Bull. Austral. Math. Soc. Vol. 71 (2005) [113-119]

FLAT SUBMODULES OF FREE MODULES OVER COMMUTATIVE BEZOUT RINGS

K. Samei

A ring is called Bezout if every finitely generated ideal is principal. We show that every ideal of a commutative Bezout ring R is flat if and only if every submodule of a free R-module is flat. Using this theorem we obtain Neville's theorem.

1. INTRODUCTION

Neville has proved that the topological space X is an F space if and only if every ideal of C(X) is flat, or if and only if every submodule of a free C(X)-module is flat. This theorem is the main result in [4]. In this paper we define quasi-torsion-free modules, and when R is a commutative Bezout ring we show an R-module is quasi-torsion-free if and only if it is flat. We also show that every ideal of R is flat if and only if every submodule of a free R-module is flat. In Section 3, we prove Neville's theorem using these theorems.

We need to review briefly some standard terminology. In this paper R is always a commutative ring with identity and modules are unital. An R-module is flat if the tensor product is an exact functor. An ideal I of a ring R is called pure if for every $a \in I$, there exists $b \in I$, such that a = ab.

We denote by Max(R) the spectrum of maximal ideals of R. We say R is semiprimitive if $\cap Max(R) = (0)$. For any ideal I of R and $a \in R$, we set

 $\mathcal{M}(a) = \left\{ M \in \mathcal{M}(R) : a \in M \right\} \text{ and } \mathcal{M}(I) = \left\{ M \in \mathcal{M}(R) : I \subseteq M \right\}.$

Then the sets $M(I) = \bigcap_{a \in I} M(a)$, where I is an ideal of R, satisfy the axioms for the closed sets of a topology on Max(R), called the *Stone topology*, see [3, 7M].

Throughout, X will denote a completely regular and Hausdorff space and C(X) denotes the ring of continuous real-valued functions on X. Two sets E and F are completely separated if there exists some $f \in C(X)$ such that f = 0 on E and f = 1 on F. The cozero set of a function $f \in C(X)$ is the set $coz(f) = \{x \in X : f(x) \neq 0\}$. A space X is an F space if disjoint cozero sets are always completely separated. Several equivalent conditions for F spaces are given in [3, Theorem 14.25]; in particular X is an F space if and only if C(X) is a Bezout ring. The reader is referred to [3] for undefined terms and notations.

Received 6th September, 2004

This research was in part supported by a grant from IPM (No 83130029).

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/05 \$A2.00+0.00.

K. Samei

The following lemma is proved in [1].

LEMMA 2.1. In a ring R, every principal ideal is flat if and only if for each $a \in R$, Ann(a) is a pure ideal.

REMARK. Let R be a ring. Suppose

 $0 \longrightarrow K \longrightarrow F \stackrel{\phi}{\longrightarrow} A \longrightarrow 0$

is an exact sequence of *R*-modules, where *F* is flat. If *A* is flat, then for every principal ideal I = (r) of *R* we have: $K \cap FI = KI$, see [5, Theorem 3.55]. It is easy to see that for any $x \in F$, $xr \in K \cap FI$ implies that xr = kr, for some $k \in K$.

By redefining the concept of torsion, we can say something interesting about flat modules.

DEFINITION: Consider the exact sequence of *R*-modules

(1)
$$0 \longrightarrow K \longrightarrow F \stackrel{\phi}{\longrightarrow} A \longrightarrow 0$$

where F is a flat submodule of a free module. A R-module A is quasi-torsion-free relative to the exact sequence (1), if the following is true: whenever $r \in R$, $x \in A$ and rx = 0, there are $x' \in F$ and $k \in K$ such that $\phi(x') = x$ and rx' = rk.

The independence of the notion of quasi-torsion-free from the exact sequence (1) follows from the following lemma.

LEMMA 2.2. Let R be a ring. If an R-module is quasi-torsion-free relative to one exact sequence, it is quasi-torsion-free relative to every exact sequence.

