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Abstract. It is conjectured that the only integrable metrics on the two-dimensional torus
are Liouville metrics. In this paper, we study a deformative version of this conjecture: we
consider integrable deformations of a non-flat Liouville metric in a conformal class and
show that for a fairly large class of such deformations, the deformed metric is again Liou-
ville. The principal idea of the argument is that the preservation of rational invariant tori
in the foliation of the phase space forces a linear combination on the Fourier coefficients
of the deformation to vanish. Showing that the resulting linear system is non-degenerate
will then yield the claim. Since our method of proof immediately carries over to higher
dimensional tori, we obtain analogous statements in this more general case. To put our
results in perspective, we review existing results about integrable metrics on the torus.
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1. Introduction
Let T2 = R2/Z2 be the two-dimensional torus being equipped with a C2-smooth global
Liouville metric g, that is, having line element

ds2 = (f1(x
1) + f2(x

2))((dx1)2 + (dx2)2), (1.1)

where (x1, x2) ∈ T2 are the standard periodic coordinates and f1, f2 ∈ C2(T) are positive
Morse functions or positive constants and thus ‘non-degenerate’. (Recall that Morse
functions on a manifold M are characterized by having no degenerate critical points. They
form a dense and open set in C2(M) and are thus ‘generic’.) The corresponding geodesic
flow (see §1.1) is well known to be integrable and a longstanding folklore conjecture says
that Liouville metrics are the only integrable metrics on T2. We emphasize that, in this
context, integrability always allows for singularities in the foliation of the phase space
of the naturally associated Hamiltonian system, which is made precise in Definition 1.2
below.
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2 J. Henheik

Although the validity of the folklore conjecture appeared conceivable for a long time,
there is strong indication for it being false in its very general form, as shown in [35]:
here, the authors constructed a Hamiltonian counterexample which is locally integrable
in a p-cone in the cotangent bundle. This means that, on a fixed energy level, there
exists an analytic change of variables, transforming the Hamiltonian with non-Liouville
potential to the standard form (p2

1 + p2
2)/2 but only for pi in a certain cone in R2 (see also

Theorem 3.8 below for a more precise statement). However, despite this delicate example,
certain suitably weakened conjectures are still believed to be true, which is supported by
a variety of partial results obtained in this direction, starting from classical ones by Dini
[43], Darboux [37], and Birkhoff [22] and further developed in [11, 62, 64]. In particular,
several works by Bialy, Mironov [13, 17–19], Denisova, Kozlov, Treshev [39–42, 70],
Mironov [79], and others [2, 11, 64, 87] strongly indicate the validity of the following
(yet unproven) conjecture: Every polynomially integrable metric g on T2 is of Liouville
type. We refer to §3 for details. (See also [24, 31] for recent surveys on open problems and
questions concerning geodesics and integrability of finite-dimensional systems.)

In this paper, we are concerned with a perturbative version of the folklore conjecture:
Let (gε)|ε|≤ε0 for some small ε0 > 0 be a family of perturbations of g ≡ g0 in the
same conformal class (note that on the torus, there exist global isothermal coordinates
[26, Ch. 11]) having line-element

ds2
ε = (f1(x

1) + f2(x
2) + ελ(x1, x2))((dx1)2 + (dx2)2), (1.2)

where λ ∈ C2(T2) is assumed to be a Morse function (or constant) and have an absolutely
convergent Fourier series. We will assume that the perturbed family gε remains integrable,
meaning that within the foliation of the phase space for the unperturbed Liouville metric
in equation (1.1), the deformation in equation (1.2) preserves sufficiently many rational
invariant tori (see Assumption (P) below for a precise formulation of our requirement on
the preservation of these tori). Then we obtain that λ is necessarily separable in a sum of
two single-valued functions, that is,

λ(x1, x2) = λ1(x
1) + λ2(x

2)

for some λ1, λ2 ∈ C2(T). Therefore, our main results formulated (somewhat informally)
below assert the following.

The class of Liouville metrics is deformationally rigid under a fairly wide class of
integrable conformal perturbations.

To the best of our knowledge, this is the first instance of a rigidity result for (not
necessarily analytically) integrable dynamical systems allowing for singularities in the
invariant foliation of the unperturbed system. The precise statements of our main results
are given in Theorems 2.2, 2.3, and 2.4 in §2.

Main Results. Let g be a non-degenerate Liouville metric on T2 as in equation (1.1)
and assume that the family (gε)|ε|≤ε0 of perturbations defined in equation (1.2) remains
integrable. Then we have the following.

(i) In the case where f1, f2 ≡ const., then λ is separable.
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Deformational rigidity of integrable metrics on the torus 3

(ii) In the case where f1 ≡ const., λ is a trigonometric polynomial in x2, and the relative
difference μ2 between f2 and its mean

∫
T

f2, that is, μ2 := ‖f2 − ∫
T

f2‖C0/
∫
T

f2

is small, then λ is separable.
If, additionally, f2 is analytic, we have that λ is separable, irrespective of the size

μ2 of the fluctuations of f2 (but only for μ2 outside of an exceptional (Lebesgue)
null-set).

(iii) In general, if λ is a trigonometric polynomial and the relative differences μi ,
i = 1, 2, between the fi and their means

∫
T

fi , that is, the μi := ‖fi −∫
T

fi‖C0/
∫
T

fi are small, then λ is separable.
If, additionally, fi is analytic (for one or both i = 1, 2), we have that λ is

separable, irrespective of the size μi of the fluctuations of fi (outside of an
exceptional null-set).

It is straightforward to generalize our results to higher dimensional tori Td = Rd/Zd .
To ease notation and make the presentation clearer, we only mention it here and postpone
a more detailed discussion to Appendix A.

Remark 1.1. (Generalization to higher dimensions) Analogously to equation (1.1), let Td

be equipped with a C2-smooth global Liouville metric g having line element

ds2 = (f1(x
1) + · · · + fd(xd))((dx1)2 + · · · + (dxd)2), (1.3)

where x = (x1, . . . , xd) ∈ Td are standard periodic coordinates and fi ∈ C2(T) for 1 ≤
i ≤ d are positive Morse functions or constants. Again, it is easy to see that the geodesic
flow is integrable. Just as in equation (1.2), we now perturb equation (1.3) in the same
conformal class by some λ ∈ C2(Td) having an absolutely convergent Fourier series.

Under the assumption that the family of perturbed metrics (gε)|ε|≤ε0 remains integrable,
we have the following (somewhat informal) rigidity result.

Let fi ≡ const. for the first 0 ≤ dflat ≤ d indices, and fj be analytic for the last
0 ≤ danlyt ≤ d − dflat indices. Then, if λ is a trigonometric polynomial in xk for k ∈
{dflat + 1, . . . , d}, and the relative differences between fdflat+1, . . . , fd−danlyt and their
mean values are small, we have that λ is separable, irrespective of size μj of the
fluctuations of fj (outside of a null-set).

This result unifies and generalizes the three separate statements given above. A precise
formulation is given in Theorem A.1 in Appendix A.

The present paper is not the first study on rigidity of important integrable systems.
In [10, 60], Avila, de Simoi, Kaloshin and Kaloshin, Sorrentino recently solved both,
a deformative and a perturbative version of the famous Birkhoff conjecture concerning
integrable billiards in two dimensions. In a nutshell, their result says that a strictly convex
domain with integrable billiard dynamics sufficiently close to an ellipse is necessarily an
ellipse. This can be viewed as an analogue of the perturbative version of the folklore
conjecture formulated above [61]. More precisely, our main results concerning general
fi ∈ C2(T) are similar—in spirit—to the deformational rigidity for ellipses of small
eccentricity (cf. f1, f2 in equation (1.1) having small fluctuations), which has been shown
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4 J. Henheik

first in [10], later extended by Huang, Kaloshin, and Sorrentino [59] to a local notion of
integrability, and finally significantly improved in [66]. The overall strategy pursued in [10,
59, 60] also inspired the arguments employed in the present paper.

In a more recent work, Arnaud, Massetti, and Sorrentino [4] (replacing the
earlier preprint [74]) studied the rigidity of integrable symplectic twist maps on the
2d-dimensional annulus Td × Rd . More precisely, they consider one-parameter families
(fε)ε∈R of symplectic twist maps fε(x, p) = f0(x, p + ε∇G(x)) and prove two main
rigidity results. First, in the analytic category for f0 and the perturbation G, if a single
rational invariant Lagrangian graph of fε exists for infinitely many values of ε (e.g., an
interval around zero), then G must necessarily be constant. Second, if f0 is analytic and
completely integrable (that is, not plagued with singularities in the invariant foliation of
the phase space, see [16, 86]), G is of class C2, and sufficiently (infinitely) many rational
invariant Lagrangian graphs of fε persist for small ε �= 0, then G must necessarily be
constant. Note that in this second result, the entire phase space is foliated by invariant tori,
and the perturbation solely depends on the angle variables of the dynamical system. In
this sense, Theorem 2.2 can—morally—be viewed as a special case of the second result in
[4] (see also [74, Theorem 2]), but Theorems 2.3 and 2.4 generalize this statement to more
general functional dependencies of the perturbation. Apart from this, our general results
(that is, those not concerning analytic functions fi) do not require any regularity beyond
the standard C2.

As mentioned above, by assuming that the family of metrics (gε)|ε|≤ε0 remains
integrable, we mean that, in particular, sufficiently many rational invariant tori in an
isoenergy manifold of the Hamiltonians associated to the metric by the Maupertuis
principle (see §1.2) are preserved. This will be made precise in Assumption (P) below.
As we will show, the preservation of an (n, m)-rational invariant torus ‘annihilates’ the
Fourier coefficients λk1,k2 with indices (k1, k2) ∈ {(n, m)}⊥ of

λ(x, y) =
∑

(k1,k2)∈Z2

λk1,k2e
2πi(k1x+k2y),

or of the corresponding perturbing mechanical potential, denoted by U later on. We already
noted that, contrary to items (ii) and (iii), the unperturbed metric in our first result is
guaranteed to be completely integrable. Moreover, the perturbation λ depends solely on
the angular but not the action coordinates of the unperturbed problem. Although the
analog of this result for symplectic twist maps in this peculiar setting has already been
shown in [4, 74] by methods similar to ours, we reprove it by pursuing an only slightly
different but original strategy, which is suitable for certain inevitable modifications for
the proofs of the more general statements under items (ii) and (iii). These two cases
(corresponding to surfaces of revolution and general Liouville metrics, see §3) build on
perturbative estimates for (possibly infinitely many) systems of linear equations for the
Fourier coefficients. These are obtained from the first-order term of an expansion in
ε, somewhat similar to the (subharmonic) Melnikov potential in the Poincaré–Melnikov
method [8, 55, 91]. Establishing this expansion as well as proving that the resulting
systems of linear equations are of full rank requires perturbative estimates on action-angle
coordinates and certain basic objects from weak KAM theory [85]. Finally, the extension of
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Deformational rigidity of integrable metrics on the torus 5

our results for analytic functions fi beyond the perturbative regime are proven by exploiting
the analytic dependence of the linear system on the size μi of the fluctuations of fi (see
Appendix C).

In the remainder of this introduction, we recall basic notions in geometry and dynamical
systems, which are frequently used in this paper, and introduce the problem of classifying
integrable metrics on Riemannian manifolds, in particular, the torus T2, as formulated in
Questions (Q1) and (Q2) below. In §2, we formulate our main results in Theorems 2.2,
2.3, and 2.4. In §3, we present related existing results and known partial answers on the
classification problem for integrable metrics on the torus T2 (a few of which have already
been mentioned above) to put our results into context. In §4, we give the proofs of our
main results, and, finally, comment on possible generalizations, different approaches, and
a list of open problems in §5. As already mentioned above, the precise formulation of
our result for higher dimensions is given in Theorem A.1 in Appendix A. A fundamental
perturbation theoretic lemma on action-angle coordinates, a concise study on important
analyticity properties of these, and a brief overview of the relevant aspects of weak KAM
theory are presented in three further appendices.

An extended version of this paper containing more details and background can be found
at arXiv: 2210.02961.

