
J. Austral. Math. Soc. 72 (2002), 93-107

ON TRANSCENDENTAL MEROMORPHIC FUNCTIONS WHICH
ARE GEOMETRICALLY FINITE

JIAN-HUA ZHENG

(Received 11 September 2000; revised 2 February 2001)

Communicated by P. C. Fenton

Abstract

In this paper we give the definition of a meromorphic function which is geometrically finite and investigate
some properties of geometrically finite meromorphic functions and the Lebesgue measure of their Julia
sets.
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1. Introduction and results

Let/ : C i->- <C be a transcendental meromorphic function, and/", n € H, denote the
nth iterate of / . Then / " (z) is defined for all z e C except for a countable set of the
poles off,/2,... , / " " ' . Define the Fatou set of/ by

F ( / ) = ( z e C ; {/"}is defined and normal in some neighbourhood of z}

and the Julia set of / by J(f) = C \ F(f). Put J^ = \\Zj~\oo). Then
Joo C J(f), and all the/"(z) are analytic in F(f) for each n e N. It is well known
that F(f) is open and completely invariant under/, that is, z € F(f) if and only if
f (z) € F(f) and J(f) also is completely invariant under/. Let U be a connected
component of F(f). Then f"(U) c Un, where Un is a component of F(f). If for
n ^ m, Un ̂  Um, then U is called a wandering domain of/. For a wandering domain
U, a basic result is that all the limit functions of [fn\u) are constants in J(f) U {oo}.
If for a smallest integer p > 0,f(U) C U, then UJs said to be aperiodic component
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94 Jian-Hua Zheng [2]

of period p. If U is a periodic component of period p and there exists a € 3 U U {oo}
such that / p"(z) —• a in U as n —>• oo, a n d / p ( z ) is not defined at z = a, then /7 is
called a Safer domain. Hence for a Baker domain U, all the limit functions of [f" \ u]
are constants in J(f) U {oo}.

A point ZQ is called periodic if for some n > 0, f"(zo) = Zo- In this case, the
smallest n with this property is called the period ofzo- A periodic point Zo of period
n is called attracting, indifferent, or repelling according as \(f")'(zo)\ is less than,
equal to, or greater than 1. For an indifferent periodic point zo of period n, we have
(fn)'(zo) = e2""', 0 < a < 1. When a is rational, we say that zo is rationally
indifferent and when a is irrational, zo is irrationally indifferent and furthermore, in
this case, z0 is a Siegel point if z0 € f ( / ) or a Cremer point if Zo € •/(/")•

Denote by sing(/ ~') the set of singularities of the inverse function of/ , that is, the
set of critical and asymptotic values and limit points of these values. Define

P(f) = [w e C : for some n e N, / " has a singularity at w]

and p_,

Sp(f) = \Jfk(smg(f-i)\Ak),
k=0

where Ak = {z : / * is not meromorphic at z}, Ao = 0 and Ai = {oo}. Then

p=0

DEFINITION. A meromorphic function / (z) is called geometrically finite provided
that

(1) #{•/</) n P(f)) <+oo.

When / (z) is a rational function with degree at least 2, (1) implies that / (z) has
no Cremer points. This result is also true for the case when / is of finite type, that
is, the set s ing(/" ' ) is finite, since for a Cremer point a off, we have in J(f) some
singularity c of / ~' such that

as 0+(c)\{fn(c)}Zo

(see [9, Proposition 1.11]). Rational functions which are geometrically finite were
investigated by several people. For example, it was proved in [10] (see [16, Chap-
ter 5]) that the Julia set of such a rational function has Lebesgue measure zero. A
meromorphic function which is geometrically finite and has no rationally indifferent
periodic points is called subhyperbolic according to the case of rational functions,
such rational functions have attracted much interest (see [16, Chapter 5]).
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In this paper, we discuss some basic properties and the Lebesgue measure of Julia
sets of transcendental meromorphic functions which are geometrically finite. This
case is obviously more complicated than that of rational functions. It is well known
that the Julia set of X tan z (0 < X < 1) lies in the real axis (see [1, 4]) and the
Julia set of sinz has positive Lebesgue measure (see [12]). These functions are all
geometrically finite.

