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Abstract

The aim was to study the effect of the threshold number on the accuracy of genomic evalu-
ation of the threshold traits using support vector machine (SVM), genomic best linear
unbiased prediction (GBLUP) and Bayesian method B (BayesB). For this purpose, a genome
consisting of three chromosomes was simulated for 1000 individuals on which 3000 bi-allelic
single nucleotide polymorphism markers were evenly distributed. Genomic breeding values
were predicted in different scenarios of threshold number (1–6 thresholds), QTL number
(30 and 300 QTLs) and heritability level (0.1, 0.3 and 0.5). By increasing the number of
thresholds from 1 to 6 thresholds, especially at higher levels of heritability, the accuracy of
genomic evaluation increased; however, the increase in accuracy was not linear so that it
was much more noticeable when the number of thresholds increased from 1 to 2 thresholds.
In the most studied scenarios, SVM showed a very poor performance compared to other
methods. BayesB ranked first regarding prediction accuracy, though in some cases the
observed differences with GBLUP was not significant. While increase in heritability increased
the accuracy of genomic evaluation, change in the QTL number had a slight effect on the pre-
diction accuracy. According to the results, the SVM is not recommended for genomic evalu-
ation of threshold traits, especially those which have only one threshold and instead, use of
GBLUP and BayesB is recommended. For traits with more than one threshold, fortunately
we can achieve accuracy similar to continuous traits by applying traditional genomic evalu-
ation methods.

Introduction

Animal and plant breeders are often concerned with the improvement of complex traits. A new
approach called ‘genome-wide selection’ or ‘genomic selection’ (GS) (Meuwissen et al., 2001),
based on genome-wide marker profiling, can accelerate the genetic improvement of such traits.
GS means using genomic information to evaluate and select potential candidates. A key feature
of this method is that the entire genome is covered by dense markers. When several thousand
markers are genotyped throughout the genome, it is assumed that the markers are next to the
causal mutations and, therefore, capture and reflect causal effects. All genetic variance is justified
by these markers and it is assumed that the markers are in linkage disequilibrium (LD) with
quantitative trait loci (QTL) (Goddard and Hayes, 2007; de Roos et al., 2008). Single nucleotide
polymorphism markers (SNPs) are the most abundant type of DNA polymorphism in the gen-
ome, have lower mutation rates and are easily genotyped, and that is why they are used for GS.
The individual effect of each SNP is calculated using both genotypic and phenotypic data with
statistical methods and by summing up the effects of all SNPs, the genomic estimated breeding
values (GEBVs) of individuals are estimated. Thus, QTL analysis for working out marker–trait
associations is not needed (Kumar et al., 2012). Although GS was introduced in 2001, its appli-
cation delayed until availability of high-density SNP panels for genotyping of animals (Van
Tassell et al., 2008). GS has contributed significantly to increase genetic gain for a variety of eco-
nomically important traits, both in animal (Van Raden 2008; Szyda et al., 2013) and plant spe-
cies (Kumar et al., 2012; Brito et al., 2017). In GS, increase in genetic gain arises from shorter
generation interval, increased intensity of selection and greater precision in the selection of ani-
mals for breeding (Klímová et al., 2020).