1.1. Geodesic flow and integrability. Let (M , g) be a (compact) C2-smooth n-
dimensional connected Riemannian manifold without boundary equipped with the
Riemannian metric g = (gij (x))ij . Geodesics of the given metric g are defined as
smooth parameterized curves γ (t) = (x1(t), . . . , xn(t)) that are solutions to the system
of differential equations

∇γ̇ γ̇ = 0, (1.4)

where γ̇ = (dγ /dt) denotes the velocity vector of the curve γ , and ∇ is the covariant
derivative operator related to the Levi–Civita connection associated with the metric g.

It is well known that the geodesic equation in equation (1.4) can also be viewed as a
Hamiltonian system on the cotangent bundle T ∗M , and the geodesics γ themselves can be
regarded as projections of trajectories of the Hamiltonian system onto M. Therefore, let x
and p be natural coordinates on the cotangent bundle T ∗M and ω = dx ∧ dp denote the
standard symplectic structure. Then, the Hamiltonian function H ∈ C2(T ∗M) is defined as

H(x, p) = 1
2

∑
ij

gij (x)pipj = 1
2
|p|2g . (1.5)

A trajectory (x(t), p(t)) is an integral curve for the Hamiltonian vector field if and only if
the following Hamiltonian system of differential equations (written in local coordinates) is
satisfied: ⎧⎪⎨⎪⎩

ṗi = −∂H

∂xi
,

ẋi = ∂H

∂pi

.
(1.6)
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6 J. Henheik

In view of this connection to Hamiltonian dynamics, it is natural to ask for a classifica-
tion of Riemannian manifolds (M , g), for which the geodesic equations in equation (1.4)
can be solved explicitly. More precisely, we can formulate the following questions.
(Q1) On which manifolds do there exist Riemannian metrics whose (co-)geodesic flow

is integrable?
(Q2) Given such a manifold, how does one characterize the class of metrics with

integrable geodesic flow?
Clearly, the answers and their complexity hinge on the notion of integrability for the

Hamiltonian system (see §3). In this paper, we will be concerned with the standard notion,
that is, Liouville integrability, which we recall for the readers convenience.

Definition 1.2. The geodesic flow on (M , g) is called Liouville integrable if there exist n
functions F1, . . . , Fn ∈ C2(T ∗M) (called first integrals) that are:
(i) functionally independent on T ∗M , that is, the vector fields XF1(x, p), . . . , XFn(x, p)

are linear independent in T(x,p)(T
∗M) for all (x, p) ∈ M ⊂ T ∗M , where M is

some open and everywhere dense set of full measure (cf. the restriction to Morse
functions);

(ii) pairwise in involution, that is,

{Fk , Fl} := ω(XFk
, XFl

) =
∑

i

(
∂Fk

∂xi

∂Fl

∂pi

− ∂Fk

∂pi

∂Fl

∂xi

)
= 0.

Whenever the geodesic flow on (M , g) is Liouville integrable, we call g an integrable
metric on M. Moreover, we call the Hamiltonian system in equation (1.6) (or the
corresponding Hamiltonian in equation (1.5) itself) integrable, whenever the associated
metric g is integrable on M.

Remark 1.3. Whenever the first integrals F1, . . . , Fn can be chosen to be functions that
are polynomially in the momentum variables, the metric is often called polynomially
integrable or algebraically integrable. If we aim at indicating the order of the polynomial,
we speak of linearly/quadratically/. . . integrable metrics.

Remark 1.4. Note that since one can always choose H = F1 as a first integral for the
geodesic flow, the question of integrability for one-dimensional manifolds is completely
answered. Therefore, the simplest manifolds, for which the answers to Questions (Q1) and
(Q2) are non-trivial, are two-dimensional.

In this work, we are mainly concerned with a characterization of integrable metrics
in the sense of Question (Q2) for the two-dimensional torus T2. In this case, the largest
known class of such metrics g are so-called Liouville metrics, where the line element takes
the form in equation (1.1) in appropriate global coordinates (x1, x2), and where f1 and f2

are sufficiently regular positive periodic functions. See §3.2 for more details.

1.2. Maupertuis principle. To approach Questions (Q1) and (Q2), we will use the
Maupertuis principle (see, e.g., [28]): for a compact Riemannian manifold, (M , g), let
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H(x, p) = 1
2

∑
ij

gij (x)pipj − V (x) (1.7)

be a natural mechanical Hamiltonian function on T ∗M , where V ∈ C2(M) denotes some
potential function. Moreover, let Th = {H(x, p) = h} be an isoenergy submanifold for
some h > − minx V (x) and note that Th is also an isoenergy submanifold for another
system with Hamiltonian function

H̃ (x, p) = 1
2

∑
ij

gij (x)

h + V (x)
pipj ,

that is, Th = {H̃ (x, p) = 1}. Now, the Maupertuis principle states that the integral curves
for the Hamiltonian vector fields XH and XH̃ on the fixed isoenergy submanifold Th

coincide. Moreover, if there exists an additional first integral F for H on Th, then there also
exists a first integral F̃ for H̃ on the whole of T ∗M (except, potentially, at the zero section).
Finally, note that the vector field XH̃ gives rise to the geodesic flow of the Riemannian
metric g̃ with

g̃ij (x) = (h + V (x))gij (x), (1.8)

which is the correspondence between Hamiltonian systems and geodesic flows we will use.

2. Main results
The main results of this paper are rigidity results in the sense of Question (Q2) for classes
of integrable metrics on the two-torus T2 = R2/�, initially equipped with the flat metric,
and hence obtained by a Hamiltonian defined on T ∗T2 by means of the Maupertuis
principle. In general, � ⊂ R2 is an arbitrary lattice, but we focus on the case � = Z2

here. We define the Hamiltonian function

H0(x, p) = p2
1

2
+ p2

2
2

− μ1 V1(x
1) − μ2 V2(x

2) (2.1)

on T ∗T2, where μi ∈ [0, ∞) are parameters, and Vi ∈ C2(T) with Vi ≥ 0 and ‖Vi‖C0 ≤
Ci are Morse functions (or constant). We may assume without loss of generality that
minxi Vi(x

i) = 0. This includes, e.g., the situation of two pendulums, that is, Vi(x
i) =

1 − cos(2πxi). The torus coordinates are denoted by x = (x1, x2) ∈ T2 and the conjugate
coordinate pairs are (x1, p1) and (x2, p2). By the Maupertuis principle, for fixed e > 0, the
Hamiltonian flow on the isoenergy manifold Te = {H0 = e} coincides with the geodesic
flow on T2 with the Liouville metric ge (see equation (1.1) and §3.2 for more details)
having line element

ds2
e = (e + μ1 V1(x

1) + μ2 V2(x
2))((dx1)2 + (dx2)2).

The system with the Hamiltonian function in equation (2.1) is clearly integrable in the
sense of Definition 1.2, since an additional conserved quantity can easily be found as

F1(x, p) = p2
1

2
− μ1 V1(x

1). (2.2)
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8 J. Henheik

FIGURE 1. Schematic picture of the Liouville foliation of the phase space T ∗T ∼= T × R for the classical
one-dimensional pendulum system described by the Hamiltonian function H(x, p) = p2/2 − (1 − cos(2πx)).

The horizontal direction covers slightly more than one period of length one.

The Liouville foliation of Te has the following qualitative structure that is similar to the
phase portrait of the pendulum. The common level surface

T(e,f ) = {H0 = e, F1 = f }
differs in shape, depending on the values of e and f. Recall that e > 0 and Vi ≥ 0. If
(i) f ∈ (−μ1 maxx1 V1(x

1), 0) and e − f > 0, T(e,f ) is an annulus; if (ii) f > 0 and
e − f > 0, T(e,f ) is a torus; if (iii) f > 0 and e − f ∈ (−μ2 maxx2 V2(x

2), 0), T(e,f ) is an
annulus. Therefore, if V1 and V2 are both non-constant, the foliation qualitatively exhibits
a pendulum-like phase portrait (see Figure 1).

2.1. Definitions and assumptions. Our main results concern perturbations of the Hamil-
tonian function in equation (2.1) in the class of mechanical systems as

Hε(x, p) = H0(x, p) + εU(x), (2.3)

where ε ∈ R and U ∈ C2(T2) denotes a perturbing potential, which is assumed to be a
Morse function (or a constant) and have an absolutely convergent Fourier series:

U(x) =
∑
k1∈Z

Uk1(x
2)ei2πk1x

1 =
∑

(k1,k2)∈Z2

Uk1,k2e
i2π(k1x

1+k2x
2).

(Note that in two dimensions, C2-regularity is not sufficient for ensuring an absolutely
convergent Fourier series, although in one dimension it is). In the following, we introduce
several subsets of Z2 in such a way that their definitions immediately carry over in arbitrary
dimension d ∈ N (see Remark 1.1). First, we define the spectrum of U, that is, the set of
non-vanishing Fourier coefficients, as

SU := {k = (k1, k2) ∈ Z2 : Uk �= 0}, (2.4)

while the non-singular spectrum is denoted by

SU ,0 := {k ∈ SU : there exists i �= j such that ki · kj �= 0}. (2.5)
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Moreover, we define the coprime set of the orthogonal complement of SU as well as its
non-singular subset via

B(S⊥
U ) := {b ∈ S⊥

U : b coprime} and B0(S⊥
U ) :=

{
b ∈ B(S⊥

U ) :
∏
i

bi �= 0
}

, (2.6)

respectively. Note that the orthogonal complement is taken within Z2. For the proofs in §4
and the generalization in Appendix A, it is important to observe that for every k ∈ SU ,0

exists some b ∈ B0(S⊥
U ) such that b · k = 0.

Our main results will be formulated under the following assumptions.

Assumptions on the perturbed Hamiltonian function in equation (2.3). Let H0 ∈
C2(T ∗T2) denote the Hamiltonian function from equation (2.1) with min Vi = 0,
‖Vi‖C0 ≤ Ci and μi ∈ [0, μ̃i] for some μ̃i ∈ [0, ∞), i ∈ {1, 2}, and U be a perturbing
potential as in equation (2.3), which satisfies one of the following assumptions.
(A1) If μ̃1 = μ̃2 = 0, we have U ∈ C2(T2).
(A2) If, without loss of generality, μ̃1 = 0 and μ̃2 > 0, we have U ∈ C2(T2) and there

exists d(2) ≥ 0 such that

SU ⊂ Z × [−d(2), d(2)], (2.7)

that is, U is a trigonometric polynomial in the second variable x2.
(A3) If μ̃1, μ̃2 > 0, we have U ∈ C2(T2) and there exist d(1), d(2) ≥ 0 such that

SU ⊂ [−d(1), d(1)] × [−d(2), d(2)], (2.8)

that is, U is a trigonometric polynomial.
We denote the minimum over all d(i) such that equation (2.7) (respectively equation
(2.8)) holds as deg(i)

U and call it the i-degree of U. Whenever we refer to one of the
Assumptions (A1), (A2), or (A3), we implicitly assume that H0 ∈ C2(T ∗T2) is of the
form in equation (2.1).

Note that the assumption on the spectrum in equation (2.4) of U is more restrictive when
we include more general potentials μ1V1 and μ2V2 in the unperturbed Hamiltonian H0 in
equation (2.1).

The following basic proposition is fundamental for the precise formulation of our
assumptions concerning preservation of integrability. It rephrases certain aspects of the
standard Liouville–Arnold theorem [7] in our concrete setting using standard notions from
weak KAM theory (see Appendix D and its extension in the arXiv: 2210.02961 version of
this article).