A point a € C is said to be attracted by a set X provided that a is not (pre)periodic
and all the limit points of {/" (a)} are in X. We denote by Cr(f) the set of rationally
indifferent periodic cycles of/, by D (f) the set of points in J (f) which are limit points
of some sequence {/"'(£>*)}, where bk € F(f) D sing(/~') such that bk -*• b e J(f)
and nk ->• oo (k —> oo), and by L(f) the set of all the limit functions of / " | u, where
U is a wandering or Baker domain containing at least one element of sing(/ " ' ) .

THEOREM 1. A meromorphic Junction f (z) is geometrically finite if and only if all
of the following statements hold:

(1.1) #{/(/)nsing(/-')}<+ 00, #Cr(/)<+ 00, #L(f)< + oc and#D(f )< + oo.
(1.2) For each a € J(f) n sing(/~') either a is (pre)periodic or f(a) = 00 for

some n > 0.
(1.3) Each b € F(f) D sing(/ ~') is attracted by either {super)attracting or ratio-

nally indifferent periodic cycles or for some n > 0, / " (b) is periodic or there exists a
subsequence [nk] of positive integers such that f"k(b) —>• 00 (k -> 00).

For the case of entire functions we can deduce the following.

THEOREM 2. An entire function f (z) is geometrically finite if and only if all of the
following statements hold:

(2.1) #{./(/) nsing(/- ')} < +oo,#Cr(/) < +ooand#D(f) < +00.
(2.2) For each a € J(f) D sing(/ "'), a is (pre)periodic.
(2.3) Eachb € F(/")nsing/~' is attracted by either (super)attracting or rationally

indifferent periodic cycles, or for some n > 0, / " (b) is periodic or f" (b) —> 00,
n —• 00 .

We denote by Bp the family of meromorphic functions with bounded Sp(f). We
write Z?[ as B. The dynamics of the functions in Class B have been investigated by
many authors, see, for example, [3, 7, 18]. For an integer p > 0, put Ip(f) :— [z e
C : fnp(z) - • 00 as n - • 00 and/np(z) ^ 00}. We write h(f) as / ( / ) . Eremenko
[6] proved that if/ is entire, then I(f)^z0 and J(f) = 3 / ( / ) , this was extended
by Dominguez [5] to the case of meromorphic functions. It was proved by Zheng
[18] that for/ e B, / ( / ) c J(f) so that J(f) = / ( / ) . Below we shall discuss the
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Lebesgue measure of Ip(f) and J(f). For a e C, r > 0 and R > 0, define

£>(a, r) := {z; \z-a\< r] and £>« := C \ £>(0, R).

The following concept is important. A subset E of C is called thin at infinity provided
that there exist r > 0 and R > 0 such that for all a € E n Ds, we have

(2) d ^ g . P ( « . r ) ) - ^ E " 0 ( » ' » < ! - . ,
mes(D(a, r))

where £ > 0 is independent of a. The definition is a little different from that given
in [12].

THEOREM 3. Letf be in Class Bp. Iflpif) is thin at infinity, then mes Ip(f) = 0.
If, in additon, f is geometrically finite and J(f)(~\P(f)r\Joo = 0, then mes J ( /) = 0.

REMARK 1. McMullen [12] proved that mes(/(sinz)) > 0. It is clear that sinz
is of finite type and geometrically finite. Hence '/,,(/) is thin at infinity' cannot be
left out in Theorem 3. However, Eremenko and Lyubich [7] proved under different
assumptions that for an entire f e B, mes /(f) = 0 .

THEOREM 4. Let f be a geometrically finite meromorphic function. Assume that
there exists R > 0 such that dist ( / ( / ) D J(f)D DR, P(f)) > 0. Ifl(f)nj(f)is
thin at infinity and J(f)r\P(f)C\J00 = 0, then mes J(f) = 0 .

