓ

ξ(ℓ, ν)2kd(ν)+ jℓ
∣∣∣ ∼ 2n(ℓ).

Thus by applying Van der Corput’s lemma, there exists a constant c > 0 such that

|T̂A,B
j,K (ξ)| . 2−c max{n(1),...,n(q)}.

By using the Mean Value Theorem,

|T̂A,B
j,K (ξ)| .

∏

(ℓ,ν)∈A

|2kd(ν)+ j·ℓξ(ℓ, ν)| ≈ 2−ǫ
P

(ℓ,ν)∈A |nℓ,ν |.

By putting things together, we complete the proof of the claim.

For the proof of (6.9) we replace the supremum by a square summation. In doing

this, we need to be careful for the number of parameters kd(1), . . . , kd(m), and j. We

rewrite T
A,B
j,K ∗ L j,K,n as

T
A,B
j,K ∗

(
⊛

(ℓ,ν),(ℓ,µ)∈Λ

(δ − A
aνℓ ,a

µ
ℓ

(kd(ν)+ jℓ)−(kd(µ)+ jℓ))
)

∗
(

⊛
(ℓ,ν)∈A

P
aνℓ
kd(ν)+ jℓ

)
∗

(
⊛

(ℓ,ν)∈B
(δ − P

aνℓ
kd(ν)+ jℓ)

)
∗ ⊛

(ℓ,ν)∈Λ

L
ℓ,ν
kd(ν)+ j·ℓ−nℓ,ν

(6.12)

where aνℓ is defined as in (5.4) and δ is a dirac measure at 0 in R
d . Note that all

measures in (6.12) depend only on the parameters

(6.13) {kd(ν) + jℓ : (ℓ, ν) ∈ Λ}.

We can check that the measure T
A,B
j,K is determined by kd(ν) + jℓ for each (ℓ, ν) ∈ Λ in

view of (6.3). All other measures

A
aνℓ ,a

µ
ℓ

(kd(ν)+ jℓ)−(kd(µ)+ jℓ), P
aνℓ
kd(ν)+ jℓ, L

ℓ,ν
kd(ν)+ j·ℓ−nℓ,ν
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are determined by kd(ν)+ jℓ for each (ℓ, ν) ∈ Λ, as we have seen from their definitions.

Let us investigate Λ. We can assume that for each ν = 1, . . . ,m, there exists at least

one ℓ ∈ {1, . . . , q} such that (ℓ, ν) ∈ Λ. If not, our maximal operator belongs to the

class Ar with r ≤ m − 1. Now we consider the following two cases.

Case I. Suppose that for each ν = 1, . . . ,m, there exists a unique ℓ such that

(ℓ, ν) ∈ Λ. Let us denote such ℓ by ℓ(ν). By combining this with (6.13), we see

that the measures in (6.12) actually depend on only m parameters,

j1 = kd(1) + jℓ(1), . . . , jm = kd(m) + jℓ(m),

which allow us to simplify the notation by renaming

Tj1,...,jm
= T

A,B
j,K ,

Aj1,...,jm
= ⊛

(ℓ,ν),(ℓ,µ)∈Λ

(δ − A
aνℓ ,a

µ
ℓ

(kd(ν)+ jℓ)−(kd(µ)+ jℓ)),

Pj1,...,jm
=

(
⊛

(ℓ,ν)∈A
P

(ℓ,ν)
kd(ν)+ jℓ

)
∗

(
⊛

(ℓ,ν)∈B
(δ − P

aνℓ
kd(ν)+ jℓ)

)
,

Lj1,...,jm
= ⊛

(ℓ,ν)∈Λ

L
ℓ,ν
kd(ν)+ j·ℓ−nℓ,ν

.

Let J = (j1, . . . , jm). Then the left-hand side of (6.9) is bounded by the square sum

(6.14)
∥∥∥

( ∑

J∈Zm

|T J ∗ A J ∗ P J ∗ L J ∗ f |2
) 1/2∥∥∥

Lp (Rd)
.

Case II. Suppose that there exists a ν among 1, . . . ,m such that (ℓ, ν) ∈ Λ for

more than one ℓ. For example, for ν = m, there exist two ℓ(m) and ℓ ′(m) where

ℓ(m) 6= ℓ ′(m) such that both (ℓ(m),m) and (ℓ ′(m),m) are in Λ. Thus we see that

T
A,B
j,K (s) ∗ L j,K,n actually depends on m + 1 parameters :

j1 = kd(1) + jℓ(1), . . . , jm = kd(m) + jℓ(m) and jm+1 = kd(m) + jℓ ′(m).