PROPOSITION 2.1. (Liouville–Arnold theorem and weak KAM theory [85]) Let H0 ∈
C2(T ∗T2) be the Hamiltonian function from equation (2.1).
(a) In the region of phase space, where f > 0 as well as e − f > 0, each of the two

connected components of a Liouville torus T(e,f ) (again denoted by T(e,f )) is a
Lipschitz (we will see in Appendix D that uc ∈ C3(T2), so the regularity of T(e,f )
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10 J. Henheik

is in fact C2) Lagrangian graph, that is,

T(e,f ) = {(x, c + ∇xuc) : x ∈ T2}
for a unique cohomology class c ∈ H 1(T2, R) ∼= R2 with |ci | >

√
μic(Vi) and uc ∈

C1,1(T2) so we may equivalently write T(e,f ) ≡ Tc. Here, c(Vi) := ∫ 1
0

√
2 Vi(xi) dxi

(see Appendix D) and C1,1 denotes the functions in C1 with Lipschitz derivative. The
function uc ∈ C1,1(T2) is a classical solution of the Hamilton–Jacobi equation

α(c) = H0(x, c + ∇xuc(x)),

where the left-hand side is Mather’s α-function (see Appendix D).
(b) The Hamiltonian flow on Tc is conjugated to a rotation on T2, that is, there exists

a diffeomorphism ϕ : T2 → Tc such that ϕ−1 ◦ �
XH
t ◦ ϕ = Rω

t for all t ∈ R, where
Rω

t : T2 → T2, x �→ (x + ωt mod Z2) for some rotation vector ω ∈ R2.

An invariant Liouville torus Tc is called irrational or non-resonant if k · ω �= 0 for
all k ∈ Z2 \ {0}. If this is not the case, the invariant torus is rational or resonant. For
two-dimensional manifolds (and if ω2 �= 0), this can be phrased as a distinction between
ω1/ω2 /∈ Q and ω1/ω2 ∈ Q.

Assumptions on the preserved integrability of equation (2.3). Let H0 ∈ C2(T ∗T2)

denote the Hamiltonian function from equation (2.1) satisfying one of the Assumptions
(A1)–(A3), and U a perturbing potential as in equation (2.3) such that the following
statement concerning the perturbed Hamilton–Jacobi equation (HJE):

αε(c) = Hε(x, c + ∇xuε,c(x)) (2.9)

as well as the preserved integrability of Hε is satisfied.
(P) There exists an energy e > 0 such that for every (n, m) ∈ B0(S⊥

U ) (recall equation
(2.6)) and μi ∈ [0, μ̃i], i ∈ {1, 2}, there exists a sequence (εk)k∈N with εk �= 0 but
εk → 0 such that we have the following.
(i) The resonant torus from Proposition 2.1, characterized by c ∈ H 1(T2, R) with

|ci | >
√

μi c(Vi) (2.10)

in the isoenergy submanifold Te having rotation vector proportional to (n, m),
is preserved under the sequence of deformations (Hεk

)k∈N.
(ii) For c ∈ H 1(T2, R) satisfying equation (2.10), Mather’s α-function and a

solution uε,c : T2 → R of the HJE in equation (2.9) can be expanded to first
order in ε, that is,

uε,c = u(0)
c + εu(1)

c + Oc(ε
2) and αε = α(0) + εα(1) + O(ε2), (2.11)

where u
(0)
c , u

(1)
c ∈ C1,1(T2) and Oc(ε

2) is understood in C1,1-sense. (Having
C1-regularity here would be sufficient for our proofs in §4. However, we chose
C1,1-regularity for the formulation of Assumption (P) to be in agreement
with the statement from Proposition 2.1(b). More precisely, C1,1-regularity
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is kind of a compromise between the true C3-regularity of uc and the
required C1-regularity of uε,c. In addition, C1,1 is the optimal regularity for
subsolutions of equation (2.9), which exist, even if the Hamiltonian Hε is not
integrable (see [12, 46]).)

We comment on the validity of assuming Assumption (P) in Remark D.1 in Appendix D.
Moreover, we shall also discuss an alternative to equation (2.11) in Remark D.3. Finally,
one can easily see from the proofs given in §4 that the condition on a fixed isoenergy
manifold {Hε = e} can be relaxed to having preservation of invariant tori in isoenergy
manifolds characterized by energies e ≥ e0 for some fixed e0 > 0.

Note that the rational invariant tori are the most ‘fragile’ objects of an integrable
system as the KAM theorem [5, 63, 80] predicts that general (non-integrable) perturbations
preserve only ‘sufficiently irrational’ (Diophantine) invariant tori.

2.2. Results. As mentioned above, our main results in Theorems 2.2, 2.3, and 2.4
concern rigidity of certain deformations of integrable metrics (in the sense of Question
(Q2)), which, by means of the Maupertuis principle, correspond to perturbations of the
form in equation (2.3). More precisely, under the assumptions formulated above, our results
show that the perturbed Hamiltonian function in equation (2.3) has to be of the same
general form as the unperturbed Hamiltonian function in equation (2.1). This means that
the potential U is separable, that is, there exist U1, U2 ∈ C2(T2) such that

U(x) = U1(x
1) + U2(x

2).

THEOREM 2.2. Let Hε from equation (2.3) satisfy Assumption (A1) and Assumption (P)
for some energy e > 0. Then U is separable in a sum of two single-valued functions.

Put briefly, in view of of the Maupertuis principle, this means that integrable deforma-
tions in the same conformal class of a flat metric are Liouville metrics. Now, Theorem
2.3 generalizes Theorem 2.2 to Hamiltonian functions which depend on one toral position
variable via a mechanical potential.

THEOREM 2.3. Let Hε from equation (2.3) satisfy Assumption (A2) and Assumption (P)
for some energy e > 0. Then the following hold.
(a) If μ̃2 = μ̃2(C2, deg(2)

U , e) > 0 is small enough (see Lemma 4.2), we have that U is
separable in a sum of two single-valued functions.

(b) If, additionally, V2 is analytic, then U is separable, irrespective of μ̃2 > 0, but only
for μ2 ∈ [0, μ̃2] outside of an exceptional null-set.

Therefore, by means of the Maupertuis principle, we infer that integrable deformations
in the same conformal class of metrics realizing surfaces of revolution (see §3.2) are
Liouville metrics. Finally, Theorem 2.4 generalizes the above results to Hamiltonian
functions, which correspond to arbitrary Liouville metrics by means of the Maupertuis
principle.

THEOREM 2.4. Let Hε from equation (2.3) satisfy Assumption (A3) and Assumption (P)
for some energy e > 0. Then the following hold.
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(a) If μ̃1 = μ̃1(C1, deg(1)
U , deg(2)

U , e) > 0 and μ̃2 = μ̃2(C2, deg(1)
U , deg(2)

U , e) > 0 are
small enough (see Lemma 4.3), we have that U is separable in a sum of two
single-valued functions.

(b) If, additionally, V2 is analytic and μ̃1 = μ̃1(C2, deg(1)
U , deg(2)

U , e) > 0 is small
enough, then U is separable, irrespective of μ̃2 > 0, but only for μ2 ∈ [0, μ̃2] outside
of an exceptional one-dimensional null-set (depending on μ1 ∈ [0, μ̃1]).

(c) If both Vi for i = 1, 2 are analytic, then U is separable, irrespective of μ̃1, μ̃2 > 0,
but only for (μ1, μ2) ∈ [0, μ̃1] × [0, μ̃2] outside of an exceptional two-dimensional
null-set.

Our results formulated in Theorems 2.2, 2.3, and 2.4 can each be viewed as a verification
of a special case of the following conjecture, saying that ‘(nice) integrable deformations of
Liouville metrics are Liouville metrics’.

Conjecture. (Deformational rigidity of Liouville metrics) Let g be a Liouville metric on
T2 and let (gt )t∈[0,1] with g0 = g be a deformation that preserves all rational invariant tori
(except finitely many). Then gt is a Liouville metric for all t ∈ [0, 1].

This conjecture is in strong analogy to the perturbative Birkhoff conjecture for
integrable billiards, which is discussed in §3.4 below.

3. Literature review: integrable metrics on the torus
As pointed out in §1.1, integrability of metrics on one-dimensional manifolds is not
questionable and the first non-trivial examples occur whenever M has dimension two.
Recall from Definition 1.2 that integrability of metrics on two-dimensional manifolds
requires the existence of only one additional first integral (beside the Hamiltonian).

3.1. Topological obstructions. The following theorem due to Kozlov [68, 69] (see [15]
for a strengthened version of this result) categorizes two-dimensional compact manifolds
regarding the possibility to endow them with an integrable metric (see Question (Q1)).

THEOREM 3.1. (Kozlov [68, 69]) Let M be a two-dimensional compact and real-analytic
manifold that is endowed with a real-analytic Riemannian metric g. If the Euler character-
istic χM of M is negative, then there exists no other non-trivial real-analytic first integral.

A result similar to Theorem 3.1 holds for polynomially integrable geodesic flows.

THEOREM 3.2. (Kolokoltsov [64]) There exist no polynomially integrable geodesic flow
on a closed two-dimensional Riemannian manifold M with negative Euler characteris-
tic χM .

Recall that any two-dimensional compact manifold M can be represented either as the
sphere with handles or the sphere with Möbius strips, in the orientable and non-orientable
case, respectively. The Euler characteristic χM can be computed as

χM = 2 − 2g respectively χM = 2 − m,
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where g is the number of handles (the genus) and m is the number of Möbius strips.
To have integrability, the above theorem imposes the condition χM ≥ 0 on M and we
thus know that the number of handles is at most 1 and the number of Möbius strips
is not greater than 2. Therefore, any real-analytic two-dimensional compact Riemannian
manifold (M , g) with real-analytic (or polynomial) additional integral is either the sphere
S2 or the torus T2 (in the orientable case), or the projective plane RP2 or the Klein bottle
K2 (in the non-orientable case). In [29], Bolsinov and Taimanov give a striking example
of a real-analytic Riemannian manifold of dimension three, whose geodesic flow has the
peculiar property, and that it is smoothly (but not analytically) integrable although it has
positive topological entropy [1]. The problem of proving (non-)existence of smoothly (but
not analytically) integrable geodesic flows on compact surfaces of genus g > 1 is widely
open (see [31]).

In this work, we focus on integrable metrics on the torus T2 and refer to works by
Bolsinov, Fomenko, Matveev, Kolokoltsov, and others [27, 48, 64, 78, 81] for studies on
integrable metrics on the sphere, the projective plane, and the Klein bottle. See [24, 31] for
recent surveys on open problems, and questions concerning geodesics and integrability of
finite-dimensional systems in general.

3.2. Linearly and quadratically integrable metrics. The first non-trivial class of inte-
grable metrics on the torus T2 is surfaces of revolution. Consider a two-dimensional
surface M ⊂ R3 given by the equation r = r(z) in standard cylindrical coordinates
(r , ϕ, z) ∈ (0, ∞) × [0, 2π) × R. As local coordinates on M, we take z and ϕ. In the case
where r(z) is L-periodic and we identify 0 and L, then M is diffeomorphic to the torus T2

and the Riemannian metric induced on M by the Euclidean metric on R3 has line element

ds2 = (1 + r ′(z)2)dz2 + r(z)2dϕ2. (3.1)

Since the corresponding Hamiltonian function in equation (1.5) is independent of ϕ, its
associated momentum variable pϕ is an additional first integral and thus the metric in
equation (3.1) is integrable. Note that the additional first integral is linear in the momentum
variables.

As discussed earlier, a Riemannian metric g on T2 is called a Liouville metric, whenever
its line element can be written in the form in equation (1.1) in appropriate global
coordinates (x1, x2), and where f1 and f2 are smooth positive periodic functions. The
corresponding Hamiltonian function in equation (1.5) is given by

H(x1, x2, p1, p2) = p2
1 + p2

1
2(f1(x1) + f2(x2))

and an additional first integral can easily be obtained as

F(x1, x2, p1, p2) = p2
1 − f1(x

1)H(x1, x2, p1, p2).

Therefore, clearly, also Liouville metrics are integrable. Note that the additional first
integral F is quadratic in the momentum variables. It is not hard to see that a surface
of revolution is just a particular case of a Liouville metric, where one can choose, e.g.,
f2 ≡ 0, by employing a simple change of variables.
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The following proposition also provides the converse to the observation that surfaces
of revolution and Liouville metrics admit additional first integrals which are linear and
quadratic in the momenta, respectively. It collects several statements that have been proven
in early works by Dini [43], Darboux [37], and Birkhoff [22], and were further developed
by Babenko and Nekhoroshev [11], Kiyohara [62], Kolokoltsov [64], and others.