THEOREM 5. Letf be a geometrically finite meromorphic function. Assume that
there exists R > 0 such that dist (J(f) D DR, P(f)) > 0. IfJ(f) is thin at infinity,
then mes J(f) = 0.

REMARK 2. Theorem 4 is an extension of [8, Theorem 3]. Theorem 5 was proved by
McMullen [ 12] in the case when / is entire with compact P(f) and J(f)DP(f) = 0
and by Stallard [15] in the case when / is entire with dist (J (f), P(f)) > 0.

It is not easy in general to determine whether the Julia set of a meromorphic function
is thin at infinity. It is obviously easier to decide that / ( / ) n J(f) is thin at infinity,
and so it is sometimes more convenient to use Theorem 4 to show that mes J (f) = 0.
We discuss this further in the final section.

By the method of Stallard [15] and McMullen [12], we can deduce the following
result, which is used in the proofs of Theorems 3-5 and which is of independent
interest.

THEOREM 6. Let f be a meromorphic function with J (f) ^ C and let E be
a completely invariant subset of J(f) under f. For a € E \ Joo, if there exists
a subsequence {mk} of positive integers satisfying dist(fmt (a), P(f)) > S > 0,
k = 1, 2 , . . . . then the following statements hold:
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(6.1) \(fmt)'(a)\ -)• oo, k -> oo.
(6.2) Either a is not a Lebesgue density point ofEorf mk (a) -> oo, fc —> oo, and in

fA« case, if, in addition, there exists R > 0 SMC/I ?/uzf a := dist(Zs D DR, P(f)) > 0,
>• oo.

2. Proofs of Theorems 1 and 2

In order to prove Theorem 1 and Theorem 2 in this paper, we need the following
results.

THEOREM 7. Let f be a transcendental meromorphic function. If a & /«,, then a
cannot be attracted by any repelling or irrationally indifferent cycles. If, in addition, a
is not in any parabolic domain, then a cannot be attracted by any rationally indifferent
cycles.

Theorem 7 was proved by Perez-Marco [11] in the case of irrationally indifferent
cycles and by using the Petal Theorem of Fatou in the case of rationally indifferent
cycles. It is obvious that Theorem 7 holds for the case of repelling cycles.

THEOREM 8. Letf be a transcendental meromorphic function. If U is a wandering
domainoff,thenallthelimitfunctionsof{fn\v}liein(P(f))'C\J(f). IfU is a Baker
domain of period p off, then all the limit functions of{fn\u}liein{Sp{f))'C\J(J).

Theorem 8 was proved by Zheng [17]. The following lemma will be often used in
the proofs of our Theorem 1, Theorem 2 and Theorem 3 (see [8]).

LEMMA 1. Let f be a transcendental meromorphic function and let a & 7TO and
assume that a is not (pre)periodic. Assume that the set S of limit points of{f"{a)} in
the sphere C is finite. Then one of the following statements holds:

(I) ' / [f" (a)) has a finite limit point which is not in J^, a is attracted by a periodic
cycle;

(II) there exists a subsequence [nk] of positive integers such that fk(a) -»• oo
(k -> oo), and in this case, if, in addition, (5 \ {oo}) ( 1 4 = 0, then f (a) -> oo
(n -*• oo).

PROOF. Let [ait a2,.. • ,am) be the set of all finite limit points of [f"(a)}. We
take positive numbers d and M such that £>(ay, d) (j = 1,2,... , m) are mutually
disjoint and lie inside £)(0, M). Then there exists a positive integer n0 such that for
n > n0, f{a) € \JJ=l D{ahd) U [\z\ > M). We can take r > 0 and an integer
«! > n0 > 0 such that when n > nx, we have f(a) 6 UJLi D(cij, r) U {|z| > M]
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and/ (D(aj, r)) C D(f (a,), d), where we replace D{f (a,), d) with [\z\ > 2M] for
/ (a,-) = oo. Now we assume, without loss of generality, that there is a subsequence
fk(a) -> fli (it -> oo). If a, £ 7oo, then for fc > nu we have/"'(a) G D(au r),
and hence /"4+1(a) e D(f{ax), d), and by noting that / ( a , ) is also a limit point
of {/"(a)}, we have fk+\a) e D{f(a{), r). Thus we deduce that for n > nk,
f(a) G \JJ=l D(fJ(ai), r), and a, is (pre)periodic and furthermore from fk{a) ->•
d (& -> oo) it is easy to see that ax is periodic. Therefore a is attracted by a periodic
cycle. On the other hand, if for some p > 0, f(ai) = oo, then fnk+p(a) -*• oo
(k - • oo).