PROOF: Suppose that A is quasi-torsion-free relative to the exact sequence

$$0 \longrightarrow K_2 \longrightarrow F_2 \xrightarrow{\phi_2} A \longrightarrow 0$$

where F_2 is a flat submodule of a free module. Use the fact that every module is a quotient of a free module to find a free module F_1 and an onto map $\psi_1 : F_1 \longrightarrow F_2$. Define the following diagram of exact sequences

by letting $\phi_1 = \phi_2 \circ \psi_1$ and $K_1 = \text{Ker}(\phi_1)$. Consider the exact sequence

$$0 \longrightarrow K_3 \longrightarrow F_1 \xrightarrow{\psi_1} F_2 \longrightarrow 0$$

Suppose rx = 0, where $r \in R$ and $x \in A$. Then there exist $x_2 \in F_2$ and $k_2 \in K_2$ such that $\phi_2(x_2) = x$ and $rx_2 = rk_2$. Let $x_1 \in F_1$ and $k_1 \in K_1$ be such that $\psi_1(x_1) = x_2$ and

Bezout rings

 $\psi_1(k_1) = k_2$. Therefore $r(x_1 - k_1) \in K_3$. Therefore by the above remark, $r(x_1 - k_1) = rk_3$, some $k_3 \in K_3$. Now $K_3 \subseteq K_1$, so $k_1 + k_3 \in K_1$. Thus we have $\phi_1(x_1) = \phi_2 \circ \psi_1(x_1) = x$ and $rx_1 = r(k_1 + k_3)$. Hence A is quasi-torsion-free relative to the top exact sequence. We note that the middle term of the top exact sequence is free. Now suppose that

$$(2) 0 \longrightarrow K \longrightarrow F \xrightarrow{\phi} A \longrightarrow 0$$

is an arbitrary exact sequence of R-modules, where F is a flat submodule of a free module. By the projectivity of free modules, there exists the following commutative diagram:

As in the above proof, it follows that A is quasi-torsion-free relative to (2). This means that A is quasi-torsion-free relative to every exact sequence.

THEOREM 2.3. Let R be a ring. Then every flat R-module is quasi-torsion-free. If R is Bezout, every quasi-torsion-free R-module is flat.

PROOF: Suppose that A is a R-module and consider the exact sequence

$$0 \longrightarrow K \longrightarrow F \xrightarrow{\varphi} A \longrightarrow 0$$

where F is a submodule of a free module. First we claim that A is quasi-torsion-free if and only if $K \cap FJ = KJ$, for all principal ideals J. Let $K \cap FJ = KJ$, for all principal ideals J and let $r \in R$, $x \in A$ and rx = 0, then there exists $x' \in F$ such that $\phi(x') = x$. So $rx' \in K \cap FJ$, where J = (r). Hence by the remark, there exists $k \in K$ such that rx' = rk and this implies that \cdot is quasi-torsion-free. Conversely, let A be quasi-torsion-free and $rx \in K \cap FJ$, where $r \in R$ and $x \in F$. Then $r\phi(x) = 0$, so there are $x' \in F$ and $k \in K$ such that $\phi(x') = \phi(x)$ and rx' = rk. Since x = x' + k', for some $k' \in K$, then rx = r(k + k'). Therefore $rx \in KJ$ and this proves the claim. Now the proof follows from [5, Theorem 3.55].

We come now to the main result of this section. But we first need the following lemma.

LEMMA 2.4. Let R be a ring and let A be a submodule of $\coprod_{j\in T} R$. Let π_j be the canonical projection map onto the *j*th coordinate, and assume the ideal $\pi_n(A) = I_n$ is principal with generator a_n . Then the exact sequence

$$0 \longrightarrow K_n \xrightarrow{i} A \xrightarrow{\pi_n} I_n \longrightarrow 0$$

splits if and only if there exists $x_n \in A$ with $\pi_n(x_n) = a_n$ and $\operatorname{Ann}(a_n) \subseteq \operatorname{Ann}(x_n)$.