PROPOSITION 3.3. (Linear and quadratic first integrals [11, 22, 37, 43, 62, 64])
(a) Let the metric g on T2 possess an additional first integral F that is linear in the

momenta. Then there exist global periodic coordinates (x1, x2) on the torus such
that the line element of g takes the form

ds2 = f (x1)(a(dx1)2 + c dx1 dx2 + b(dx2)2),

where f is some positive periodic function and a, b, c ∈ R such that the quadratic
form a (dx1)2 + c dx1 dx2 + b (dx2)2 is positive definite.

Conversely, any such metric on the torus T2 admits an additional first integral
that is linear in the momentum variables.

In case a linear in momenta F exists locally near a point q ∈ T2, then there exists
local coordinates (x1, x2) near q such that the line element of g reads

ds2 = f (x1)((dx1)2 + (dx2)2).

(b) A metric g on T2 possess an additional first integral F that is quadratic in the
momenta if and only if there exists a finite-sheeted covering π : T̃2 → T2 by another
torus, such that the lifted metric g̃ = π∗g is globally Liouville, that is, there exist
global periodic coordinates (x1, x2) on T̃2 and smooth positive periodic functions
f1 and f2 such that the line element of g̃ takes the form in equation (1.1).

There exist Riemannian metrics g on T2 which are not globally Liouville but have
an additional first integral that is quadratic in the momentum variables.

In case a quadratic in momenta F exists locally near a point q ∈ T2, then there
exist local coordinates (x1, x2) near q such that the line element of g takes the form
in equation (1.1).

This classical result completely characterizes the integrable metrics g on T2 that admit
an additional first integral that is linear or quadratic in the momentum variables. Similar
results hold for Riemannian metrics on general two-dimensional manifolds [27, 48, 64, 81].

3.3. Polynomially integrable metrics of higher degree. In the case of a sphere S2, one
can easily construct examples of metrics which admit an additional first integral that is
cubic respectively quartic in the momentum variables. Using the Maupertuis principle,
these can be obtained from the metrics constructed from Goryachev and Chaplygin [33,
54], and Kovaleskaya [67] in the situation of the dynamics of a rigid body. Therefore, let
h > 1 be large enough (cf. equation (1.8)) and define the metrics g3 and g4 on R3 via their
respective line elements

ds2
3 = h − x1

4
(dx1)2 + (dx2)2 + 4(dx3)2

(x1)2 + (x2)2 + (x3)2/4
, ds2

4 = h − x1

2
(dx1)2 + (dx2)2 + 2(dx3)2

(x1)2 + (x2)2 + (x3)2/2
.
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By restriction of g3 and g4 to the unit sphere S2 ⊂ R3, the resulting metrics admit an
additional first integral that is cubic respectively quartic in the momentum variables. It
was shown by Bolsinov, Fomenko, and Kozlov [25, 28] that these cannot be reduced to first
integrals that are polynomially in the momentum variables of a lower degree, that is, they
are not linearly or quadratically integrable. Since all attempts to construct such examples
for the case of the torus have failed so far, the following folklore conjecture emerged.

Folklore Conjecture. Liouville metrics are the only integrable metrics on T2.

In this general form, there is strong indication for the conjecture being false, as to be
shown below (see Theorem 3.8). We will, however, provide existing results, which indicate
that a certain weaker version of this conjecture, also formulated below, is indeed true.

It was proven by Korn and Lichtenstein [65, 71] that on every point on a
two-dimensional Riemannian manifold (M , g), there exist locally isothermal coordinates,
that is, locally, the line element takes the form

ds2 = λ(x1, x2)((dx1)2 + (dx2)2), (3.2)

where λ is some smooth positive function. In the case of a torus, it can be shown (by
virtue of the uniformization theorem) that there exist global isothermal coordinates (not
necessarily periodic), so the metric g is conformal equivalent to the Euclidean metric geucl.
In particular, assuming that (x1, x2) are just the angular coordinates on the torus T2 and
in the special case of λ being a trigonometric polynomial (this means that the spectrum Sλ

defined in equation (2.4) is bounded), we have the following result due to Denisova and
Kozlov.

THEOREM 3.4. (Denisova and Kozlov [39]) Let λ from equation (3.2) be a trigonometric
polynomial and assume that the geodesic flow on T2 is polynomially integrable. Then there
exists an additional polynomial first integral of degree at most two.

Note that by Weierstrass’s theorem, any conformal factor λ can be approximated as
closely as required by a trigonometric polynomial. However, in the case of a general
conformal factor λ, there is the following theorem, again due to Denisova and Kozlov [40].

THEOREM 3.5. (Denisova and Kozlov [40]) Assume that the geodesic flow on (T2, g) is
polynomially integrable with first integral F of degree n such that:
(a) if n is even, then F is an even function of p1 and p2;
(b) if n is odd, then F is an even function of p1 (or p2) and an odd function of p2 (or p1).
Then there exists an polynomial first integral of degree at most two.

In the following theorem, we collect several results from Bialy [13], Denisova, Kozlov
[41] and Treshchev [42], Agapov and Aleksandrov [2], and Mironov [79].

THEOREM 3.6. Let H be a natural mechanical Hamiltonian (see equation (1.7)) on the
torus T2 equipped with the flat metric geucl. Assume that H is polynomially integrable of
degree n. If n = 3, 4, there exists another polynomial first integral of degree at most two.
Whenever H is a real-analytic Hamiltonian, this is also true for n = 5.
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Kozlov and Treshchev [70] considered the problem from yet another point of view. They
investigated the case of a mechanical Hamiltonian

H = 1
2

∑
ij

aijpipj + V (x1, . . . , xn),

where A = (aij )ij is a positive definite matrix and V is a trigonometric polynomial
of (x1, . . . , xn) ∈ Tn. On the one hand, they show that there exist n polynomial first
integrals if and only if the spectrum SV of V is contained in m ≤ n mutually orthogonal
lines meeting at the origin. On the other hand, they showed that whenever there exist
n polynomial integrals with independent forms of highest degree, then there exist n
independent involutive polynomial first integrals of degree at most two. In the case where
aij = δi,j (which can be achieved by diagonalization and scaling), Combot [34] improved
the first result from the assumption of polynomial integrability to rational integrability, that
is, the additional first integrals being rational functions of pi and ei2πxi

. More recently [57,
83, 84], the problem was rephrased in the language of Killing tensor fields on T2, where
the order of an additional (polynomial) first integral is replaced by the rank of a Killing
tensor field.

The results of Theorems 3.4, 3.5, and 3.6 support the validity of the following weaker
version of the folklore conjecture formulated by Denisova and Kozlov [39].

Conjecture. [39] If g is a metric on T2 that is polynomially integrable, then there exists
an additional polynomial first integral of degree at most two.

By Proposition 3.3, this means that polynomially integrable metrics on T2 are Liouville
metrics. However, beside the partial results given above, a proof of this conjecture is still
open. The numerous attempts on proving it used methods of complex analysis [11, 22] and
the theory of partial differential equations (PDEs) [17, 19]. More precisely, it is shown by
Kolokoltsov [64] that there exists an additional first integral quadratic in the momenta if
and only if there exists a holomorphic function R(z) = R1(z) + iR2(z), with real valued
R1 and R2, and z = x1 + ix2, which solves

R2(∂
2
x2λ − ∂2

x1λ) + R1(∂x1∂x2λ) − 3(∂x1R2)(∂x1λ) + 3(∂x2R2)(∂x2λ) + 2(∂2
x2R2)λ = 0,

(3.3)

where λ denotes the conformal factor from equation (3.2). Note that the second term in
equation (3.3) disappears whenever λ is the conformal factor of a Liouville metric. In this
situation, the linear PDE in equation (3.3) always has a holomorphic solution R = R1 +
iR2. The existence of first integrals of higher degree turns out to be equivalent to delicate
questions about nonlinear PDEs of hydrodynamic type [17–19]. The PDE approach has
also successfully been applied to generate new examples of integrable magnetic geodesic
flows as analytic deformations of Liouville metrics on T2 without magnetic field (see [3]).
In fact, the examples from [3] disprove the folklore conjecture when understood in the
larger class of magnetic geodesic flows.

However, even for the original folklore conjecture stated above, there is a result due
to Corsi and Kaloshin [35], which indicates it being false in the following (considerably
weaker) sense.
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THEOREM 3.8. (Corsi and Kaloshin [35]) There exists a real-analytic mechanical Hamil-
tonian

Hε(x
1, x2, p1, p2) = p2

1 + p2
2

2
+ U(x1, x2; ε)

with a non-separable potential U and an analytic change of variables � such that
Hε ◦ � = (p2

1 + p2
2)/2 on the energy surface {Hε = 1/2} and p ∈ P , where P denotes

a certain cone in the action space. (The function U is called non-separable whenever it
cannot be written as a sum of two single-valued functions.)

If one assumes that the whole phase space T ∗T2 is foliated by two-dimensional invariant
Liouville tori (which is often called C0-integrability or complete integrability), then it
follows from Hopf conjecture [30, 58] that the associated metric must be flat. This notion
of integrability is thus too strong for a meaningful characterization of integrable metrics
on T2. (Similar results have been shown for geodesic flows of more general Finsler metrics
on T2 preserving a sufficiently regular foliation of the phase space [52, 53].)

3.4. Analogy to integrable billiards. The fundamental Question (Q2) of characterizing
integrable metrics on the torus T2 can be thought of as an analogue of identifying the class
of integrable billiards [61]. For billiards, integrability is understood in a similar way as for
the geodesic flow (see Definition 1.2). More precisely, integrability is characterized either
through the existence of an integral of motion (near the boundary of the billiard table) for
the so-called billiard ball map, or the existence of a foliation of the phase space (globally or
near the boundary), consisting of invariant curves. The classical Birkhoff conjecture [23,
82] states that the boundary of a strictly convex integrable billiard table is necessarily an
ellipse. This corresponds to the folklore conjecture formulated above. Remarkably, while
the Birkhoff conjecture is believed to be true, and there is strong evidence that this indeed
the case [10, 20, 49, 60] (on the opposite side, Treshev constructed a non-elliptic billiard
table which is formally integrable close to a two-periodic orbit [88–90]. This formal power
series has recently been shown to be of Gervey class of order σ > 9/4 [93]), the folklore
conjecture in its general form was shown to be false by Theorem 3.8.

However, recall that if one assumes C0-integrability of a metric on T2, the metric is
actually flat [30, 58]. This corresponds to the following result from Bialy in the case of
billiards.

THEOREM 3.9. (Bialy [14]) If the phase space of the billiard ball map is completely
foliated by continuous invariant curves which are all not null-homotopic, then the
boundary of the billiard table is a circle.

Following a similar strategy leading to Theorem 3.9, Bialy and Mironov [21] proved the
Birkhoff conjecture for centrally symmetric billiards, assuming only local C0-integrability,
that is, the foliation of a suitable open proper subset of the phase space. In addition to this,
the weakened version of the folklore conjecture (polynomial integrals can be reduced to
integrals of degree at most two) corresponds to the so-called algebraic Birkhoff conjecture,
which has recently been proven [20, 49].
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The main results of this paper in Theorems 2.2, 2.3, and 2.4 prove special cases of our
conjecture that integrable deformations of Liouville metrics which preserve all (but finitely
many) rational invariant tori are again Liouville metrics. This is related to the following
conjecture in the case of billiards.

Perturbative Birkhoff Conjecture. [61] A smooth strictly convex domain that is suffi-
ciently close to an ellipse and whose corresponding billiard ball map is integrable is
necessarily an ellipse.

A first result in this direction was obtained by Delshams and Ramírez-Ros [38]. More
recently, Avila, De Simoi, and Kaloshin [10] proved the conjecture for domains which
are sufficiently close to a circle. The complete proof for domains sufficiently close to
an ellipse of any eccentricity is given by Kaloshin and Sorrentino in [60]. Both works
require the preservation of rational caustics (a curve � is a caustic for the billiard in the
domain � if every time a trajectory is tangent to it, then it remains tangent after every
reflection according to the billiard ball map), which can be thought of as an analogue for
the preservation of rational invariant tori as a fundamental assumption of our main results
from §2. The result in [10] was later extended by Huang, Kaloshin, and Sorrentino [59] to
the case of local integrability close to the boundary and finally significantly improved by
Koval [66].

