PROBLEMS FOR SOLUTION

P. 159. Let M be a metric space, M_{0} a compact subset and $\mathrm{T}: \mathrm{M} \rightarrow \mathrm{M}$ an isometry. Then if $\mathrm{TM}_{0} \subset \mathrm{M}_{0}$ or $\mathrm{TM}_{0} \supset \mathrm{M}_{0}$ we have $T M_{0}=M_{0}$.
J. B. Wilker, Pahlavi University, Shiraz, Iran.
P. 160. Higman [Quart. J. Math. Oxford 10 (1959), 165-178]
proves that a group satisfies the identical relation $\left[[x, y],\left[x, y^{-1}\right]\right]=1$ if and only if all its two-generator subgroups are metabelian. Prove that the same conclusion holds for the relation $\left[[x, y],\left[x^{-1}, y^{-1}\right]\right]=1$.

J. Gandhi, York University

P. 161. For any positive integer n and any n numbers c_{1}, \ldots, c_{n}, let further numbers c_{n+1}, c_{n+2}, \ldots be defined as continued fractions

$$
\begin{aligned}
& c_{n+1}=1-c_{n} / 1-c_{n-1} / 1-\ldots c_{2} / 1-c_{1} \\
& c_{n+2}=1-c_{n+1} / 1-c_{n} / 1-\ldots c_{3} / 1-c_{2}
\end{aligned}
$$

and so on. Prove that the sequence c_{i} is periodic with period $n+3$; that is, $c_{n+4}=c_{1}, c_{n+5}=c_{2}$, and so on.
H.S. M. Coxeter, University of Toronto

SOLUTIONS

P. 149. Find all solutions, other than the trivial solution
$(\mathrm{a}, \mathrm{b}, \mathrm{c})=(1,1, \mathrm{c})$ of the simultaneous congruences:
$\begin{array}{r}\mathrm{ab} \equiv 1 \bmod \mathrm{c}, \mathrm{bc} \equiv 1 \bmod \mathrm{a}, \mathrm{c} a \equiv 1 \bmod \mathrm{~b} \text { where } \mathrm{a}, \mathrm{b}, \mathrm{c} \text { are } \\ \text { positive integers with } \mathrm{a} \leq \mathrm{b} \leq \mathrm{c} .\end{array}$
G.K. White, University of British Columbia

Except in the trivial case, $1<a<b<c$ and $a b=c k+1$, where $0<k<a$ and $(a, k)=1$. Now $a c k=a^{2} b-a \equiv k \bmod b$ whence $a+k \equiv 0 \bmod b$ so $b \mid(a+k)<2 a<2 b$ and therefore $b=a+k$.

Similarly $a \mid(b+k)=a+2 k<3 a$ hence $a+2 k=2 a$, or $a=2 k$ and, since $(a, k)=1, k=1$.

Thus the only non-trivial solution is $(2,3,5)$.
Also solved by W.J. Blundon, M.F. Collins, and the proposer.
P. 150. Let S be a set of commuting permutations acting transitively on a set Ω. Prove that S is a sharply transitive abelian group.
A. Bruen, University of Toronto

Solution by D. ̌̌. Djokovič, University of Waterloo

The group G generated by S is abelian and transitive. G is sharply transitive by Proposition 4.3, in H. Wielandt's book "Finite Permutation Groups". Note that this proposition and its proof remain valid also when Ω is infinite. Since (i) $G \supset S$, (ii) G is sharply transitive, (iii) S is transitive, we must have $G=S$.

Also solved by the proposer.