Many traits of biological and economic importance follow a discontinuous distribution, but
their inheritance is not simply Mendelian such as susceptibility to disease with two phenotypic
categories of affected and non-affected, degree of dystocia and the number of progenies in a
delivery. These traits are termed ‘threshold traits’. They are quantitative traits that are discretely
expressed in a limited number of phenotypes (usually two), but which are based on an
assumed continuous distribution of factors that contribute to the trait (latent variable, liability)
(Falconer and Mackay, 1996; Roff et al., 1997). At first, these traits were seemed a bit out of the
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quantitative genetic theory, but when exposed to genetic analysis,
it was revealed that their inheritance was similar to that of quan-
titative traits. These traits have inherently continuous changes, but
due to having threshold, apparently they have discontinuous
changes (Falconer and Mackay, 1996). Literally, threshold is a
level, point or value above which something is true or will take
place and below which it is not or will not (Fig. 1). This idea of
applying a threshold to a Gaussian hypothetical trait can be traced
back to even earlier work by Pearson (1900). When the latent
variable (e.g. a biochemical material in the blood with normal dis-
tribution in the population) is below this threshold, the indivi-
duals show normal phenotype, and when the latent variable
overrides the threshold, another phenotypic class is revealed
(affected). Therefore, while latent variable has normal distribu-
tion, the observed variable follows a discrete distribution with a
few phenotypic classes (de Villemereuil, 2018). The basis of
threshold characters is a combination of several physiological
and developmental processes (Gianola, 1982). Changes in these
traits have both genetic and environmental origins and can be
measured and studied as a quantitative trait in the routine way.
González-Recio and Forni (2011) performed a genomic evaluation
for scrotal hernia in pig with one threshold and reported that the
accuracy of genomic evaluation was very low. The effect of the
number of threshold on the accuracy of genomic evaluation has
not been studied so far. Therefore, this study was conducted to
study the effect of threshold number on the accuracy of genomic
evaluation of discrete traits. In addition, the predictive performance
of genomic best linear unbiased prediction (GBLUP) (Van Raden,
2008), support vector machine (SVM) (Boser et al., 1992) and
Bayesian method B (BayesB) (Meuwissen et al., 2001) in genomic
evaluation of discrete traits was also studied.

Materials and methods

Population and genome

Population and genome were simulated using hypred package
(Technow, 2013) in R software (R Development Core Team,

2021). The focus of the package is on producing data for genomic
applications in applied genetics, namely genomic prediction and
selection. In a script, we listed the instructions that hypred should
use for simulation of genome. Parameters such as number of
chromosomes, length of each chromosome, number of SNPs
and QTLs per chromosome and distribution of QTL effects
were listed in the script. Hypred executed the instructions in
the script and built the genome with several internal functions
such as hypredGenome (used to define the genome parameters),
hyprednewQTL (used to assign QTLs), hypredRecombine (used
to simulate meiosis), hypredNewMap (used to modify the genetic
map), etc.

A genome consisting of three chromosomes, each one Morgan
length, was simulated and 3000 SNPs were uniformly distributed
on it. Coding for each genotype with alleles A1 and A2 were,
respectively, 2 for A1A1, 0 for A2A2 and 1 for A1A2 or A2A1.
The mutation rate at the marker loci was 2.5 × 10−3 to provide
a high probability of polymorphic marker loci. This was 2.5 ×
10−5 per locus per generation for each QTL (Meuwissen et al.,
2001). Gamma distribution of QTL effects was considered, with
shape (β) and scale parameters as 0.4 and 1.66, respectively
(Meuwissen et al., 2001).

The baseline population was simulated to be 100 individuals (50
males and 50 females) and randomly mated for 50 generations to
create LD between the markers and QTLs. Because two progenies
were born from both parents during 50 generations of random
mating, the population size was constant throughout the genera-
tions of the historical population. In other words, the effective
population size (Ne) was 100. The chromosomal compositions of
the offspring were obtained by random sampling of the paternal
and maternal chromosomes. In generation 51, the population
was expanded to 1000 individuals and considered as the reference
population. These individuals had both genotypic and phenotypic
information. Thereafter, random mating was used for another gen-
eration. The animals in the generation 52 had known genotypes but
without phenotypic records, which treated as validation population
for which genomic breeding values had to be predicted. Thus the
genotypic matrix included the genotypic information of 1000 indi-
viduals which were genotyped for 3000 SNPs. Parameters used for
the simulation of genome are listed in Table 1. In order to convert
the normal phenotype into a threshold, the Probit function
(Gianola, 1982) was used. Using Probit function the phenotypic
category of each individual is determined according to the indivi-
dual’s phenotypic value and the threshold points.