PROOF: Assume that the above exact sequence splits. Let $\psi_n : I_n \longrightarrow A$ be the splitting homomorphism and let $x_n = \psi_n(a_n)$. If $a \in I_n$, then $\psi_n(a) = \psi_n(ba_n)$

K. Samei

 $b\psi_n(a_n) = bx_n$, for any b such that $ba_n = a$. In other words, $ba_n = 0$ implies that $bx_n = 0$, for any $b \in R$. Consequently, $Ann(a_n) \subseteq Ann(x_n)$.

Conversely, suppose that there exists $x_n \in A$ such that $\pi_n(x_n) = a_n$ and $\operatorname{Ann}(a_n) \subseteq \operatorname{Ann}(x_n)$. Define the splitting homomorphism $\psi_n : I_n \longrightarrow A$ by $\psi_n(ba_n) = bx_n$. Now if $ba_n = ca_n$, then $b - c \in \operatorname{Ann}(a_n) \subseteq \operatorname{Ann}(x_n)$, so ψ_n is well defined. Clearly, ψ_n is a module homomorphism. Finally, $\pi_n \circ \psi_n(ba_n) = b\pi_n \circ \psi_n(a_n) = b\pi_n(x_n) = ba_n$, so ψ_n is indeed a splitting homomorphism.

THEOREM 2.5. Let R be a Bezout ring. Then every principal ideal of R is flat if and only if every finitely generated submodule of a free R-module is flat.

PROOF: Suppose that every principal ideal of R is flat. Let A be a finitely generated submodule of a free module. Then A can be embedded in a finitely generated free module. So without loss of generality $A \subseteq \prod_{i=1}^{n} R$. The proof is by induction on n. If n = 1 then A is principal ideal, and so is flat by the hypothesis. Suppose n > 1 and the theorem has been proof for all finitely generated modules contained in $\prod_{i=1}^{n-1} R$. Let F_n be the free module $\prod_{i=1}^{n} R$. Let π_j and I_n be as in the lemma. Since R is Bezout and I_n is finitely generated, $I_n = (a_n)$, for some $a_n \in R$. Consider the homomorphism $\phi: F_n \to F_n$ defined by $\phi(b_1, \ldots, b_{n-1}, b_n) = (b_1, \ldots, b_{n-1}, b_n a_n)$. We want to consider a suitable submodule B of F_n (or rather $\phi^{-1}(A)$), so that we can apply Lemma 2.4 with $\pi_n(x_n) = 1$. Since A is finitely generated, there exists a finitely generated submodule B of F_n such that $\pi_n(x'_n) = 1$ (If no such x'_n exists, consider any $x' = (b_1, \ldots, b_{n-1}, b_n) \in B$ such that $\pi_n \circ \phi(x') = a_n$, that is, $a_n b_n = a_n$. Let $x'_n = (b_1, \ldots, b_{n-1}, 1)$ and enlarge B to include x'_n). Clearly, $\pi_n(B) = R$. Consider the exact sequence

 $0 \longrightarrow L_n \longrightarrow B \xrightarrow{\pi_n} R \longrightarrow 0.$

Trivially, the hypothesis of Lemma 2.4 is satisfied, and so $B = L_n \oplus R$. Clearly $L_n = \{(b_1, \ldots, b_{n-1}, 0) \in B\}$ is embedable in $\coprod_{1}^{n-1} R$, so that L_n is flat by the inductive hypothesis. Thus B is flat. Now consider the exact sequence

$$(3) 0 \longrightarrow K \longrightarrow B \xrightarrow{\phi} A \longrightarrow 0$$

We shall prove that A is flat by proving that A is quasi-torsion-free relative to the exact sequence (3). First note that the middle term B is a flat submodule of the free module F_n . Now assume that $x \in A$, $r \in R$ and rx = 0. We must find $x' \in B$ and $k \in K$ such that $\phi(x') = x$ and rx' = rk. Let $x' = (b_1, \ldots, b_{n-1}, b_n) \in B$ be such that $\phi(x') = (b_1, \ldots, b_{n-1}, b_n a_n) = x$. Therefore $(rb_1, \ldots, rb_{n-1}, rb_n a_n) = 0$, that is,

$$r \in \operatorname{Ann}(b_1) \cap \cdots \cap \operatorname{Ann}(b_{n-1}) \cap \operatorname{Ann}(b_n a_n).$$