If f(a) A oo (n —>• oo) and (5 \ {oo}) n 7^ = 0, the same argument as above
implies that a is attracted by a periodic cycle. •

PROOF OF THEOREM 1. We prove that (1.1), (1.2) and (1.3) in Theorem 1 hold
provided that / is geometrically finite. It is obvious that (1.1) holds. For a e
J(f) n P(f) = A (say), it is clear that {f"(a)} C A, and from (1) we have that for
some n > 0,f(a) is periodic or oo. Consequently, (1.2) follows.

Now we prove (1.3). Obviously, F(f) has no Siegel disks and Herman rings, since
it is well known that their boundaries belong to J(f)C\P(f). Let U be the component
of F(f) containing b. We only need to consider the case when U is wandering. From
Theorem 8, we have that all the limit functions of {/"(£)} are in J(f) D (P(f))' and
from Theorem 7, b cannot be attracted to a periodic cycle in J(f). Lemma 1 implies
(1.3).

Below we prove that/ is geometrically finite provided that (1.1), (1.2) and (1.3)
hold. Since F(f) is completely invariant under/, 0+(F(f)) cannot meet / ( / ) , and
so we have

j(f) n P(f) = o+(J(f) n singer1)) u (O+(F(f) n sing*/-1)) n /</))

= O+(J(f) rising!/-1)).

Since #(J(f) n sing(f~1)) < +oo, it follows from (1.2) that we have

p :=#O+(7(/)nsing(/-1)) <+oo and (J(f)nP(f))' = 0.

Note that
J(f) n (P(/))' = ./</) n (F(f) n

For a e [ 0 + ( F ( / ) D sing*/"1))]' D J(f), there exists a sequence fct g F ( / ) n
sing(/"') and nt € N such that f "k(bk) —> a (k -* oo). If there is a subsequence
bkj =b€ F(f) n singf/-1), then a e Cr(/) U L(f). If bk ^ bk, (k £ k) and [bk]
has a limit point in F ( / ) , then it follows from (1.3) that a G Cr(f)UL(f). Ubk ^bK

(k £ k) and bk -> b e / ( / ) n sing^-1) and «* = yp
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f(b) = a (k —• oo) so that a 6 O+(J(f) D sing/"1). Under the remaining case,
aeD{f). Therefore,

[ o + ( F ( / ) n s i n g / - I ) ] ' n y ( / ) c C r ( / ) u L ( / ) u D ( / ) u o + ( y ( / ) n s i n g / - 1 ) .

Thus we deduce

#U(f) OP(f))<2p+ #Cr(f) + #L(f) + #D(f) < +oo,

so that / is geometrically finite. •

PROOF OF THEOREM 2. We prove that (2.1), (2.2) and (2.3) hold provided that /
is geometrically finite. By Theorem 1 we only need to prove (2.3). Let U be the
component of F(f) containing b. Obviously, we only need to consider the case
when U is wandering. From Theorem 7, {/"(&)} cannot be attracted by any periodic
cycles in J{f). Since all the limit points of {/"(&)} are in J(f) D P(f)' and / is
geometrically finite, Lemma 1 implies / " (b) —> oo (n -*• oo).