Scenarios under study

The main purpose of this study was to investigate the threshold
number on the accuracy of genomic evaluation. Therefore, by

Table 1. Parameters used for simulation program

Genome size 300 cM

Number of chromosomes 3

Number of markers 3000

Distribution of additive QTL effects Gamma

Number of QTL 30, 300

Effective population size (Ne) 100

Heritability 0.1, 0.3, 0.5

Fig. 1. Graphic representation of a trait with one threshold (de Villemereuil, 2018).
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applying 1, 2, 3, 4, 5 and 6 thresholds, traits with 2, 3, 4, 5, 6 and 7
phenotypic classes were simulated, respectively. The number of
QTLs was defined as a ratio to the number of markers so that
in two different scenarios, 1 and 10% of the number of markers
were considered as QTL (30 and 300 QTLs, respectively). In add-
ition, three levels of heritability (0.10, 0.30 and 0.50) were also
considered for simulation of phenotypes.

Methods of genomic evaluation

Genomic best linear unbiased prediction (GBLUP)
The GBLUP was fitted as follows:

y = 1m+ Zg + e

where y is the vector of phenotypic observations, Z is the design
matrix associating phenotypic observations to GEBVs, g is
the vector of genomic breeding values and assumed that
g∼N(0,Gd2g) where d2g is the additive genetic variance, and G is
the genomic relationship matrix whose elements estimated
based on allelic similarity between individuals (Van Raden,
2008). The GBLUP was run using package BGLR in R (de los
Campos and Perez Rodriguez, 2018).

Support vector machines (SVM)
One of the kernel methods is the SVM. Kernel methods can be
thought of as instance-based learners. Rather than learning
some fixed set of parameters corresponding to the features of
their inputs, they ‘remember’ the i-th training example. In case
of GS the input is genotypic and phenotypic information of ani-
mals in the reference population (xi, yi) and SVM learns for it a
corresponding weight wi. Prediction of unlabelled inputs, i.e.
those not in the training set (i.e. phenotypic information of can-
didate animals (ŷ)) is treated by the application of a kernel
between the unlabelled input x′ and each of the training inputs,
xi. For quantitative responses, support vector regression (SVR) is
used. The SVR uses linear models to implement non-linear
regression by mapping the input space (the marker data set) to
a feature space of a different dimension (lower in the case of
GS) using a non-linear kernel function followed by linear regres-
sion in this feature space. In SVR, with input data set
G = {(xi, di)}

n
i (where xi is the input vector, di is the desired real-

valued labelling and n is the number of the input records), x is
first mapped into a higher-dimension feature space F via a non-
linear mapping Θ, then linear regression is performed in this
space. In other words, SVR approximates a function using the fol-
lowing equation (Liu et al., 2006; Hastie et al., 2009):

y = f (x) = wQ(x)+ b

The coefficients w and b are estimated by minimizing:

R(C) = 1
2
‖w‖2 + C

1
n

∑n
i=1

L1(di, yi)∗

where Lε (d, y) is the empirical error measured by ε-insensitive
loss function

L1(d, y) = |d − y| − 1, if |d − y| ≥ 0
0, othervise

{

and the term 1/2||w||2 is a regularization term. The constant C is
specified by the user, and it determines the trade-off between the
empirical risk and the regularization term. The ε is also specified
by the user, and it is equivalent to the approximation accuracy of
the training data. The estimates of w and b are obtained by trans-
forming Eqn (*) into the primal function:

R(w, 1(∗)) = 1
2
w2 + C

∑n
i=1

(1i + 1∗i )

By introducing Lagrange multipliers, the optimization prob-
lem can be transformed into a quadratic programming problem.
The solution takes the following form:

y = f (x, ai, a
∗
i ) =

∑N
i=1

(ai − a∗
i )K(x, xi)+ b

where K is the kernel function K(x, xi) =Θ(x)T Θ(xi). By using a
kernel function, we can deal with the problems of arbitrary
dimensionality without having to compute the mapping Θ expli-
citly. Different kernel functions can be selected to map (or trans-
form) input data to feature space. According to Kasnavi et al.
(2018), we used radial kernel to construct SVM. The package
e1071 (Meyer et al., 2013) was used for SVM analysis.