This follows from the fact that there exists an invertible (m + 1) × (m + 1) matrix G

G =




1 0 · · · 0 ℓ(1)

0 1 · · · 0 ℓ(2)

0 0
. . . 0

...

0 0 · · · 1 ℓ(m)

0 0 · · · 1 ℓ ′(m)
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satisfying G(kd(1), . . . , kd(m), j) = (j1, . . . , jm, jm+1). We then rename

Tj1,...,jm+1
= T

A,B
j,K ,

Aj1,...,jm+1
=

(
⊛

(ℓ,ν),(ℓ,µ)∈Λ

(δ − A
aνℓ ,a

µ
ℓ

(kd(ν)+ jℓ)−(kd(µ)+ jℓ))
)
,

Pj1,...,jm+1
=

(
⊛

(ℓ,ν)∈A
P

aνℓ
kd(ν)+ jℓ

)
∗

(
⊛

(ℓ,ν)∈B
(δ − P

aνℓ
kd(ν)+ jℓ)

)
,

Lj1,...,jm+1
= ⊛

(ℓ,ν)∈Λ

L
ℓ,ν
kd(ν)+ j·ℓ−nℓ,ν

.

Let J = (j1, . . . , jm+1). Then the left-hand side of (6.9) is bounded by the square sum

(6.15)
∥∥∥

( ∑

J∈Zm+1

|T J ∗ A J ∗ P J ∗ L J ∗ f |2
) 1/2∥∥∥

Lp (Rd)
.

Now we turn to the estimate of (6.9). To prove this we shall use (6.10), (6.11),

(6.14) and (6.15).

Proof of (6.9) for p = 2 We use the Plancherel theorem and the orthogonality of L J

combined with (6.10) and (6.11) to obtain the estimates for (6.14) and (6.15) of the

form

(6.16)
∥∥∥

(∑

J∈Z

|T J ∗ A J ∗ P J ∗ L J ∗ f |2
) 1/2∥∥∥

L2(Rd)
. 2−ǫ

P

(ℓ,ν)∈Λ
|nℓ,ν |‖ f ‖L2(Rd),

where Z is taken as Z
m and Z

m+1 for Case I and Case II, respectively. Therefore (6.9)

for p = 2 has been proved with the bound B(p,m − 1) = 1.

Hence (6.9) combined with (6.7) and (6.2) completes the proof of (6.1) for p = 2,

which was the goal of this section.

7 Bootstrap Argument

By applying Lemmas 3.2 through 3.4 combined with the Lp(ℓ2) → Lp(ℓ2) bounded-

ness of the strong maximal function majorizing P J ∗ f or L J ∗ f , we obtain that

(7.1)
∥∥∥

(∑

J∈Z

|A J ∗ P J ∗ L J ∗ f |2
) 1/2∥∥∥

Lp(Rd)
. ‖ f ‖Lp(Rd).

More direct proof of (7.1) is applying the multi-parameter Marcinkiewicz multiplier

theorem after changing the square sum into a linear sum in the same way as Lemmas

3.1–3.4. We shall frequently use (7.1) for the Lp estimate of (7.2) in this section. By

using (5.1) and (6.1), we obtain Lemma 4.1 for p = 2. By iterated application of

Lemma 4.1, we obtain Lemma 4.2 when p = 2. In this section we use a bootstrap

argument to prove Lemmas 4.1 and 4.2 for 1 < p < 2.

We first deal with the range 4/3 < p < 2.
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Proof of (5.1) By using Lemma 4.2 with p = 2, we see that the maximal operator

defined by

f 7→ sup
k

M
(d(1),...,d(m))
ν,µ,k f

is bounded in L2(R
d) with the L2-operator norm B(2,m − 1). Thus we are able to

apply Lemma 3.6 to obtain (5.7), which yields (5.1) for 4/3 < p < 2.

Proof of (6.1) Since Lemma 4.2 holds for p = 2, we can apply Lemma 3.5 with q = 2

and (7.1) to obtain that for 4/3 < p < 2

(7.2)
∥∥∥

(∑

J∈Z

|T J ∗ A J ∗ P J ∗ L J ∗ f |2
) 1/2∥∥∥

Lp(Rd)
. B(p,m − 1)‖ f ‖Lp(Rd).