Finally, as shown by Vedyushkina and Fomenko [92], linearly and quadratically inte-
grable geodesic flows on orientable two-dimensional Riemannian manifolds are Liouville
equivalent to topological billiards, glued from planar billiards bounded by concentric
circles and arcs of confocal quadrics, respectively.

4. Proofs
In this section, we prove our main result as formulated in Theorems 2.2, 2.3, and 2.4. All
proofs will, in general, follow the same three-step strategy.

(i) Transform the unperturbed system H0 in action-angle coordinates.
(ii) Derive a first-order harmonic equation (that is, concerning the Fourier coefficients)

for the perturbation by Assumption (P).
(iii) Annihilate sufficiently many Fourier coefficients of the perturbing potential by

proving a certain full-rank condition for a naturally associated linear system for
each of the three theorems separately (cf. Lemmas 4.1, 4.2, and 4.3). Finally, for
analytic potentials Vi , the extensions of our results beyond the perturbative regime
are proven by exploiting the analytic dependence of the linear system on μi (see
Appendix C).

4.1. Proof of Theorem 2.2. The argument is divided into three steps.
Step (i). Fix an energy e > 0. Since the Hamiltonian is already in action-angle

coordinates, we simply change notation and write (xi , pi) = (θ i , Ii) for i = 1, 2 as well as
θ = (θ1, θ2) and I = (I1, I2), such that the perturbed Hamiltonian function Hε takes the
form

Hε(θ , I ) = I 2
1
2

+ I 2
2
2

+ εU(θ).
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Step (ii). By Assumption (P), for any (n, m) ∈ B0(S⊥
U ) (recall equation (2.6)), we

can find (in the isoenergy manifold Teε with energy e = eε and ε = εk for some k ∈ N)
a rational invariant invariant Liouville torus with rotation vector ω = (ω1, ω2) which
satisfies

ω1

ω2
= n

m
∈ Q. (4.1)

Moreover, we fix c ∈ H 1(T2, R) ∼= R2 to be given by c = (ω1, ω2). We make this choice
to cancel the average over a trajectory in equation (4.3) of the first term on the right-hand
side of equation (4.2) (cf. also equations (4.6)–(4.8) below).

Using Assumption (P) again, we can expand the Hamilton–Jacobi equation in equation
(2.9) as

αε(c) = Hε(θ , c + ∇uε,c(θ))

= |∂θ1uε,c(θ) + c1|2
2

+ |∂θ2uε,c(θ) + c2|2
2

+ εU(θ)

= c2
1
2

+ c2
2
2

+ 〈c, ∇uε,c(θ)〉 + εU(θ) + (∂θ1uε,c(θ))2

2
+ (∂θ2uε,c(θ))2

2
,

and it holds that

uε,c = u(0)
c + εu(1)

c + Oc(ε
2)

with u
(0)
c = u0,c. Since H0(θ , I ) is integrable (and written in action-angle coordinates),

one can choose u0,c ≡ 0. By equation (D.6) in Proposition D.2 (see also [50]), we have
α(1)(c) = [U ]0, where

[U ]0 =
∫
T2

U(x1, x2) dx1 ∧ dx2.

Since the sequence (εk)k∈N from Assumption (P) converges to zero, we compare coeffi-
cients and establish the first-order equation

[U ]0 = α(1)(c) = 〈c, ∇u(1)
c (θ)〉 + U(θ). (4.2)

Averaging equation (4.2) over the trajectory θ(t) = θ0 + ωt ∈ T2, with initial position
θ0 ∈ T2 and where ω = c is chosen according to equation (4.1), such that the period Tω

satisfies Tω · ω = (n, m), we get

[U ]0 = 1
Tω

∫ Tω

0

d

dt
u(1)

ε,c(θ(t)) dt + 1
Tω

∫ Tω

0
U(θ(t)) dt . (4.3)

The first integral vanishes since θ(0) = θ(Tω) such that we are left with∫ 1

0
(U(θ1

0 + nt , θ2
0 + mt) − [U ]0) dt = 0 (4.4)

for all θ0 = (θ1
0 , θ2

0 ) ∈ T2, which easily follows from equation (4.3) after a change of
variables.

Before continuing with the third and final step, we have two important observations.
First, by replacing U → U − [U ]0, we can assume without loss of generality that
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[U ]0 = 0. Second, we define the separable part, Usep, of U as

Usep(x
1, x2) :=

∑
(k1,k2)∈SU \SU ,0

Uk1,k2e
i2πk1x

1
ei2πk2x

2
(4.5)

(recall the definition of the spectrum and the non-singular spectrum in equations (2.4) and
(2.5)). Then, after a simple computation, we find that∫ 1

0
Usep(θ

1
0 + nt , θ2

0 + mt) dt = [Usep]0 for all (θ1
0 , θ2

0 ) ∈ T2

holds generally (that is, independent of the first-order relation in equation (4.2)) by means
of equation (D.6) in Proposition D.2 (see also Remark D.1). We can thus split off the
separable part and assume that SU = SU ,0 in the following. Hence, the third step consists
of showing that SU = SU ,0 = ∅.

Step (iii). The goal of this final step is to establish the following lemma.

LEMMA 4.1. Let (n, m) ∈ B0(S⊥
U ) as in equation (4.1) from Step (ii). Then Ujm,−jn = 0

for all j ∈ Z \ {0}.

Since (n, m) ∈ B0(S⊥
U ) were arbitrary, this proves that

SU ⊂ ({0} × Z) ∪ (Z × {0}),
or equivalently SU ,0 = ∅ and we have shown Theorem 2.2. It remains to prove Lemma 4.1.

Proof of Lemma 4.1. Starting from equation (4.4), we perform a Fourier decomposition to
infer∑

k1,k2 �=0

[
Uk1,k2

∫ 1

0
ei2πk1nt ei2πk2mt dt

]
ei2πk1θ

1
0 ei2πk1θ

2
0 = 0 for all (θ1

0 , θ2
0 ) ∈ T2,

which implies that
Uk1,k2 · δk1n+k2m, 0 = 0.

Applying Lemma 4.1 for every (n, m) ∈ B0(S⊥
U ), we find that SU ,0 = ∅, which finishes

the proof of Theorem 2.2.

4.2. Proof of Theorem 2.3. For notational simplicity, we write μ ≡ μ2 > 0 and V ≡
V2 ∈ C2(T).

Step (i). We fix an energy e > 0 and consider the region of the phase space, where the
subsystem in the second pair of coordinates is rotating, that is,

p2
2

2
− μV (x2) = e(2) > 0

and for p2
1/2 = e(1) > 0, we have e = e(1) + e(2). In a neighborhood of each of the two

Liouville tori characterized by H0 = e and p2
1/2 = e(1), we can find a change of variables

(x2, p2) = �
(2)
μ (θ2, I2) (and we denote (x1, p1) = (θ1, I1)) such that the Hamiltonian
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function H0 gets transformed in action-angle coordinates, that is,

H0(θ
1, I1, �(2)

μ (θ2, I2)) = I 2
1
2

+ h(2)
μ (I2)

for some smooth function h
(2)
μ agreeing with Mather’s α-function for the one-dimensional

subsystem described by the Hamiltonian p2
2/2 − μV (x2) (see Appendix D). The change

in the order of the four arguments of H0 should not lead to confusion. Now, the perturbed
Hamiltonian takes the form

Hε(θ
1, I1, �(2)

μ (θ2, I2)) = I 2
1
2

+ h(2)
μ (I2) + εU(θ1, x2(θ2, I2, μ)),

where we write x2
μ(θ2, I2) for the first component of �

(2)
μ (θ2, I2).

Step (ii). Assume without loss of generality that the 2-degree deg(2)
U of U is at least

1 (recall equation (2.7)), as otherwise, we had U(x) = U1(x
1) and Theorem 2.3 was

proven. Then, for any (n, m) ∈ B0(S⊥
U ), in particular with |n| ≤ deg(2)

U , we can find (in the
isoenergy manifold Teε with energy e = eε and ε = εk for some k ∈ N) a rational invariant
Liouville torus with rotation vector ω = (ω1, ω2), which satisfies

ω1

ω2
= n

m
∈ Q and ω = (c1, ∇h(2)

μ (c2)) (4.6)

for some c ∈ H 1(T2, R) ∼= R2 with c1 = ω1 (as around equation (4.1)) and |c2| > γ +√
μc(V ) for some γ = γ (e, deg(2)

U ) > 0, which we fix now. This new parameter γ

quantifies a safe distance (depending on the total energy e > 0 and the degree of the
trigonometric polynomial) to the region, opposite to where (i) the change of variables
�

(2)
μ has bounded derivative (cf. equation (4.7)) and (ii) the function h

(2)
μ is bounded from

below (cf. equation (4.12)). In §4.3, we will have two such parameters, γ1, γ2, for both
coordinates directions which get transformed by some �.

By Assumption (P), we have

uε,c = u(0)
c + εu(1)

c + Oc(ε
2)

with u
(0)
c = u0,c and since H0(θ , I ) is integrable (and written in action-angle coordinates),

one can choose u0,c ≡ 0. Therefore, by Assumption (P) again, we expand the Hamilton
Jacobi equation in equation (2.9) as

αε(c) = Hε(θ , c + ∇uε,c(θ))

= |∂θ1uε,c(θ) + c1|2
2

+ h(2)
μ (∂θ2uε,c(θ) + c2) + εU(θ1, x2

μ(θ2, ∂θ2uε,c(θ) + c2))

= c2
1
2

+ h(2)
μ (c2) + ε〈(c1, ∇h(2)

μ (c2)), ∇u(1)
ε,c(θ)〉 + εU(θ1, x2

μ(θ2, c2))

+ O(‖(∇2h(2)
μ )|{|c2|>γ+√

μc(V )}‖C0ε
2) + O(‖(∂I2�

(2)
μ )|{|c2|>γ+√

μc(V )}‖C0ε
2).

(4.7)

Since |c2| > γ + √
μc(V ), both error terms are of the order Oγ (ε2).

Analogously to the proof of Theorem 2.2, we thus obtain the first-order equation

[U ]0 = 〈(c1, ∇h(2)
μ (c2)), ∇u(1)

ε,c(θ)〉 + U(θ1, x2
μ(θ2, c2)), (4.8)
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where the constant α(1) ≡ [U ]0 is given in equation (D.6) in Proposition D.2 (see also
[50]). Just as in the proof of Theorem 2.2, after averaging equation (4.8) over the trajectory
θ(t) = θ0 + ωt ∈ T2, with initial position θ0 ∈ T2 and where ω is chosen according to
equation (4.6), such that the period Tω satisfies Tω · ω = (n, m), we find∫ 1

0
(U(θ1

0 + nt , x2
μ(θ2

0 + mt , c2)) − [U ]0) dt = 0 (4.9)

for all θ0 = (θ1
0 , θ2

0 ) ∈ T2.
Finally, analogously to §4.1, we may assume without loss of generality [U ]0 = 0 and

observe that∫ 1

0
Usep(θ

1
0 + nt , x2

μ(θ2
0 + mt , c2)) dt = [Usep]0 for all (θ1

0 , θ2
0 ) ∈ T2

holds generally (that is, independent of the first-order relation in equation (4.8)) by a simple
calculation based on equation (D.6) in Proposition D.2 (see also Remark D.1). We can thus
split off the separable part Usep of U defined in equation (4.5) and assume that SU = SU ,0

in the following. Hence, the third step consists of showing that SU = SU ,0 = ∅.
Step (iii). We begin this final step with performing a Fourier decomposition in equation

(4.9) such that we obtain

∑
k1 �=0

[ ∑
0�=|k2|≤deg(2)

U

Uk1,k2

∫ 1

0
ei2πk1nt ei2πk2x

2
μ(θ2

0 +mt ,c2) dt

]
ei2πk1θ

1
0 = 0

for all (θ1
0 , θ2

0 ) ∈ T2,

which implies that [· · · ] = 0 for every k1 ∈ Z \ {0} and θ2
0 ∈ T.