Bayesian method B (BayesB)
In this model, it is assumed that only part of the loci explains the
entire genetic variance, and many loci do not play a role in genetic
variance. BayesB can be written as follows:

yi = m+
∑k
j=1

xijbjdj + ei

where y is the phenotype of the animal i, μ is the mean, k is the
number of marker loci, x is the genotype of the marker at the
locus j (ith allele) which is encoded as 0, 1 and 2 (number of cop-
ies of the SNP allele carried by the ith animal). βj is the effect of
allelic substitution at position j and δj which is coded as 0 and
1 indicates the absence (with probability π) or the presence
(with probability 1–π) of the locus j in the model.

di = 1 ⇒ bj = N(0, s2
j )

di = 0 ⇒ bj = 0

The main assumption of this method is that many SNPs are
located in genomic regions that have no specific QTL association
and have no effect on the trait and only a small part of SNPs are
in LD with QTLs and therefore have an effect. In general, π repre-
sents the expected ratio of SNPs which are in LD with QTLs to the
total SNP number. The effects of SNPs will be sampled from the
t-distribution, but the variance of the effects will be sampled with
probability π from a scaled inverse χ2 distribution (Meuwissen
et al., 2001):

bi|vi = N(0, s2
j ) = bi|s2

j = (1− p)I0 + p N(0, s2
bi
)
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(bi|p, s2
bi
)

s2
bi
= 0 with probability p

s2
bi
= X−2(r, s)with probability 1− p

{

To implement BayesB, BGLR package (de los Campos and
Perez Rodriguez, 2018) was used. Gibbs sampling algorithm was
used to sample conditional posterior distribution of marker
effects. Marker effects were inferred using 12 000 sample chains
(2000 burning samples and the next 10 000 samples for posterior
distribution inferences).

Accuracy of GEBV

The Pearson’s correlation between the predicted genomic breed-
ing values and the true genomic breeding values (rp,t) was used
as an indicator of the accuracy of genomic evaluation. Each scen-
ario which was a combination of heritability level, QTL number
and method used was analysed 100 times and the average accur-
acy of each scenario was presented.

Results

The effect of threshold number on the accuracy of genomic evalu-
ation in different scenarios of QTL number and heritability level
is shown in Fig. 2. As observed, by increasing the number of
threshold from 1 to 6 thresholds, the accuracy of genomic evalu-
ation increased. For SVM, by increasing the number of threshold
from 1 to 6 thresholds, in different scenarios of heritability level
(0.1, 0.3 and 0.5), the accuracy of prediction increased by 49, 29
and 24%, respectively. For GBLUP, in similar scenarios of herit-
ability level, by increasing the number of thresholds from 1 to 6
thresholds, the accuracy of prediction increased by 27, 21 and
27%, respectively. Also, 22, 21 and 19% increase in accuracy
was observed for BayesB following increase in the number of
threshold from 1 to 6 thresholds. The increase in prediction
accuracy was more noticeable when the number of threshold
increased from 1 to 2 thresholds compared with scenarios in
which the number of threshold increased from 2 to 3 and beyond.
For example, for SVM and at the heritability level of 0.1, by
increasing the number of threshold from 1 to 2 thresholds, the
prediction accuracy increased by 47%, while by increasing the
number of threshold from 2 to 3 thresholds, the prediction accur-
acy increased by only 6%.

The average prediction accuracy of the SVM, GBLUP and
BayesB in different scenarios of heritability level and QTL number
is shown in Fig. 3. On average, in the scenario of heritability = 0.1,
the SVM showed a very poor performance, so that its prediction
accuracy was significantly lower than the GBLUP and BayesB
(P < 0.05). By increasing heritability to 0.3 and then to 0.5, the
prediction accuracy of all three methods increased; however,
even at higher levels of heritability, GBLUP and BayesB kept
their distance with SVM. With one threshold, BayesB performed
better than the SVM and GBLUP, though its difference with the
GBLUP was not significant in most cases (P > 0.05) (Figs 2(a)–(c)).
In general, in most studied scenarios, the BayesB and GBLUP had
better performance than SVM.