Now we prove tha t / is geometrically finite using (2.1), (2.2) and (2.3). For
a 6 L(f)\{oo], we have a component U of F(f) andfe € t/Dsingf/"1) such that a
is a limit point of {/"(&)}. Then U is wandering. By (2.3) we derive a contradiction.
Thus L(f) \ {oo} — 0. Then the same argument as in the proof of Theorem 1 implies
the desired result. .̂  D

3. Proofs of Theorem 3 and Theorem 4

In the proofs of Theorem 3 and Theorem 4, we need the following lemma, which
is essentially due to [7].

LEMMA 2. Assume that f € Bpand0 ^\J^Llf~
k(oo). Then there exists a positive

constant d such that for all z e C \ {0} at which f p is analytic, we have

A proof of Lemma 2 was given in [14] for '167r' instead of '4' in (3) by the
logarithmic change of variable in a neighbourhood of infinity, as in [7, Lemma 1]. We
prove (3) using the hyperbolic metric principle (see [19]).

PROOF. Take a positive number d such that

) C D(0, d) and | / ' (0) | < d.
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Let zo be an analytic point of f such that |/p(zo)| > d. There exists a domain U
such that Zo £ U and f : U —> Dd is a covering map. By the hyperbolic metric
principle, we have

(4) kuizo) = kDj(f>{zo)WY{Zo)\ = -

where ka and XDj are the hyperbolic densities of U and Dd respectively. Let U* be the
component of/" ' '(A/U {oo}) containing U. From [7, page 993] or [14, Lemma 2.1],
U* is simply connected and 0 £ U*. Thus we have

1 1
> —

Combining the above inequality with (4) implies (3). •

The following is an immediate consequence of Lemma2.

COROLLARY. Letf be in Bp. Forz € Ip(f), we have

(5) I U )KZ" -* oo, as n -> oo.

Therefore, f p is expanding on Ip (f).

PROOF. Indeed, by (3) we have

Then (5) follows. •

PROOF OF THEOREM 3. Assume, without loss of generality, that 0 <£ U*li/~*(°°)'
otherwise we consider the function g(z) = f (z+c)—c, where c g (J£l,/~*(oo),then
0 £ Utl , ^~*(°°)' and n o t e m a t mesIp(f) = mesIp(g) a°d mes 7 ( / ) = mes J(g).
Since Ip(f) is thin at infinity and/ e 5P, we can find /?, r, e > 0 such that /? > 2r,

s ing(/- p)nDR / 2 = 0

and for all z € 7P (/) n D2«, we have

(6) density(/p(/), Z)(z, r)) < 1 - s

> 32, where d is the constant in Lemma 2. Givena e Ip(f)nD4R, put
am := /m p(a). Since /"?(a) is a Lebsegue density point of Ip(f) if and only if a is,
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by noting that Ip(f) is completely invariant under f , we have am -> oo (m —> oo),
and we can assume \am\ > AR, m = 0, 1, 2 , . . . , and D(am, 2R) C DR. Then there
exists the analytic branch f~p off ~p that is univalent in the disk D(am, 2R) and that
maps am to am_i. It follows from Koebe's Distortion Theorem that

f~"(D(am, R)) C £>(<!„,_!,4/?|<y-p)'(am)l).

From Lemma 2 we have

on

Y{)\ \ \

. . 32/? am_, [ \am\

\am\ L d

R,
\am\

and hence

) = 0.

By the same argument as above, we have

)'(am)|)) C Z)

and by induction, we have

k=]

where /~ m p = Z,"7' o/2~p o • • • o / ^ is univalent in D(am, 2r) and hence Koebe's
Distortion Theorem implies that f~mp has distortion K = 9 in D(am, r). Using
Koebe's Distortion Theorem again we have that

D(a,sm/l6) C Dm :=f-n"'(D(am,r)) c D(a ,O,

where sm is the radius of the smallest disk centered at a containing Dm, and furthermore,
we have

m -> oo.
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From (6) and noting that Ip (f) is completely invariant under f , we deduce 

dens i ty ( / p ( / ) ,D m ) < l - e / 8 1 . 