After having eliminated θ1
0 ∈ T, we now fix some k1 ∈ Z \ {0} and consider the family

of functions (f
(k1,μ)
k2

)0�=|k2|≤deg(2)
U

in the Hilbert space L2(T), where

f
(k1,μ)
k2

: T → C, θ2
0 �→

∑
(n,m)∈B0(S⊥

U )

∃0 �=|k̃2|≤deg(2)
U :k1n+k̃2m=0

∫ 1

0
ei2πk1nt ei2πk2x

2
μ(θ2

0 +mt ,c2) dt . (4.10)

Note that the sum in equation (4.10) is finite by Assumption (A2) (more precisely, it ranges
over at most 2 · deg(2)

U elements from B0(S⊥
U )) and we suppressed the dependence of

|c2| > γ + √
μc(V ) on (n, m) ∈ B0(S⊥

U ) from the notation (recall equation (4.6)).
In this way, the problem of proving Theorem 2.3, that is, justifying SU ,0 = ∅, reduces

to a question about linear independence for the family of functions in equation (4.10) in the
Hilbert space L2(T). Recall that the family (f

(k1,μ)
k2

)0�=|k2|≤deg(2)
U

being linearly independent
is equivalent to the Gram matrix

G(k1,μ) = (G
(k1,μ)

k2,k′
2

)0�=|k2|,|k′
2|≤deg(2)

U

with G
(k1,μ)

k2,k′
2

:= 〈f (k1,μ)
k2

, f
(k1,μ)

k′
2

〉L2(T) (4.11)

being of full rank, where 〈g, h〉L2(T) denotes the standard inner product of g, h ∈ L2(T).
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LEMMA 4.2. There exists μ̃ = μ̃(C2, deg(2)
U , e) > 0 such that for all μ ∈ [0, μ̃], the Gram

matrix G(k1,μ) from equation (4.11) is of full rank.

Proof. Using the version of Lemma B.1 for the inverse function, we find that

‖ei2πk2x
2
μ( ·,c2) − ei2πk2 ·‖C0 = O

(
deg(2)

U

μ‖V ‖C0

hμ(γ + √
μc(V ))

)
=: O(μ) (4.12)

uniformly in |k2| ≤ deg(2)
U and (n, m) ∈ B0(S⊥

U ).
With a slight abuse of notation for the error term, the elements G

(k1,μ)

k2,k′
2

of the Gram
matrix can thus be computed as∫ 1

0
dθ2

0

([ ∑
(n,m)

∫ 1

0
dt e−i2πk1nt (e−i2πk2mt + O(μ))

]
e−i2πk2θ

2
0

× ei2πk′
2θ

2
0

[ ∑
(n′,m′)

∫ 1

0
dt ′ei2πk1n

′t ′(ei2πk′
2m

′t ′ + O(μ))

])
,

where the summations over (n, m) and (n′, m′) are understood as in equation (4.10). Using
that for every (k1, k2) ∈ SU ,0, there exist exactly two elements from B0(S⊥

U ) (differing by
a sign), we can evaluate both brackets [· · · ] being equal to 2 + O(deg(2)

U μ).
From this, we conclude that

G
(k1,μ)

k2,k′
2

=
∫ 1

0
dθ2

0 [2 + O(deg(2)
U

μ)]ei2π(k′
2−k2)θ

2
0 [2 + O(deg(2)

U
μ)] = 4δk2,k′

2
+ O(deg(2)

U
μ).

Therefore, going back to equation (4.12), we infer the existence of μ̃ = μ̃(C2, deg(2)
U , e) >

0 such that for all μ ∈ [0, μ̃], the Gram matrix G(k1,μ) from equation (4.11) is of full
rank.

Since k1 ∈ Z \ {0} was arbitrary and Lemma 4.2 is independent of k1, this concludes
the proof of Theorem 2.3(a).

For part (b), we note that ei2πk2x
2
μ(θ2

0 +mt ,c2) from equation (4.10) depends analytically
on μ (see Appendix C). Therefore, the function μ �→ G(k1,μ) mapping to the Gram matrix
in equation (4.11), for every fixed k1 ∈ Z \ {0}, is also analytic. (Using joint continuity of
(u, μ) �→ ei2πk2x

2
μ(u,c2), it is an elementary exercise to show that the integrals over t and θ2

0
do not disturb the analyticity in μ.) This in turn implies that det(G(k1,μ)) is analytic in μ

and thus, since det(G(k1,μ)) �= 0 for μ ∈ (0, μ̃) (see Lemma 4.2), we find that the zero set

E (k1)
0 := {μ ∈ (0, ∞) | det(G(k1,μ)) = 0} ⊂ (μ̃, ∞)

of μ �→ det(G(k1,μ)) is at most countable (finite in every compact subset), that is, in
particular, a set of zero measure. Finally, setting

E0 :=
⋃

k1∈Z\{0}
E (k1)

0 ,

we constructed the exceptional null set, for which the conclusion SU ,0 = ∅ is not valid.
This finishes the proof of Theorem 2.3(b).
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4.3. Proof of Theorem 2.4. As above, the argument is divided into three steps.
Step (i). We fix an energy e > 0 and consider the region of the phase space, where both

one-dimensional subsystems are rotating, that is,

p2
1

2
− μ1V1(x

1) = e(1) > 0 and
p2

2
2

− μ2V2(x
2) = e(2) > 0,

such that we have e = e(1) + e(2). In a neighborhood of each of the two Liouville tori
characterized by H0 = e and (p2

1/2) − μ1V1(x
1) = e(1), we can find two changes of

variables (x1, p1) = �
(1)
μ1 (θ1, I1) and (x2, p2) = �

(2)
μ2 (θ2, I2) such that the Hamiltonian

function H0 gets transformed in action-angle coordinates, that is,

H0(�
(1)
μ1

(θ1, I1), �(2)
μ2

(θ2, I2)) = h(1)
μ1

(I1) + h(2)
μ2

(I2)

for some smooth functions h
(1)
μ1 and h

(2)
μ2 , which agree with Mather’s α-functions for the

one-dimensional subsystem described by the Hamiltonians (p2
1/2) − μ1V (x1), respec-

tively (p2
2/2) − μ2V (x2) (see Appendix D). As in the proof of Theorem 2.3, the change

in the order of the four arguments of H0 should not lead to confusion.
Now, the perturbed Hamiltonian takes the form

Hε(�
(1)
μ1

(θ1, I1), �(2)
μ2

(θ2, I2)) = h(1)
μ1

(I1) + h(2)
μ2

(I2) + εU(x1
μ1

(θ1, I1), x2
μ2

(θ2, I2)),

where we write xi
μi

(θ i , Ii) for the first component of �
(i)
μi

(θ i , Ii), i ∈ {1, 2}.
Step (ii). Analogously to the proof of Theorem 2.3, we assume without loss of generality

that the 1- and 2-degree deg(1)
U and deg(2)

U of U are at least 1 (recall equation (2.8)), as
otherwise, we had U(x) = U2(x

2) or U(x) = U1(x
1) and Theorem 2.4 was proven. Then,

for any (n, m) ∈ B0(S⊥
U ), in particular with |m| ≤ deg(1)

U and |n| ≤ deg(2)
U , we can find

(in the isoenergy manifold Teε with energy e = eε and ε = εk for some k ∈ N) a rational
invariant Liouville torus with rotation vector ω = (ω1, ω2) which satisfies

ω1

ω2
= n

m
∈ Q and ω = (∇h(1)

μ1
(c1), ∇h(2)

μ2
(c2)) (4.13)

for some c ∈ H 1(T2, R) ∼= R2 with |c1| > γ1 + √
μ1c(V1) and |c2| > γ2 + √

μ2c(V2) for
some γ1 = γ1(e, deg(1)

U ) > 0, respectively γ2 = γ2(e, deg(2)
U ) > 0, which we fix now (see

the paragraph below equation (4.6) for a discussion of the γ parameters).
By Assumption (P), we have

uε,c = u(0)
c + εu(1)

c + Oc(ε
2)

with u
(0)
c = u0,c and since H0(θ , I ) is integrable (and written in action-angle coordinates),

one can choose u0,c ≡ 0. Therefore, by Assumption (P) again, we expand the Hamilton
Jacobi in equation (2.9) as

αε(c) = Hε(θ , c + ∇uε,c(θ))

= h(1)
μ1

(∂θ1uε,c(θ) + c1) + h(2)
μ2

(∂θ2uε,c(θ) + c2)

+ εU(x1
μ1

(θ1, ∂θ1uε,c(θ) + c1), x2
μ2

(θ2, ∂θ2uε,c(θ) + c2))
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=
2∑

i=1

h(i)
μi

(ci)+ε〈(∇h(1)
μ1

(c1), ∇h(2)
μ2

(c2)), ∇u(1)
ε,c(θ)〉 + εU(x1

μ1
(θ1, c1), x2

μ2
(θ2, c2))

+ O
( 2∑

i=1

(‖(∇2h(i)
μi

)|{|ci |>γi+√
μic(Vi )}‖C0 + ‖(∂Ii

�(i)
μi

)|{|ci |>γi+√
μic(Vi )}‖C0)ε

2
)

.

Since |ci | > γi + √
μic(Vi), the error term is of order Oγi

(ε2).
Analogously to the proofs of Theorems 2.2 and 2.3, we thus obtain the first-order

equation

[U ]0 = 〈(∇h(1)
μ1

(c1), ∇h(2)
μ2

(c2)), ∇u(1)
ε,c(θ)〉 + U(x1

μ1
(θ1, c1), x2

μ2
(θ2, c2)), (4.14)

where the constant α(1) ≡ [U ]0 is again given by equation (D.6) in Proposition D.2 (see
also [50]). Just as in the proof of Theorems 2.2 and 2.3, after averaging equation (4.14) over
the trajectory θ(t) = θ0 + ωt ∈ T2, with initial position θ0 ∈ T2 and where ω is chosen
according to equation (4.13) such that the period Tω satisfies Tω · ω = (n, m),∫ 1

0
(U(x1

μ1
(θ1

0 + nt , c1), x2
μ2

(θ2
0 + mt , c2)) − [U ]0) dt = 0 (4.15)

for all θ0 = (θ1
0 , θ2

0 ) ∈ T2.
Finally, analogously to §§4.1 and 4.2, we may assume without loss of generality

[U ]0 = 0 and observe that∫ 1

0
Usep(x

1
μ1

(θ1
0 + nt , c1), x2

μ2
(θ2

0 + mt , c2)) dt = [Usep]0 for all (θ1
0 , θ2

0 ) ∈ T2

holds generally (that is, independent of the first-order relation in equation (4.14)) by a
simple calculation based on equation (D.6) in Proposition D.2 (see also Remark D.1). We
can thus split off the separable part Usep of U defined in equation (4.5) and assume that
SU = SU ,0 in the following. Hence, the third step consists of showing that SU = SU ,0 = ∅.

Step (iii). We begin this final step with performing a Fourier decomposition in equation
(4.15), such that we obtain∑
0�=|k1|≤deg(1)

U

0�=|k2|≤deg(2)
U

Uk1,k2

∫ 1

0
e
i2πk1x

1
μ1

(θ1
0 +nt ,c1)e

i2πk2x
2
μ2

(θ2
0 +mt ,c2) dt = 0 for all (θ1

0 , θ2
0 ) ∈ T2.

Analogously to the proof of Theorem 2.3, we now consider the family of functions

(f
(μ1,μ2)
k1,k2

)0�=|k1|≤deg(1)
U ,0�=|k2|≤deg(2)

U

in the Hilbert space L2(T2), where

f
(μ1,μ2)
k1,k2

: T2 → C, (θ1
0 , θ2

0 ) �→
∑

(n,m)∈B0(S⊥
U )

∫ 1

0
e
i2πk1x

1
μ1

(θ1
0 +nt ,c1)ei2πk2x

2
μ(θ2

0 +mt ,c2) dt .