The effect of heritability on the prediction accuracy is shown in
Fig. 4. In all methods, the accuracy of genomic evaluation
increased with increasing heritability. When the trait had one
threshold and was controlled with 30 QTLs, by increasing herit-
ability from 0.1 to 0.5, the prediction accuracy for SVM,

GBLUP and BayesB increased by 62, 41 and 45%, respectively.
It was 52, 44 and 49% when trait was controlled by 300 QTLs.

In most of the scenarios, following change in the number of
QTLs from 30 to 300 QTLs, no significant change in the accuracy
of genomic evaluation was observed. In some cases, with increas-
ing QTL number, the accuracy of prediction decreased slightly,
and in other cases, a slight increase was observed (Fig. 5).

Discussion

So far, most studies in the field of GS have been conducted on
continuous traits and little efforts have been made for genomic
evaluation of threshold traits, though many traits that signifi-
cantly affect profitability belong to the threshold traits category.
Gianola (1982) and Gianola and Foulley (1983) founded the
mathematical theory for genetic analysis of threshold traits. Due
to the fact that threshold traits occur discretely, the use of linear
models cannot bring much genetic improvement for these traits.
Deljoo-Issa-Lou (2013) reported that evaluation of threshold
traits using pedigree-based threshold models cannot be highly
reliable and suggested using genomic information to improve
these traits. There are no previous reports on the effects of thresh-
old number on the accuracy of genomic evaluation which makes
comparison difficult. González-Recio and Forni (2011) simulated
a discrete trait with a threshold and predicted genomic breeding
values using different parametric and non-parametric methods.
The accuracy of genomic evaluation for all methods was low
with a maximum value of 0.41, which is in consistent with the
results of the present study. However, they did not evaluate traits
with threshold number higher than one. As a result, for traits with
one threshold such as durability and liability to disease, the accur-
acy of genomic evaluation would be low. Therefore, methods with
maximum prediction accuracy should be used for genomic evalu-
ation of such traits. For traits with more than one threshold such
as littler size in sheep, degree of calving difficulty, conformation
and type scores, fortunately we can achieve accuracy similar to
continuous traits by applying traditional genomic evaluation
methods.

A result we noticed was that in some cases (mostly at herit-
ability = 0.1, Fig. 2(a)), by increasing threshold number, the
accuracy decreased (e.g. comparing accuracy of BayesB in 5
and 6 thresholds scenarios, the accuracy was higher in the 5
thresholds scenario). At low levels of heritability, greater envir-
onmental noises affect the power of models to extract small
additive genetic effects leading to fluctuation in the estimates
of genomic breeding values (Kasnavi et al., 2018). It can result
in random changes in the accuracy of GEBVs. In such a situ-
ation, higher accuracy at lower number of threshold would be
expected.

Most studies have focused on Bayesian models to analyse
threshold traits. Wang et al. (2012) by analysing threshold traits
by Bayesian models reported that the accuracy of the BayesB
and BayesC was almost similar and was higher than BayesA.
Villanueva et al. (2011) reported that genomic evaluation of
threshold traits with BayesB significantly increases the accuracy
of genomic breeding values compared to linear models. The
rate of increase in the accuracy of genomic breeding values
obtained by Bayesian model compared to linear models for
threshold traits ranged from 4% (at heritability 0.3) to 16% (at
heritability 0.1). Baneh et al. (2017) also compared Bayesian
methods including Ridge regression, BayesA, BayesB, BayesC
and BayesL in genomic evaluation of threshold traits. Their results
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Fig. 2. The effect of threshold number on the accuracy of genomic evaluation.
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showed that the accuracy of prediction of all studied methods
(due to similarity of computational nature) was close to each
other, but in the meantime, BayesA and BaysB were able to esti-
mate SNP effects slightly better (3–7%) than other methods. A
Bayesian association mapping for threshold traits using a thresh-
old model was also proposed by Iwata et al. (2009) and their
approach could reduce both false-positive and false-negative
rates in detecting QTL to reasonable levels.