Thus a is not a point of Lebesgue density of Ip (f), and mes lp(f) = 0. 
Now we prove the latter part of Theorem 3. Since 1(f) c IP(f), we have 

mes 1(f) = 0. For any a G J(f) \ (1(f) U Zoo), ( /"(a)} has at least one finite limit 
point. If all the limit points of \f(a)} are in J(f) D P(f), then from Lemma 1 and 
since J(f)nP(f)r\Joo = 0,we have that a is attracted by a periodic cycles. However, 
this contradicts to Theorem 7. Therefore there exists a subsequence [mk] of positive 
integers such that bk :-fmk(a) -> b e • / ( / ) , but 6 £ / ( / ) D P ( / ) U {oo}. Then we 
have that for some S > 0, dist(Z>*, P(f)) > S > 0. From (6.2) of Theorem6 it follows 
that a is not a point of Lebesgue density of J (f), and hence not of J(f)\(I(f)UJ00). 
We derive mes(J(f) \ (1(f) U /(»)) = 0, and since /«, is countable, it follows that 
m e s J ( / ) = 0.

PROOF OF THEOREM 4. Analysing the proof of the latter part of Theorem 3, we 
only need to prove mes(7 (f)CiJ(f)) = 0. Suppose that I(f)(lJ(f)hasa Lebesgue 
density point a. Since a„ := f(a) -*• oo (n -*• oo), we can assume that \a„\ > 
R, n = 1 ,2 , . . . , so that dist({a„}, P(f)) > 0. Then by applying Theorem 6 to 
1(f) n J(f) we have (f")'(a) oo and dist(a„, P(f)) -+ oo (n -+ oo). Since 
I(f )C\ J (f) is thin at infinity, there exist r, e > 0 such that 

(7) densi ty(/( /) n J ( / ) , £>(a„, r)) < 1 - e. 

Put r„ := (l/2)dist(a„, P(f)). We can assume that r„ > r, n = 1,2 There 
exists an analytic branch gn of / ~" univalent in D(a„, 2r„) carrying / " ( a ) back to a. 
Koebe's Distortion Theorem implies that 

D(a, d„) C Un := gn(D(an, r)) C D(a, 16dn), 

where dn := (r/4)\g'n(an)\ = r/ (A\(f")'(a)\) -> 0, oo. Thus from (7) it follows 
that a is not a Lebesgue density point of 1(f) D J (f). We derive a contradiction, 
from which Theorem 4 follows.

PROOF OF THEOREM 5. For a given point a e J(f) \ (P(f) U J^), we want to 
prove that a is not a Lebesgue density point of J(f). To this end suppose that a is. 
We consider two cases. 

(i) Assume that there exists a subsequence {m*} of positive integers such that 
{f mk (a)} c DR, then by Theorem 6, we have bk : = / m» (a) -» oo and dist(fc*, -> 
oo (£ -> oo), otherwise a is not a Lebesgue density point of J(f). By the same 
argument as in the proof of Theorem 4 we can derive a contradiction. 
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(ii) Assume that \f(a)\ < R,n = 1,2, Since/ is geometrically finite, from
Lemma 1 and Theorem 7 it follows that {/ " (a)} has a limit point not in P( / )D / (/) U
{oo}. Therefore for some constant 8 > 0 and a subsequence [nk] of positive integers,
dist(f"k(a), P(f)) > 8. By (6.2) of Theorem 6, we deduce that a is not a Lebesgue
density point of J (f). •

4. Proof of Theorem 6

PROOF OF THEOREM 6. We prove (6.1). Since D(fmk(a),8) n />(/) = 0, there
exists the univalent branch gk of/ ~mt in D(fmk(a), 8) carrying/mt(a) back to a. By
Koebe's Quarter Theorem,

gk(D(fm>(a), 8)) D D{a, (8/4)\g'k(f
m'(a))\),

and hence

fm'(D(a, (8/4)\gk(f
m'(a))\)) c D(fm'(a), 8).

For any fixed neighbourhood V o f a 6 J(f),f"(V) contains a disk with radius
25, when n is sufficiently large. This implies that (8/4)\g'k(f

mk(a))\ -> 0, that is,

Now we prove (6.2). To this end, we assume that a is a Lebesgue density point of
J(f). Put bk := /""(a) and Ck := gk'(D(bk, 8/2)).

