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1. Let pn>0 be such that ]T pn diverges, and the radius of convergence of
71 = 0

the power series

P(x)= t VX (1-1)
n = 0

is 1. Given any series Zan with partial sums sn, we shall use the notation

PsW= I PnSnX", (1.2)
n = 0

and
JJix) = Ps(x)/p(x). (1.3)

If the series on the right of (1.2) is convergent in the right open interval
[0, 1), and if

lim Js(x) = s,
x-»l-0

we say that the series Zan or the sequence {sn} is summable (J, pn) to s, where 5
is finite ((1); (2), page 80).

Particular cases of this method of summability are

(a) the Abel method: when/?n = 1, for all n;
(b) the (/ij-method: when pn is given by

(I-*)"*"1- £ pnx", for fc>-l,(|x|<l);
n = 0

(c) the logarithmic method (L): when /?„ is given by

n = 0

2. Suppose that/(jc) is a Lebesgue integrable function, periodic with period
2n. Let

f(x) ~ ia0 + Y, (fl« c o s nx + bn sin nx)
n = 1

be its Fourier series. Fixing x0, we write
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In a recent paper Hsiang (3) has applied the (L)-method to Fourier series
and has proved the following theorems.

Theorem A. A necessary and sufficient condition for the Fourier series of
f(x) to be summable (L) to the sum s, at the point x0, is that

f
Jo

xsint , ,.. .. xKdt = o( log(l-x)),
1 — X COS t

as x-*l — 0.

Theorem B. The {L)-summability of the Fourier series off{x), at x0, is a
local property of fix) near x0.

Theorem C. If

(i) r | 0(u)| rfu = i ( l og -\ (t-> + 0),

ra ( A(
as t-* +0for any arbitrary 8,0<8<n, then the Fourier series off(x) is summable
(L) to s at x0.

The object of this note is to generalise the above results by proving
corresponding theorems for (/, /?B)-summability. We establish the following
theorem.

Theorem 1. A necessary and sufficient condition for the Fourier series of
f(x) to be summable (/, pn) to the sum s, at the point x0, is that

Jo"T
for any arbitrary 8, 0<8<n, as x-*l—0.

3. Proof of the Theorem 1

Let

(avcosvx0
V = 1

be the «th partial sum of the Fourier series of/(x) at x0. Then we have

sn(*o)-s = - r — sin nt dt+o(X).
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Thus
00

£ Pn{>
n = 0

since
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-} oo Cn

5n(x0) — s}x" = — £ pnXn 1 0(f)
71 n = 0 J o

2 £ „ fa <K0
= - L P ^ —-

11 n = 0 J o *

71 Jo * n = 0

f" . . . sin «t
1 (p(n dt
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Clt ~T

sin nfrff

-7 oo

71 n = 0

-»0. as «-

/ « \
' \ ' ' Pn I

\n = 0 /

,x" ^ ^ s i n ntdt+o(p(x))
Js t

->oo.

by the Riemann-Lebesgue theorem, and hence
CO /"it J.(t\

n = 0 J , /

by the regularity of the method (/, pn).
Now,

n = 0 n = 0

Hence, the sequence {sn(x0)} is summable (/, />„) to J if and only if

Jo J

for any arbitrary (5, 0<^<TT, as JC-^1 — 0.
This establishes Theorem 1.

4. From the proof of Theorem 1, we get the following almost self evident
result.

Theorem 2. The (/, pn)-summability of the Fourier series of f(x) at x0,
is a local property off(x) near x0, i.e.

PJM = " [— Im p(xelt)dt+o(p(x)),
" J o *

for any arbitrary 8,0<8<n, as x-*\ — 0.

5. Next, we derive a criterion for (/, /7n)-summability for the Fourier series
of/(x) at x0 as follows.
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Theorem 3. Let the sequence {pn} be positive and decreasing steadily to
zero, such that {npn} is bounded. If

(i) [' | <Ku)\ du = oOKi-0), C-+0),
Jo

It **

as t-> + 0,/or any arbitrary 5,0<5<n, then the Fourier series off{x) is summable
(/, pn) to sat x0.

6. Proof of Theorem 3
We write

i - x

say. • Then, since
.. 1 ^ „ . ^ ,. „ „ sin nt
urn - 2̂  Pnx s in nt = " m Znp

t-> +0 t n = 0 (->+0

= 0 ' l

Vl-x
by hypothesis, we have by (i)

asx->l —0. Observing that

£ pnx" sin «r = 0(1),
n = 0

uniformly for 0 gj x < l and 0<t ^ n, which follows from an example of
Titchmarsh ((4), p. 5), since {pnx"} is positive and decreases steadily to zero
uniformly for 0 ^ x< 1, we find from (ii)

as x-*l — 0. Hence, Theorem 3 follows from Theorem 1.
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