(4.16)
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Note that the sum in equation (4.16) is finite by Assumption (A3) (more precisely, it
ranges over the at most (2 deg(1)

U ) · (2 deg(2)
U ) elements from B0(S⊥

U )) and we suppressed
the dependence of |ci | > γi + √

μic(Vi) on (n, m) ∈ B0(S⊥
U ) from the notation (recall

equation (4.13)).
In this way, the problem of proving Theorem 2.4, that is, justifying SU ,0 = ∅, reduces

to a question about linear independence for the family of functions in equation (4.16) in
the Hilbert space L2(T2). Recall that the family (f

(μ)
k1,k2

)(k1,k2) being linearly independent
is equivalent to the Gram matrix G(μ) with entries

G
(μ1,μ2)

(k1,k2),(k′
1,k′

2)
:= 〈f (μ1,μ2)

k1,k2
, f

(μ1,μ2)

k′
1,k′

2
〉L2(T2) for 0 �= |ki |, |k′

i | ≤ deg(i)
U , i ∈ {1, 2},

(4.17)

being of full rank, where 〈g, h〉L2(T2) denotes the standard inner product of g, h ∈ L2(T2).

LEMMA 4.3. There exist μ̃i = μ̃(Ci , deg(1)
U , deg(2)

U , e) > 0 such that for all μi ∈ [0, μ̃i],
i ∈ {1, 2}, the Gram matrix G(μ1,μ2) from equation (4.17) is of full rank.

Proof. Using the version of Lemma B.1 for the inverse function, we find that

‖ei2πkix
i
μi

( ·,ci ) − ei2πki ·‖C0 = O
(

deg(i)
U

μi‖Vi‖C0

h
(i)
μi

(γi + √
μic(Vi))

)
=: O(μi) (4.18)

uniformly in |ki | ≤ deg(i)
U and (n, m) ∈ B0(S⊥

U ).
Similarly to Lemma 4.2, with a slight abuse of notation for the error term, the elements

G
(μ1,μ2)

(k1,k2),(k′
1,k′

32)
of the Gram matrix can thus be computed as

∫ 1

0
dθ1

0

∫ 1

0
dθ2

0

([ ∑
(n,m)

∫ 1

0
dt (e−i2πk1nt + O(μ1))(e

−i2πk2mt + O(μ2))

]
e−i2πk1θ1

0 e−i2πk2θ2
0

× ei2πk′
1θ1

0 ei2πk′
2θ2

0

[ ∑
(n′ ,m′)

∫ 1

0
dt ′(ei2πk′

1n′t ′ + O(μ1))(e
i2πk′

2m′t ′ + O(μ2))

])
,

where the summations over (n, m) and (n′, m′) are understood as in equation (4.16). Using
that for every (k1, k2) ∈ SU ,0, there exist exactly two elements from B0(S⊥

U ) (differing by
a sign), we can evaluate both brackets [· · · ] being given by

2 + O(deg(1)
U deg(2)

U μ1) + O(deg(1)
U deg(2)

U μ2) =: 2 + O(deg(1)
U deg(2)

U (μ1 + μ2)),

after absorption of the second-order error in the first-order ones.
From this, we conclude that

G
(μ1,μ2)

(k1,k2),(k′
1,k′

2)
=
∫ 1

0
dθ1

0

∫ 1

0
dθ2

0 ([2 + O(deg(1)
U deg(2)

U (μ1 + μ2))]ei2π(k′
1−k1)θ

1
0

× ei2π(k′
2−k2)θ

2
0 [2 + O(deg(1)

U deg(2)
U (μ1 + μ2))])

= 4δk1,k′
1
δk2,k′

2
+ O(deg(1)

U deg(2)
U (μ1 + μ2)).
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Therefore, going back to equation (4.18), we infer the existence of μ̃i = μ̃(Ci , deg(1)
U ,

deg(2)
U , e) > 0, i ∈ {1, 2}, such that for all μi ∈ [0, μ̃i], the Gram matrix G(μ1,μ2) from

equation (4.17) is of full rank.

This finishes the proof of Theorem 2.4(a). For part (b), similarly to the proof of Theorem
2.3(b), we observe that for every fixed μ1 ∈ [0, μ̃1], the function μ2 �→ det(G(μ1,μ2))

is analytic. Since det(G(μ1,μ2)) �= 0 for μ2 ∈ (0, μ̃2) (see Lemma 4.3), we find that the
zero set

E (μ1)
0 := {μ2 ∈ (0, ∞) | det(G(μ1,μ2)) = 0} ⊂ (μ̃2, ∞)

of μ2 �→ det(G(μ1,μ2)) is at most countable (finite in every compact subset), that is, in
particular, a (one-dimensional) set of zero measure.

Finally, for part (c), we note that, similarly to the proof of Theorem 2.3(b) and by
means of Hartogs’s theorem on separate analyticity [56] (a separately analytic function
is jointly analytic), the function (μ1, μ2) �→ det(G(μ1,μ2)) is (jointly) analytic. Since
det(G(μ1,μ2)) �= 0 for (μ1, μ2) ∈ (0, μ̃1) × (0, μ̃2) (see Lemma 4.3), we find that the
zero set

E0 := {(μ1, μ2) ∈ (0, ∞) × (0, ∞) | det(G(μ1,μ2)) = 0} ⊂ (μ̃1, ∞) × (μ̃2, ∞)

of (μ1, μ2) �→ det(G(μ1,μ2)) is a (two-dimensional) set of zero measure.
This concludes the proof of Theorem 2.4(c).

5. Concluding remarks and outlook
We have shown that integrable deformations of Liouville metrics on T2 are Liouville
metrics—at least when more restrictive conditions on the unperturbed metric are balanced
with more general conditions on the perturbation. Removing this balancing, that is,
showing that arbitrary integrable deformations of arbitrary Liouville metrics remain of
Liouville type, is an interesting problem for future investigations resolving the conjecture
proposed at the end of §2. This would require stronger versions of Lemmas 4.2 and 4.3 in
two senses.
(a) Allow for possibly infinitely many non-zero Fourier coefficients and refrain from

restricting to trigonometric polynomials. A resolution of this issue has been found
in the context of the perturbative Birkhoff conjecture [10, 60] concerning integrable
billiards. Here, the authors studied the matrix of correlations between the standard
basis (ei2πkx)k∈Z of L2(T) and certain deformed dynamical modes (given as some
kind of Jacobi elliptic function, see Appendix C of the arXiv: 2210.02961 version
of this article), corresponding to e

i2πkix
i
μi

( ·,ci ) in Lemmas 4.2 and 4.3. Exponential
estimates for the entries of this matrix (obtained from considering the maximal width
of a strip of analyticity around the real axis for the dynamical modes) allowed to
prove a suitable full-rank lemma, also for infinitely many coefficients.

(b) Allow arbitrary μ̃i > 0 and refrain from restricting to small ones. Also for this
issue, a potential resolution might be found by analytically extending action-angle
coordinates to the complex plane and exploiting their singularities away from the
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real axis. However, this requires the potentials Vi in the unperturbed Hamiltonian to
be restrictions of holomorphic functions and, as such, way more special than generic
Vi ∈ C2(T).

Moreover, we note that in [60], the authors also outlined a potential strategy for proving
the classical (non-perturbative) Birkhoff conjecture, which might possibly be adapted for
proving a suitably weakened version of the folklore conjecture given in §3.

We end this section with a brief list of open problems being related to the main results
of the present paper.

(i) As described above, it is an natural follow-up problem to extend our results
to the situation where arbitrary integrable deformations of arbitrary Liouville
metrics remain of Liouville type, that is, remove the restricting assumptions from
Assumptions (A1)–(A3) and prove the conjecture formulated at the end of §2.

(ii) In particular, starting with (the time-independent version of) Arnold’s example [6]
for diffusion,

H0(x, p) = p2
1

2
+ p2

2
2

− μ(1 − cos(2πx2)),

is it possible to deduce rigidity, similarly to Theorem 2.3, but without restricting
to the perturbation being a trigonometric polynomial in x2 and any smallness
condition on μ ∈ [0, 1]? In this case, the full rank lemma might be obtained
by proving non-degeneracy of certain infinite-dimensional matrices, which have
Fourier coefficients of powers of Jacobi elliptic functions (see Appendix C of the
arXiv: 2210.02961 version of this article) as their entries.

(iii) In view of the non-trivial examples of magnetic geodesic flows found in [3] and the
potential counterexample constructed in [35], it is a major task to completely settle
the folklore conjecture mentioned in §§1 and 3, that is, clarify which part is only
‘folklore’ and which part is ‘real’.

(iv) In particular, the main result of [35], which we stated in Theorem 3.8, should
be extended to show that the system is really integrable on an open set in the
phase space and not only on an isoenergy manifold. Furthermore, it remains open,
whether the PDEs underlying the examples in [3] can be solved with zero magnetic
fields or not and thus potentially disproves the folklore conjecture.

(v) For our main results, we assumed the preservation of rational invariant tori ‘outside
the eye of the pendulum’ (cf. Figure 1). Can one obtain the same result, if only tori
‘inside the eye’ are preserved?

(vi) An alternative approach to the one chosen here could be to study perturbations of
the additional first integral in equation (2.2), that is, write Fε = F0 + εF1 + O(ε2)

and use the vanishing of the Poisson bracket {Hε, Fε} = 0 with Hε = H0 + εU to
obtain the first-order equation

{H0, F1} + {U , F0} = 0

for the perturbing potential U.
(vii) Does there exist a Riemannian metric g on T2 such that its geodesic flow admits

hyperbolic periodic orbits of at least three different homotopy types? If yes, does
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there exist a Liouville metric with this property? (These questions were suggested
by Vadim Kaloshin.)
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A. Appendix. Generalization to higher dimensions
Our results from §2 immediately generalize to higher dimensions d ≥ 3. In this setting, we
define the Hamiltonian function

H0(x, p) =
d∑

i=1

(
p2

i

2
− μi Vi(x

i)

)
(A.1)

on T ∗Td , where μi ∈ [0, ∞) are parameters, and Vi ∈ C2(T) with ‖Vi‖ ≤ Ci , Vi ≥ 0
are Morse functions (or constant). We may assume without loss of generality that
minxi Vi(x

i) = 0. The system in equation (A.1) is clearly integrable, since additional first
integrals can easily be found as

Fi(x, p) = p2
i

2
− μi Vi(x

i), i ∈ { 1, . . . , d − 1 } .

Completely analogous to §2, we perturb the integrable system in equation (A.1) as Hε =
H0 + εU with ε ∈ R by an additive potential U ∈ C2(Td), which we assume to have an
absolutely convergent Fourier series.

Now, the analogs of the assumptions in §2 read as follows.
(1) Assumptions on the perturbed Hamiltonian function Hε. Let H0 ∈ C2(T ∗Td) denote

the Hamiltonian function from equation (A.1) with ‖Vi‖ ≤ Ci and μi ∈ [0, μ̃i] for some
μ̃i ∈ [0, ∞), i ∈ {1, . . . , d}, and U ∈ C2(Td) be a perturbing potential, which satisfies
the following assumption.
(A4) If μ̃i = 0 for the first 0 ≤ dflat ≤ d indices, there exist d(k) ≥ 0 for

k ∈ {dflat + 1, . . . , d} such that

SU ⊂ Zdflat × ([−d(dflat+1), d(dflat+1)] × · · · × [−d(d), d(d)]) (A.2)

that is U ∈ C2(Td) is a trigonometric polynomial in the last (d − dflat) variables.
As in §2, we denote the minimum over all d(i) such that equation (A.2) holds as deg(i)

U and
call it the i-degree of U.

Note that Proposition 2.1 immediately generalizes to higher dimensions, such that we
can formulate the analog of Assumption (P) as follows.

