
J. Functional Programming 6 (6): 811-838, November 1996 © 1996 Cambridge University Press 811

A positive supercompiler

M. H. S0RENSEN, R. GLUCK and N. D. JONES
DIKU, Department of Computer Science, University of Copenhagen,

Unwersitetsparken 1, DK-2100 Copenhagen 0, Denmark
(e-mail: {rambo,glueck,neil}Qdiku.dk)

Abstract

We introduce a positive supercompiler, a version of Turchin's supercompiler maintaining only
positive information during transformation, and using folding without generalization. The
positive supercompiler can also be regarded as a variant of Wadler's deforestation maintaining
an increased amount of information. We compare our algorithm to deforestation and, in less
detail, to partial evaluation, Turchin's supercompiler, Generalized Partial Computation (GPC),
and partial deduction by classifying these transformers by the amount of information they
maintain during transformation. This factor is significant, as a differentiating example reveals:
positive supercompilation, Turchin's supercompiler, GPC and partial deduction can specialize
a general pattern matcher with respect to a fixed pattern to obtain an efficient matcher very
similar to the Knuth-Morris-Pratt algorithm. Deforestation and traditional partial evaluation
achieve this effect only after a non-trivial hand rewriting of the general matcher.

Capsule Review

Supercompilation is a technique of function transformation developed originally by Turchin
(1986) for a functional language Refal. The technique uses DRIVING (the forced unfolding
guided by functional configurations) to construct a potentially infinite tree of states (config-
urations) and transitions. This tree is then converted into a self-sufficient graph by reducing
some of the configurations to their predecessors, which is similar to folding, or creating new
configurations by generalization and redoing the driving. Supercompilation has been shown
to do partial evaluation and deforestation, as well as more difficult transformations.

Sorensen, Gliick and Jones present and discuss the essential features of supercompilation,
using a simplified version of the supercompiler which they call POSITIVE. The reason for this
name is that the information which is propagated through the graph during driving includes
only POSITIVE elements, i.e. statements that a variable matches a certain pattern, while the
NEGATIVE statements that a variable does not match a pattern (which are propagated in
Turchin's supercompiler as RESTRICTIONS) are not taken along. Generalization is also not
done in the positive supercompiler.

These simplifications allow the authors to present supercompilation in more traditional
formalism and in more detail, as well as compare it with similar techniques: partial evaluation,
deforestation and generalized partial computation. The authors consider in detail one well-
known example of program transformation: the transformation of a naive string matcher
by specializing it for a given specific pattern into an efficient algorithm known as KMP (it
became a kind of standard test in partial evaluation and similar techniques). They show that
while supercompilation (both full and positive) and generalized partial computation solve the
problem, 'regular' partial evaluation and deforestation cannot do this without a non-trivial
modification in the original unspecialized matcher.

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

812 M. H. Sorensen, R. Gltick and N. D. Jones

1 Introduction

We are concerned with certain automatic instances of Burstall and Darlington's
(1977) framework. The techniques of the framework are: unfolding, instantiation,
definition, folding and abstraction. While applying these mechanisms the transformers
we consider maintain information about the terms previously encountered.

Partial evaluation, discussed at length in Jones et al. (1993), performs program
specialization. For instance, a call / 2 v is replaced by fi v where ji is an optimized
version of / taking into account that the first argument is known to be 2. In offline
partial evaluators, the decision when to unfold, instantiate, define and fold is guided
by program annotations generated before transformation; in online versions such
decisions are taken during transformation.

Deforestation, due to Wadler (1990), performs program composition by eliminating
intermediate data structures, thus reducing the number of passes over data. For
instance, a call fa (fb xs), where fa and /;, are functions that remove all a's and
b's in a list, respectively, is replaced by a call fab xs to a function fab that removes
all a's and fo's in one pass. To ensure that deforestation terminates and that the
resulting program is no less efficient than the original, Wadler restricts application
of deforestation to compositions of functions with treeless definitions, a syntactic
restriction on the terms defining functions. However, we will see that deforestation
has valuable applications well beyond this original, intended scope by applying it to
arbitrary definitions - see sections 5.5 and 6.2.

Supercompilation, conceived by Turchin (1979, 1980, 1986) in the early 1970's in
Russia for the language Refal, achieves the effects of both deforestation and partial
evaluation, as well as some more dramatic optimizations. This is done by driving,
i.e. unfolding and propagation of information, and generalization (Turchin, 1988), a
form of abstraction which enables folding. The decision when to generalize is taken
online.

Generalized partial computation (GPC), due to Futamura (1988), has similar effects
and power as supercompilation, but requires the use of a theorem prover.

The above methodologies have been developed for functional languages. Similar
methodologies are also being studied for other language paradigms, e.g. partial
deduction in logic programming (Lloyd and Shepherdson, 1991; Komorowski, 1992).