Now we interpolate (6.16) with (7.2) to obtain that for 4/3 < p < 2,

(7.3)
∥∥∥

(∑

J∈Z

|T J ∗ A J ∗ P J ∗ L J ∗ f |2
) 1/2∥∥∥

Lp(Rd)
. 2−ǫ1

P

(ℓ,ν)∈Λ
|nℓ,ν |‖ f ‖Lp(Rd),

which yields (6.9) for 4/3 < p < 2. We combine this with (6.6) to obtain (6.1) for

4/3 < p < 2.

By (5.1) and (6.1) we now obtain Lemma 4.1 for 4/3 < p < 2. We repeat the

argument in Lemma 4.1 finitely many times to obtain Lemma 4.2 for 4/3 < p < 2.

For the second step we consider the range 8/7 < p ≤ 4/3. We use the result of

Lemma 4.2 for 4/3 < p ≤ 2 and (7.1) in applying Lemmas 3.5 and 3.6 to obtain

(5.7) and (7.2). We see that (5.7) yields (5.1). We also see that (7.2) combined with

(7.3) and (6.6) gives (6.1). We repeat this process so that p is moving backward,

4/3 7→ 8/7 7→ 16/15 7→ · · · , satisfying the range restriction of Lemma 3.5 such that

1/p < (1 + 1/q)/2.

Remark 3 For the case m = 1, that is, MΛ ∈ A1, the oscillatory term is given by

P j,K (ξ, t) =

q∑

ℓ=1

ξ(ℓ, 1)2k+ jℓtℓ,

where K = (k, . . . , k). Then we have already a good decay property

|µ̂ j,K (ξ1, . . . , ξd)| . min{|2k+ jℓξ(ℓ, 1)|−ǫ : ℓ = 1, . . . , q}

≈ min{2−ǫ|nℓ|, ℓ = 1, . . . , q},

where 2nℓ−1 ≤ 2k+ jℓ|ξ(ℓ, 1)| ≤ 2nℓ+1 and nℓ > 0. This combined with (5.6) leads us

to (6.16). Thus we use Lemma 3.5 to obtain Lemmas 4.1 and 4.2 by showing only

(6.1) with B(p, 0) = 0.
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8 Proof of Theorem 1.2

We shall obtain Theorem 1.2 by using Theorem 1.1 and the lifting lemma used in

[5, p. 484]. We first deal with the localized version of the maximal operator in (1.2)

defined by

Sρ f (x) = sup
K∈Zqd ,0<r<ρ

1

2r

∫ r

−r

| f (x − PK(t))| dt.

Let N = qd and u = (u1, . . . , ud) ∈ R
N where uτ = (uτ1 , . . . , u

τ
q) ∈ R

q. We define a

linear transform L : R
N → R

d by L(u) = (
∑q

ℓ=1 a1
ℓu

1
ℓ , . . . ,

∑q
ℓ=1 ad

ℓud
ℓ), and define a

maximal operator

M
lac
N f (u) = sup

K∈ZN ,r>0

1

2r

∫ r

−r

| f (u − QK (t))| dt,

where QK (t) = ((2k1,1t1, . . . , 2
k1,qtq), . . . , (2kq,1t1, . . . , 2

kq,qtq)). We know that Mlac
N is

bounded in Lp(R
N) from Theorem 1.1. By using this we obtain that for any R > 0,

∫

Rd

|Sρ f (x)|p dx .
1

RN

∫

|u|<R

∫

Rd

|Sρ f (x)|p dxdu

.
1

RN

∫

Rd

∫

RN

|Mlac
N Fx(u)|p dudx

.
1

RN

∫

Rd

∫

RN

|Fx(u)|p dudx

.
(R + ρ)N

RN

∫

Rd

| f (x)|p dx,

where Fx(u) = f (x + L(u))χBR+ρ(u) with χBR+ρ a characteristic function supported

in the ball centered zero with radius R + ρ. Take R → ∞; then we obtain that

‖Sρ‖Lp(Rd)→Lp(Rd) ≤ C with C independent of ρ. By using the Monotone Convergence

Theorem, we have
∫

Rd

|S f (x)|p dx =

∫

Rd

lim
ρ→∞

|Sρ f (x)|p dx

= lim
ρ→∞

∫

Rd

|Sρ f (x)|p dx

≤ C p

∫

Rd

| f (x)|p dx.

This completes the proof of Theorem 1.2.

Remark 4 One may work with the maximal operator associated with QK (t) in or-

der to prove Theorem 1.1. However, one can check that things are not simplified by

just applying a lifting argument.
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