Since R is Bezout, then

$$\operatorname{Ann}(b_1) \cap \cdots \cap \operatorname{Ann}(b_{n-1}) \cap \operatorname{Ann}(b_n a_n) = \operatorname{Ann}(b),$$

for some $b \in R$. According to Lemma 2.1, Ann(b) is pure, hence there exists $c \in Ann(b)$ such that r = rc. Set k = cx'. Clearly $k \in B$, rx' = rk and $\phi(k) = \phi(cb_1, \ldots, cb_{n-1}, cb_na_n) = 0$, that is, $k \in K$. Thus A is quasi-torsion-free relative to the exact sequence (3). Hence A is flat, by Theorem 2.3.

It is well-known that a R-module A is flat if and only if every finitely generated submodule of A is flat. Thus we have:

COROLLARY 2.6. Let R be a Bezout ring. Then every ideal of R is flat if and only if every submodule of a free R-module is flat.

3. Gelfand rings

The purpose of this section is to prove Neville's theorem, by the theorems of the previous section. We first give some results about semiprimitive Gelfand rings.

A ring R is called Gelfand (pm-ring) if every prime ideal of R is contained in a unique maximal ideal. When the Jacobson radical and the nilradical of ring R coincide, DeMarco and Orsatti [2] show that R is Gelfand if and only if Max(R) is Hausdorff; and if and only if Spec(R) is normal (in general, not Hausdorff). This class of rings contains the classes of regular ring, local rings, zero-dimension rings and C(X).

DEFINITION. Two subsets E and F of Max(R) are said to be almost separated in Max(R) if there exists $a \in R$ such that $E \subseteq M(a)$ and $F \subseteq M(a-1)$.

PROPOSITION 3.1. Let R be a primitive ring, then every principal ideal in R is flat if and only if for any non-zero $a, b \in R$, Max(R) - M(a) and Max(R) - M(b) are almost separated whenever ab = 0.

PROOF. Suppose every principal ideal is flat and $a, b \in R$ such that ab = 0. By Lemma 2.1, Ann(a) is pure, so there exists $c \in Ann(a)$ such that bc = b. Hence ac = 0, b(c-1) = 0. Thus

$$Max(R) - M(a) \subseteq M(c), Max(R) - M(b) \subseteq M(c-1).$$

Conversely, let $a \in R$. We want to show that Ann(a) is pure. Let $b \in Ann(a)$. If b = 0, then there exists $b = 0 \in Ann(a)$ such that $b^2 = b = 0$. So we can assume $b \neq 0$. Because ab = 0, Max(R) - M(a) and Max(R) - M(b) are almost separated. Hence there exists $c \in R$ such that

$$Max(R) - M(a) \subseteq M(c)$$
 and $Max(R) - M(b) \subseteq M(c-1)$

Thus ac = 0 and bc = b. Hence Ann(a) is pure.

LEMMA 3.2. Let R be a Gelfand ring, then the subsets E and F of Max(R) are completely separated if and only if they are almost separated in Max(R).

PROOF: Assume E and F are completely separated in Max(R). So $cl E \cap cl F = \emptyset$. Hence there exists the ideals I and J such that cl E = M(I) and cl F = M(J). We claim that I + J = R. Otherwise there exists $M \in Max(R)$ such that $I + J \subseteq M$. So $M \in M(I) \cap M(J)$, and this is a contradiction. Therefore a + b = 1, for some $a \in I$ and $b \in J$. Thus

$$M(I) \subseteq M(a)$$
 and $M(J) \subseteq M(a-1)$.

Conversely, Assume E and F are almost separated in Max(R). Then there exists $a \in R$ such that

$$E \subseteq M(a)$$
 and $F \subseteq M(a-1)$.

