<u>P. 159.</u> Let M be a metric space, M_0 a compact subset and T: $M \rightarrow M$ an isometry. Then if $TM_0 \subset M_0$ or $TM_0 \supset M_0$ we have $TM_0 = M_0$.

J.B. Wilker, Pahlavi University, Shiraz, Iran.

<u>P. 160</u>. Higman [Quart. J. Math. Oxford 10 (1959), 165-178] proves that a group satisfies the identical relation $\left[[x, y], [x, y^{-1}] \right] = 1$ if and only if all its two-generator subgroups are metabelian. Prove that the same conclusion holds for the relation $\left[[x, y], [x^{-1}, y^{-1}] \right] = 1$.

J. Gandhi, York University

<u>P. 161</u>. For any positive integer n and any n numbers c_1, \ldots, c_n , let further numbers c_{n+1}, c_{n+2}, \ldots be defined as continued fractions

$$c_{n+1} = 1 - c_n/1 - c_{n-1}/1 - \dots c_2/1 - c_1,$$

$$c_{n+2} = 1 - c_{n+1}/1 - c_n/1 - \dots c_3/1 - c_2,$$

and so on. Prove that the sequence c_i is periodic with period n + 3; that is, $c_{n+4} = c_1$, $c_{n+5} = c_2$, and so on.

H.S.M. Coxeter, University of Toronto

SOLUTIONS

 $\underline{P. 149}$. Find all solutions, other than the trivial solution (a, b, c) = (1, 1, c) of the simultaneous congruences:

ab \equiv 1 mod c, bc \equiv 1 mod a, ca \equiv 1 mod b where a,b,c are positive integers with a \leq b \leq c.

G.K. White, University of British Columbia

527

Solution by P. Smith, University of Victoria

Except in the trivial case, 1 < a < b < c and ab = ck + 1, where 0 < k < a and (a, k) = 1. Now $ack = a^2b - a \equiv k \mod b$ whence $a + k \equiv 0 \mod b$ so $b \mid (a + k) < 2a < 2b$ and therefore b = a + k.

Similarly $a \mid (b + k) = a + 2k < 3a$ hence a + 2k = 2a, or a = 2k and, since (a, k) = 1, k = 1.

Thus the only non-trivial solution is (2, 3, 5).

Also solved by W.J. Blundon, M.F. Collins, and the proposer.

<u>P. 150</u>. Let S be a set of commuting permutations acting transitively on a set Ω . Prove that S is a sharply transitive abelian group.

A. Bruen, University of Toronto

Solution by D. Ž. Djokovič, University of Waterloo

The group G generated by S is abelian and transitive. G is sharply transitive by Proposition 4.3, in H. Wielandt's book "Finite Permutation Groups". Note that this proposition and its proof remain valid also when Ω is infinite. Since (i) $G \supset S$, (ii) G is sharply transitive, (iii) S is transitive, we must have G = S.

Also solved by the proposer.