Recent studies have shown the significant effect of heritability
on the accuracy of genomic evaluation. For example, Hayes et al.
(2010) examined the effect of different levels of heritability on the
accuracy of genomic evaluation and reported that at heritability
levels of 0.1, 0.3, 0.5, 0.7 and 0.9, the accuracy of genomic evalu-
ation was 0.35, 0.5, 0.60, 0.65 and 0.72, respectively. Mohammadi
Chamachar et al. (2015) reported that accuracy of genomic

evaluation of a trait with heritability of 0.05, 0.1 and 0.25 was
0.79, 0.82 and 0.87, respectively. Naderi (2018) reported that for
production traits with heritability of 0.3, higher prediction accur-
acy (0.67) was obtained than a trait with 0.05 heritability (0.41).
Zhang et al. (2017) by studying the effect of marker density, ref-
erence population size and trait heritability reported that among
the studied factors, heritability had the greatest impact on the
accuracy of genomic evaluation. High heritability shows a higher
ratio of genetic variance to phenotypic variance and means a
smaller role of environmental noises in the phenotypic variation
of the trait. Therefore, the additive genetic effect which is captured
by each marker increases. In such a situation, the power of model
to extract such greater individual additive effects increases leading
to increased accuracy (Ahmadi et al., 2021; Ashoori-Banaei et al.,
2021). Goddard (2009) showed that in order to achieve a certain

Fig. 3. Comparison of methods in different scenarios of heritability level and QTL number (the accuracy of each method is the average of the results of the 1, 2, 3, 4,
5 and 6 thresholds scenarios).

Fig. 4. The effect of heritability on the accuracy of genomic evaluation.
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degree of accuracy, traits with lower heritability require more
phenotypic records in the reference group, but this trend was
not linear. In other words, the effect of doubling the number of
phenotypic records for low heritability traits is greater than the
effect of doubling the number of phenotypic records for high her-
itability traits.

Foroutanifar (2017) reported that the prediction accuracy of
BayesA, BayesB and BayesC methods was higher than BayesL
and BayesR in the scenarios of small number of QTLs, but with
increasing the number of QTLs to 150 and more, this advantage
was completely disappeared. Coster et al. (2010) showed that
when Bayesian regression and Bayesian LASSO fitted to the
data, with decreasing QTL number, higher accuracy was obtained
but the accuracy of least squares method (Partial Least Squares
[PLS]) was not affected by QTL number. Comparing different
Bayesian methods for genomic evaluation of threshold traits,
Wang et al. (2012) observed that Bayesian methods B and C
were sensitive to the number of QTLs, and the accuracy of esti-
mates decreased with increasing the number of QTLs from 20
to 500. Also, by comparing Bayesian methods B and GBLUP,
Daetwyler et al. (2010) observed that the accuracy of GBLUP
was constant in different scenarios of number of QTLs, but the
accuracy of BayesB was higher in scenarios of small number of
QTLs. Assuming a constant total genetic variance, by increasing
the number of QTLs, total genetic variance is distributed to a
large number of QTLs. In other words, the contribution of each
QTL in the total genetic variance decreases and in such a situ-
ation, the efficiency of models for estimating such small effects
decreases. In addition, as the number of QTLs increases, more
markers are needed to capture the effects of all QTLs (Habier
et al., 2009). Therefore, increase in the number of QTLs can
lead to increase in the accuracy of genomic evaluation if the num-
ber of markers increases as well.

In conclusion, genomic evaluation of traits with one threshold
had low accuracy and with increasing the number of thresholds,
the accuracy of genomic prediction increased. The SVM showed
a poor performance in predicting genomic breeding values,

especially when the studied trait had only one threshold.
GBLUP and specially BayesB showed better performance in gen-
omic evaluation of threshold traits compared to SVM. While
increase in the level of heritability increased the prediction accur-
acy, change in the QTL number had little effect on the accuracy of
genomic evaluation.
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