Thus by Urysohn's Lemma there exists the function $f: Max(R) \longrightarrow R$ such that

$$f(\mathbf{M}(a)) = 0$$
 and $f(\mathbf{M}(a-1)) = 1$

This shows that E and F are completely separated.

The following result is a generalisation of [1, Theorem 4].

THEOREM 3.3. Let R be a semiprimitive Gelfand ring. Then every principal ideal in R is flat if and only if for any non-zero $a, b \in R$, Max(R) - M(a) and Max(R) - M(b) are completely separated whenever ab = 0.

PROOF: It is obvious from Proposition 3.1 and Lemma 3.2.

LEMMA 3.4. X is an F space if and only if for any non-zero $f, g \in C(X)$, Max(C(X)) - M(f) and Max(C(X)) - M(g) are completely separated whenever fg = 0.

PROOF: We consider the map $\psi : \beta X \to Max(C(X))$ such that $\forall x \in \beta X, \psi(x) = M^x$, where βX is the stone-Čech compactification of X. It is well-known that ψ is a homeomorphism, and hence $Max(C(X)) \cong \beta X$, see [3, Section 6]. Therefore by [3, Theorem 7.3], for any $f \in C(X)$, we have:

$$\psi(\underset{\beta X}{\operatorname{cl}} \operatorname{Z}(f)) = \left\{ M^x \in \operatorname{Max}(C(X)) : f \in M^x \right\} = \operatorname{M}(f).$$

Consequently, X is an F space if and only if for any non-zero $f, g \in C(X), X - Z(f)$ and X - Z(g) are completely separated whenever fg = 0 (see [3, 14N.4]); if and only if for any non-zero

$$f,g \in C(X), \ \underset{\beta X}{\operatorname{cl}} (X - \operatorname{Z}(f)) = \beta X - \underset{\beta X}{\operatorname{cl}} \operatorname{Z}(f)$$

and

$$\operatorname{cl}_{\beta X} (X - \operatorname{Z}(g)) = \beta X - \operatorname{cl}_{\beta X} \operatorname{Z}(g)$$

are completely separated in βX , whenever fg = 0; and if and only if for any non-zero

$$f,g \in C(X), \operatorname{Max}(C(X)) - M(f)$$

118

and

Max(C(X)) - M(g)

are completely separated whenever fg = 0.

THEOREM 3.5. The following are equivalent:

- (1) X is an F space.
- (2) every submodule of a free C(X)-module is flat.
- (3) every ideal of C(X) is flat.

PROOF: To prove $(1) \Longrightarrow (2)$ suppose X is an F space, then C(X) is a Bezout ring, by [3, Theorem 14.25]. Thus (2) follows from Corollary 2.6, Theorem 3.3 and Lemma 3.4. It is trivial to show $(1) \Longrightarrow (2)$. Finally $(3) \Longrightarrow (1)$ follows from Theorem 3.3 and Lemma 3.4.

References

- H. Al-Ezeh, M.A. Natsheh and Hussein, 'Some properties of the ring of continuous functions', Arch. Math. (Basel) 51 (1988), 60-64.
- [2] G. De Marco and A. Orsatti, 'Commutative rings in which every prime ideal is contained in a unique maximal ideal', *Proc. Amer. Math. Soc.* **30** (1971), 459-466.
- [3] L. Gillman and M. Jerison, *Rings of continuous functions* (Springer-Verlag, Berlin, Heidelberg, New York, 1976).
- [4] C.W. Neville, 'Flat C(X)-modules and F spaces', Math. Proc. Cambridge Philos. Soc. 106 (1989), 237-244.
- [5] J. Rotman, An introduction to homological algebra, Pure and Applied Maths 148 (Academic. Press, New York, London, 1979).

Department of Mathematics Bu Ali Sina University Hamedan Iran e-mail: ipm@samei.ir Institute for studies in Theoretical Physics and Mathematics (IPM) Tehran Iran. Π

[7]