Suppose that [bk] has a bounded subsequence, and assume, without loss of gener-
ality, that bk ->• b € J(f),k -> oo. Koebe's Distortion Theorem implies that

(8) D(a, pk) C Q C D(a

where pk := \g'k(bk)\8/S = 8/[$\(fmk)'(a)\] ->• 0, as k -> oo, where we employed
(6.1).

From (8) we have

*-*oo mes(C*) ~ K~~' t-̂ *) mes(D(a, 16/0*))
so that

mes(£)(frt,5/2)n7(/)) _
*-™ mes(D(ftt, 5/2)) ~ '

and consequently, mes(D(b, 5/2) n J(f)) = mes(D(fo, 5/2)). Thus D(b,8/2) c
J(f), and J(f) = C. This is a contradiction. Therefore bk -*• oo as fc -> oo.

Now we prove the latter part of (6.2). Suppose conversely that for some M > 0,
r* := dist(fct, P(f)) < M. Since fet —• oo, & —>• oo, we can assume that \bk\ >
R + M, k = 1, 2 , . . . . We can find zk € P ( / ) such that \zk - bk\ = dist(fc*, />(/))
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and hence \zk\ > R, k = 1, 2, It is clear that D(zk, cr) n E = 0, otherwise
dist(£ n DR, P(f)) < a, and then mesCDfo, a) D £>*) > 0, where £>* := D(bk, sk),
sk = rk — a/4. It follows that

(9) density(£, Dk) < 1 - e(M, CT) < 1,

where e(Af, a) only depends on M and a. Put £/* := £*(At)- Koebe's Distortion
Theorem implies that

D(a,dk)cUkcD(a,l6dk),

and 0 < dk := sk\g'k(bk)\/4 < M/(4|(/"")'(«)|) -+ 0, k -» oo. Then from (9) it
follows that a is not a Lebesgue density point of E. We derive a contradiction. •

5. Conclusion

From the previous discussion we have seen that, to some extent, whether the
Julia set of a meromorphic function has Lebesgue measure zero depends on whether
/ ( / ) H J(f) is thin at infinity. When/(z) is in Class B, Eremenko and Lyubich [7]
gave simple criteria for / (f) being thin at infinity, for example, / is an entire function
of finite order and its inverse / ~' has a logarithmic singularity. Hence mes / (ez) = 0,
but it is well known that J(ez) = C (see [13]). Since en(0) -> oo (n -»• oo), where
en(z) is the nth iterate of ez, ez is not geometrically finite. This is very interesting.
From their method, we can deduce that if / is an entire function of finite order and
its inverse / " ' has a logarithmic singularity, then /(/(ez)) is thin at infinity. The
following is an example illustrating Theorem 3.

EXAMPLE 1. Julia sets of zez and exp(z — ez~l) have Lebesgue measure zero.

PROOF. It is easy to see that zez is of finite type and 0 is only one asymptotic value
of zez and a logarithmic singularity of the inverse. From the result of Eremenko and
Lyubich [7], we have mes(/ (zez)) = 0. It is easy to see that 0 is a rationally indifferent
fixed point of zez and z = — 1 is the only critical point of ze? so that - 1 is attracted to
0 under iterates of zez, and — 1 € F{zez). Thus zez is geometrically finite. Theorem 3
implies mes(J(zez)) = 0.

Let h(z) = exp(z — ez~l). A simple calculation implies that sing(/i~') = {0, 1}
and 1 is a superattracting fixed point of h(z). We prove that h"(0) -> 1 (n -> oo).
For 0 < x < 1, h'(x) > 0 and h(x) < h(l) = 1. Note that

(h(x)-x)' = (1 - f-^hix) - 1 < 0,
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and so h(x) - x > h(l) - 1 = 0, that is, h{x) > x so that h([0, 1]) C (0, 1] and
further h"(0) -*• 1 (n -» oo). Thus h is geometrically finite. We can write h(z) =
(we~w/e) o ez, and hence I(h) is thin at infinity. Theorem 3 implies mes(/(/z)) =
mes(/(/0) = 0. D

The next example illustrates Theorem 5.