(2) Assumptions on the preserved integrability of Hε. Let H0 ∈ C2(T ∗Td) denote the
Hamiltonian function from equation (A.1) satisfying Assumption (A4), and U a perturbing
potential, such that the following statement concerning the perturbed Hamilton–Jacobi
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equation (HJE)

αε(c) = Hε(x, c + ∇xuε,c(x)) (A.3)

as well as the preserved integrability of Hε is satisfied.
(P′) There exists an energy e > 0, such that for every b ∈ B0(S⊥

U ) (recall equation (2.6))
there exists a sequence (εk)k∈N with εk �= 0 but εk → 0 such that for any μi ∈
[0, μ̃i] we have the following:
(i) The b-torus from (the analog of) Proposition 2.1 characterized by c ∈

H 1(Td , R) ∼= Rd with

|ci | >
√

μi c(Vi) (A.4)

in the isoenergy submanifold Te is preserved under the sequence of deforma-
tions (Hεk

)k∈N, where c(Vi) is defined in equation (D.3).
(ii) For c ∈ H 1(Td , R) satisfying equation (A.4), Mather’s α-function and a

solution uε,c : Td → R of the HJE in equation (A.3) can be expanded to first
order in ε, that is,

uε,c = u(0)
c + εu(1)

c + Oc(ε
2) and αε = α(0) + εα(1) + O(ε2),

where u
(0)
c , u

(1)
c ∈ C1,1(Td) and Oc(ε

2) is understood in C1,1-sense.
We can now formulate our generalized main result.

THEOREM A.1. Let Hε satisfy Assumption (A4) and Assumption (P′) for some energy
e > 0. If Vj is analytic for j ∈ { d − danlyt + 1, . . . , d }, where 0 ≤ danlyt ≤ d − dflat, and
μ̃k = μ̃k(Ck , deg(dflat+1)

U , . . . , deg(d)
U , e) > 0 for k ∈ { dflat + 1, . . . , d − danlyt } are small

enough, then U is separable, that is, there exist U1, . . . , Ud ∈ C2(T) such that

U(x1, . . . , xd) = U1(x
1) + · · · + Ud(xd) for all (x1, . . . , xd) ∈ Td .

This is irrespective of μ̃j > 0 for j ∈ { d − danlyt + 1, . . . , d }, but only for

(μd−danlyt+1, . . . , μd) ∈ [0, μ̃d−danlyt+1] × · · · × [0, μ̃d ]

outside of an exceptional danlyt-dimensional null-set (depending on (μdflat+1, . . . ,
μd−danylt)).

B. Appendix. Basic perturbation lemma
In this appendix, we state a basic perturbation lemma, which is instrumental in the
continuity arguments required for the proofs of Lemmas 4.2 and 4.3. Its proof is given
Appendix B of the arXiv: 2210.02961 version of this article.

LEMMA B.1. Let V ∈ C1(T) be a non-negative function with min V = 0, μ ∈ [0, 1], and
define the Hamiltonian function

Hμ(p, x) = p2

2
− μV (x) (B.1)
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on the cotangent bundle T ∗T. In the neighborhood of a fixed energy E > 0, we can find
action-angle coordinates (I , θ) of equation (B.1) as

I = ±
∫ 1

0

√
2(E + μV (x)) dx, θ = ±

∫ x

0 (dx′/
√

1 + μV (x′)/E)∫ 1
0 (dx′/

√
1 + μV (x′)/E)

. (B.2)

Regarding θ = θ(x) as a function on T, we have θ ∈ C1(T) and

‖θ ∓ x‖C1 = O
(

μ‖V ‖C0

E

)
as μ → 0. (B.3)

The same holds true if we regard x = x(θ) as a function on T.

C. Appendix. Action-angle coordinates and analyticity
This appendix is concerned with analyticity properties of action-angle coordinates for
one-dimensional Hamiltonian system

Hμ(p, x) = p2

2
− μV (x) (C.1)

being defined on the cotangent bundle T ∗T, where μ is a positive parameter and V ≥ 0 an
analytic function. Just as in Appendix B, in the neighborhood of a fixed energy E > 0, we
can find action-angle coordinates (I , θ) of equation (C.1) as given in equation (B.2). From
now on, we shall restrict to the first sign choice in equation (B.2).

In our proofs of the analyticity cases in Theorems 2.3 and 2.4, we shall exploit the fact
that the function

θ : (x, μ) �→
∫ x

0 (dx′/
√

1 + μV (x′)/E)∫ 1
0 (dx′/

√
1 + μV (x′)/E)

(C.2)

is analytic in both variables. (Note that the further implicit dependence on μ via E = E(I)

is also analytic.) Now, for every fixed μ > 0, the function x �→ θ(x, μ) is analytic and
invertible, and we denote its analytic inverse by θ �→ xμ(θ) (cf. Step (i) in the proofs of
Theorems 2.3 and 2.4). Moreover, most importantly, also the function

(θ , μ) �→ xμ(θ)

is analytic in μ, as shown in the following simple lemma applied to f (z, w) ≡ θ(x, μ) in
equation (C.2). Its elementary proof, based on Hartogs’s theorem, is given in Appendix C
of the arXiv: 2210.02961 version of this article.

LEMMA C.1. Let Dz, Dw ⊂ R be open sets and

f : Dz × Dw → R, (z, w) �→ f (z, w) (C.3)

an analytic function. Moreover, assume that the one-variable restriction f (·, w) : Dz → R

is invertible and satisfies f (Dz, w) = D for every fixed w ∈ Dw and some open D ⊂ R,
such that we can write its analytic inverse function as

f −1(·, w) : D → Dz, ζ �→ f −1(ζ , w).
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Then it holds that, with a slight abuse of notation, also

f −1 : D × Dw → Dz, (ζ , w) �→ f −1(ζ , w)

is an analytic function.

We note that although θ from equation (C.2) is always analytic in μ, the lower regularity
in x for a general V ∈ C2(T) prevents the analyticity in μ to carry over to the inverse
function.

D. Appendix. Weak KAM theory
In this appendix, we provide a brief overview on basic results of weak KAM theory and
Aubry–Mather theory, which are relevant in the proofs of our main results. More details
and background information can be found in extended version of this appendix in the
arXiv: 2210.02961 version of this article or lecture notes from Sorrentino [85], which build
on seminal works from Mather [75–77], Aubry [9], Mañé [73], Fathi [44, 45], Siconolfi
[46, 47], Bernard [12], and others [32, 36, 72].

D.1. Aubry–Mather theory in one dimension. In the following, we briefly discuss
Aubry–Mather theory for the one-dimensional example of a mechanical Hamiltonian
on M = T. Note that the unperturbed Hamiltonian in equation (2.1) in the formulation
of our main results is a sum of two such one-dimensional systems. Let V ∈ C2(T)

be a non-negative Morse function with minx∈T V (x) = 0, μ ∈ (0, 1], and consider the
Hamiltonian

H : T ∗T → R, (x, p) �→ p2

2
− μV (x), (D.1)

whose corresponding Lagrangian can easily be obtained as L(x, v) = v2/2 + μV (x).
We first note that the (co)tangent bundle and the (co)homology group of T are given by

TT ∼= T ∗T ∼= T × R and H1(T, R) ∼= H 1(T, R) ∼= R,

respectively. Next, we find the Mather set M̃c and Mather’s α-function α(c) (the energy
level of a Mather set) at cohomology c ∈ R to be given by

M̃c =
{

{V = 0} × {0} if |c| ≤ √
μc(V ),

Psgn(c)

E(|c|) if |c| >
√

μc(V ),
α(c) =

{
0 if |c| ≤ √

μc(V ),

E(|c|) if |c| >
√

μc(V ),
(D.2)

respectively, where sgn(c) denotes the sign of c. We now explain the various notation
used in equation (D.2). For energy E > 0, we denoted the two homotopically non-trivial
periodic orbits contained in the energy level {H(x, p) = E} by

P±
E := {(x, p) : p = ±√2(E + μV (x)), x ∈ T}.

The cohomology class of the closed 1-form η+
E := √

2(E + μV (x)) dx corresponding to
the orbit in P+

E is given by c+(E) = [η+
E ] := ∫ 1

0
√

2(E + μV (x)) dx. This function is
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continuous, strictly increasing for E > 0 and we have

c+(E) −→ √
μ

∫ 1

0

√
2V (x) dx =:

√
μ c(V ) as E → 0. (D.3)

Therefore, this defines an invertible function c+ : (0, ∞) → (
√

μ c(V ), ∞), whose
inverse we denote by E(c).

Remark D.1. Using equation (D.2) for the two independent dimensions of equation
(2.1), we obtain Proposition 2.1(a). More precisely, this follows after realizing that
α(c) = α1(c1) + α2(c2), where αi is the α-function of the one-dimensional system with
coordinates labeled by i, and taking uc ∈ C3(T2) with |ci | >

√
μic(Vi) according to

∇xuc(x) = −c ±
(√

2(α1(c1) + μ1V1(x1))√
2(α2(c2) + μ2V2(x2))

)
,

(recall Vi ∈ C2(T) is a non-negative Morse function and αi(ci) > 0) such that the
Hamilton–Jacobi equation

α(c) = H0(x, c + ∇xuc(x))

is satisfied. Moreover, in the case where U as in equation (2.3) is actually separable, one
can employ the explicit forms for c+(E) as the inverse of the α-function and ∇uc to prove
the validity of Assumption (P), simply by using the same expansions leading to the proof
of Lemma B.1. This means that separable systems satisfy Assumption (P), which shows
consistency with our main results.

D.2. Fathi’s weak KAM theory and perturbations. For concreteness, we specialize to
M = T2, in which case H 1(T2, R) ∼= T ∗

x T
2 ∼= R2 for every x ∈ T2, such that we can

identify c ∈ H 1(T2, R) with a closed 1-form of cohomology class c. The central object
of investigation in Fathi’s weak KAM theory is the HJE

H(x, c + ∇xu) = k, k ∈ R, (D.4)

where H is a Tonelli Hamiltonian on T ∗T2 with associated Tonelli Lagrangian L.
For classical solutions, that is, C1-functions u : T2 → R solving equation (D.4), it is

immediate to check that there is at most one value k ∈ R, for which such a C1-solution may
exist. In fact, this value agrees with Mather’s α-function mentioned above. The following
proposition contains perturbative properties of weak KAM solutions uε and Mather’s
α-function αε for systems of the form

Hε(x, p) = H0(x, p) + εH1(x, p).

PROPOSITION D.2. (Gomes [50]) Let H0 : T ∗T2 → R be an integrable Tonelli Hamilto-
nian and u(0) a (classical) C1-solution of the HJE H0(x, c + ∇xu

(0)) = α(0)(c). Moreover,
let ν(0) denote the projection of a Mather measure with cohomology class c. Suppose there
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exists a function u(1) ∈ C1(T2) and a number α(1)(c) such that

α(1)(c) = 〈(∇pH0)(x, c + ∇xu
(0)), ∇xu

(1)〉 + H1(x, c + ∇xu
(0)) for all x ∈ T2.

(D.5)

Then

α(1)(c) =
∫
T2

H1(x, c + ∇xu
(0)) dν(0) and αε(c) = α(0)(c) + εα(1)(c) + Oc(ε

2).

(D.6)

Remark D.3. By invoking Remark D.1, the above proposition provides a converse to
equation (2.11) in Assumption (P). In fact, the transport-type equation in equation (D.5)
for the unknown u(1) (with so far unspecified constant α(1)(c)) is exactly the first-order
expansion obtained in equations (4.2), (4.8), and (4.14) in §4 and also fixes α(1)(c) to be
given by equation (D.6). Moreover, equation (D.5) coincides with the relation, which the
correction term u(1) of an approximate solution ũε = u(0) + ε u(1) to the HJE

Hε(x, c + ∇xuε) = k

of order one has to satisfy (see [50]). The approximate solution ũε = u(0) + ε u(1) also
coincides with the first-order truncation of the so-called Lindstedt series [8, 51], a not
necessarily convergent perturbative expansion similar to those in KAM theory [5, 63,
80] or the Poincaré–Melnikov method [8, 55, 91]. Finally, it is interesting to note that
if H1(x, p) = W(x) is independent of the p-variables, then αε(c) is a convex function of ε

and thus almost everywhere twice differentiable—yielding the expansion in equation (D.6)
at every such point.
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