In this paper we present a positive supercompiler comprising a driving and a
folding component. The driving component can be viewed as a reformulation of a
certain fragment of driving as defined in Turchin's supercompiler. For the second
component we fold only calls that are identical up to renaming, the same strategy
as in deforestation.^

The formulation of our two components is inspired by Wadler's formulation of
deforestation (Wadler, 1990). This choice makes it easy to explain the essence of
driving and its relation to techniques used in other transformers, e.g. deforestation.

* Earlier work by Turchin et al. (1982), Feather (1982), Bird (1984), Wadler (1984) and others
also addressed elimination of intermediate data structures.

t Recent work (Sorensen and Gliick, 1995) develops generalization for the positive super-
compiler; this is beyond the scope of this paper.

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

A positive supercompiler 813

d

t

P

::= dx...dm

::= / « 1 . . . o n = t

::= y
1 C £ , . . . t n

1 / t i • • • tn

| case £0 of pi -> t i ; . . . ;pm->tm

| if ti = t2 then t3 else t4

: := c u i . . . y n

(program)
(definition)

(variable)
(constructor)
(function call)
(case-expression)
(conditional)

(flat pattern)

Fig. 1. Syntax.

The paper is based on Serensen, Gliick and Jones (1994) and Sorensen (1994a). It
belongs to a line of work which aims at a better understanding of supercompilation
and its relation to other program transformers (Gliick and Klimov, 1993; Jones,
1994; Gliick and Jergensen, 1994; Gliick and S0rensen, 1994; Nielsen and S0rensen,
1995).

The remainder of the paper is organized as follows. In section 2 the object
language is presented. In section 3 we introduce the KMP test which allows us to
assess the amount of information that a program transformer maintains. In section 4
we present some preliminaries which are used in section 5 to present the positive
supercompiler. Using the KMP test, we compare the information propagation in
positive supercompilation and deforestation in section 6. In section 7 we extend
the comparison to partial evaluation, GPC, Turchin's supercompiler and partial
deduction. Finally, in section 8 we give some examples illustrating more capabilities
of positive supercompilation.

2 Object language

We are concerned with a first-order functional language; the exact syntax is presented
below. The intended operational semantics is normal-order graph reduction to weak
head normal form in the sense of Bird and Wadler (1988). This could be formalized
by techniques similar to Launchbury (1993) or Ariola et al. (1995), but we shall not
have any need to do so.

Definition 1

A program q is a sequence of function definitions d where the body of each definition
is a term t constructed from variables, constructors, function calls, case-expressions,
and conditionals - see figure 1 (where m > 0, n > 0).

To ensure uniqueness of reduction, we require that each function in a program
have at most one definition and that no two patterns pt and pj in a case-expression
contain the same constructor. As usual we require that patterns in case-expressions

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

814 M. H. Serensen, R. Gliick and N. D. Jones

be linear, i.e. no variable occurs more than once in a pattern p,. We also require that
all variables in the right side of a definition be present in its left side.*

We have made a number of syntactic choices. First, we use case-expressions rather
than functions defined by patterns, following Wadler (1990). The advantage of
case-expression is that the self-contained syntax is easier to analyse. Moreover, the
difference between deforestation and positive supercompilation is easiest to explain
for explicit case-expressions.

Second, case-expressions may only have non-nested patterns. This restriction is
quite common, and semantics-preserving methods exist for translating arbitrary
patterns into the restricted form (Augustsson, 1985; Wadler, 1987).

Third, we have adopted an explicit equality construct. For a data type with a
finite set of constructors, equality can be programmed by means of case-expressions,
i.e. by listing all possible cases. We avoid this approach because examples become
longer. While the difference between positive supercompilation and deforestation
manifests itself even without the equality construct, the difference between positive
supercompilation and Turchin's supercompilation is less significant when the equality
construct is absent.

Finally, as a matter of simplicity, our language is first-order. Several formulations
of higher-order deforestation exist. For positive supercompilation, certain new prob-
lems arise in the extension to the higher-order case (see section 5.2), and these are
beyond the scope of this paper.

3 A test for program transformers

A way to test a method's power is to see whether it can derive certain well-known
efficient programs from equivalent naive and inefficient programs. One of the most
popular such tests is to see whether the method generates, from a general pattern
matcher and a fixed pattern, a specialized pattern matcher of efficiency similar to
the one generated by the Knuth-Morris-Pratt algorithm (Knuth, Morris and Pratt,
1977). We call this the KMP test.

Subsection 3.1 introduces general and specialized pattern matchers, and subsec-
tion 3.2 discusses the time complexity of these matchers.

3.1 General, naively specialized and KMP specialized matchers

Figure 2 shows a general matcher. It takes a pattern and a string and returns True
iff the pattern occurs as a substring in the string.

Now consider the naively specialized matcher in figure 3 which matches the fixed
pattern AAB with a string u by calling match. Evaluation proceeds by comparing A
to the first component of u, A to the second, B to the third. If at some point the
comparison failed, the process is restarted with the tail of u.