EXAMPLE 2. The Julia set of f(z) = z + 4 + e~z + e/(z - 1), e = 0.02 has
Lebesgue measure zero and H := {z;Rez > 0 and |z — 1| > 0.1} C / ( / ) .

PROOF. For all z 6 // , we have

Re/(z) = Rez + 4 + Re (* r z +e / ( z - 1)) > 4 - 1 - 0 . 2 > 2,

so that/ (//) C //, and H c F(f). Note that

(10) / ' (z) = l - £ T 2 - £ / ( Z - l ) 2 .

When |z — 1| < 0.1, we have

e

\z~l\2\f'(z)\ > ^ — — - 1 - \e~z\ > 2 - 1 - exp(-l +0.1) > 0,

and therefore all the critical points of f-(z) lie in D := {z; |z — 1| > 0.1}. When
z € D and/'(z) = 0, it follows from (10) that e~z — 1 — e/(z — I)2 and so we have

\e~z\< 1 + 2 = 3 and R e z > - l o g 3

so that

Re/(z) > Rez + 5 - Re —•-i— + Re
( z - 1 ) 2 z - 1

> - log3 + 5 - 2 - 0 . 2 = - log3 + 2.8> 1.3.

Therefore, sing(/-') C H> and further P(f) c H and dist(P(/), 7( / ) ) > 0.2.
Hence / is geometrically finite.

Below we prove that J{f) is thin at infinity. Obviously there exists a negative
number x0 such that for x < x0, we have d(x) := x + 4 - e + «Jle~x 12 > 4. Put
//t := {-7T/4 + 2&7r < Imz < 7r/4 + 2kn) n {Rez < x0], k = 0, ±1, ± 2 , . . . . For
z e //*, we have

Re/( z ) = Rez + 4 + Re(£/(z- 1)) + e-Rezcos(Imz) > J(Rez) > 4.

We deduce that/ (//*) c // and //* C F ( / ) . This implies that J(f) is thin at infinity.
By Theorem 5, we have that mes J(f) = 0. It is obvious that H C / (f). •

https://doi.org/10.1017/S144678870000361X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000361X


106 Jian-Hua Zheng [14]

EXAMPLE3. Let g(z) = ks'mz — s/(z — n), where X and e are both non-zero
constants. Thenmes(/(g)) > 0 andmes(7(g)) > 0.

PROOF. We first note that g(z) has no asymptotic values. We now consider the
critical values of g(z)- For z € C such that

we have

(11) \g(z)\ < |A.|J sinzj + . '"' , 5 M\/ l + |cos2z|
— J T | - ' " • • - \ z - n \

< w / l +

\z-n\'

Since the sequence of the zeros of g'(z) tends to infinity, from (11) we deduce sing(g~')
is bounded and infinite, that is, g(z) is in Class B.

By the same argument as in [12], we can prove that mes(7 (g)) > 0. This is because
for sufficiently large h > 0, \g'(z)\ = 0{eh) and |*"(zW(z)| « 1 in {z; \ Im(z)| > h],
that is, g is expanding by a rate of exponentiation and the nonlinearity is near 1. By
[18, Theorem 2], we have I(g) C J(g) and hence mes(7(/)) > 0. •

It was proved in [5] that for sufficiently small e and 0 < A. < 1, F(g) consists of
one attracting basin and contains all the singularities of g~l. It is easy to see that g(z)
is geometrically finite and dist(P(g), J(g)) > 0.

We conclude the section with the following result.

Let f (z) be an entire function having a completely invariant component. If
sing(/~') consists of critical values and logarithmic singularities and their limit
points, and sing(f ~l) D J(f) is finite, thenf is geometrically finite.

The result follows from [7, Lemma 11], which asserts that a completely invariant
component contains all the critical values and logarithmic singularities.
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