We use the shor thand nota t ion (x : xs) and [] for the constructors Cons x xs and Nil,
respectively. For x\ :xi.... : x n : [] we write [x i ,X2, . . . ,x n] , or sometimes x\X2-..xn.

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

A positive supercompiler 815

match p s =
loop pp ss op os =

next op os =

loop p s p s
case pp of

[] -»
(p : pp) ->

case os of
[] ->

(o : os) —>

True
case ss of

[]
(s : ss)

False
loop op os

—> False
—> if p = s

then /oop
else next

op os

pp ss op os
op os

Fig. 2. General matcher.

matchAAB u = match AAB u

Fig. 3. Naively specialized matcher.

This strategy is not optimal. Suppose, for instance, that the string u begins with
three ^4's. Then the steps of the naively specialized matcher can be depicted as
follows:

AAA1- AA1--- AAV

After matching the two A's in the pattern with the first two ,4's in the string, the
B in the pattern fails to match the A in the string. Then the process is restarted
with the string's tail, even though it is known that the first two comparisons will
succeed. Rather than performing these tests whose outcome is already known, we
should skip the three first A's in the original string, i.e. proceed directly to compare
the B in the pattern with the fourth element of the original string. This is done in
the KMP specialized matcher* in figure 4.

After finding two A's and a third symbol which is not a B in the string, this
program checks (in loops) whether the third symbol of the string is an A. If so, it
continues immediately by comparing the next symbol of the string with the B in the
pattern (by calling loopB), thereby avoiding repeated comparisons.

Knuth, Morris and Pratt (1977) give a matching algorithm running in time O(\p\ + \s\),
where p is the pattern and s the string. Their technique first computes in time O(|p|) a
next-table showing how much of the string can be skipped in the case of a mismatch.
The string is then read from left to right in worst-case time O(\s\) using the next-table.
Our KMP specialized matcher implicitly represents the next-table in its call structure. At
the end of their paper, Knuth et al. consider variations where the string is scanned from
right to left, thereby arriving at another linear matching algorithm with average-case time
complexity 0((|s| • log\p\)/\p\). These variations are not relevant to this paper.

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

816 M. H. Serensen, R. Gliick and N. D. Jones

match^ u =
IOOPAAB SS =

loopAB SS =

IOOPB SS =

loopAAB u

case ss of
[] -*

(s7 : ss1) ->

case ss of

[] -»
(s7 : ss1) ->

case ss of

[] ->
(s1 : ss7) ->

False
if X =
then
else

False
if /! =
then
else

False
if £ =
then
else

= y
/Oop^fl
IOOPAA

= s7

loops
IOOPAA

= s/
True
if A =
then
else

ss7

B SS7

ss7

B SS7

= s'
loops ss1

IOOPAAB SS1

Fig. 4. KMP specialized matcher.

3.2 Complexity of the matchers

Let for any function / and values d\,...,dn the number of normal-order graph
reduction steps required to print the whole value of / d\... dn be denoted by
tf(di,...,dn). Let M be the general matcher, Np be the naively specialized matcher
for pattern p, and Kp be the KMP specialized matcher for pattern p.

It is obvious that tM(p,s) is O(\p\ • \s\). This implies that for every p, both ^(s)
and tN (s) are O(\s\). Spelled out:

Vp 3c> 0 Vs : tNp{s) < c-\s\ and < c-\s\ (1)

This property is a consequence of the mere fact that p is fixed in both Np and Kp.
In terms of time complexity there is thus no difference between the naively

specialized and KMP specialized matchers. However, if we count the actual number
of comparisons made by Np and Kp, the former number is larger. More importantly,
the former number, but not the latter, becomes larger with larger p. That is, the
following strengthening of (1) holds for Kp but not for Np:

HoOVpVs (2)

This interchange of quantifiers is the crucial difference between Np and Kp.
Whenever a program transformer takes as input the naively specialized matcher

Np and returns as output a specialized matcher fp satisfying (2), like Kp, we shall
say that the transformer passes the KMP test. In section 6 we investigate whether
deforestation and positive supercompilation pass the KMP test. In Section 7 we
review and explain the known results about the KMP test for partial evaluation,
Turchin's supercompilation, GPC, and partial deduction, and relate all these results.

We end this section by stressing that the complexity considerations in this paper

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

A positive supercompiler 817

regard normal-order graph reduction. In terms of observable weak head-normal
forms, normal-order reduction and normal-order graph reduction are indistinguish-
able. The only difference is in efficiency: in normal-order reduction a computation
may be duplicated and therefore executed several times.

4 A normal-order reduction semantics

For the purpose of explaining deforestation and positive supercompilation as dif-
ferent generalizations of an operational semantics, we now present a plain normal-
order reduction semantics for our language. However, we stress that the intended
operational semantics of our language is normal-order graph reduction, and that
the present normal-order reduction semantics will not be used for the complexity
considerations in this paper.

Subsection 4.1 describes some notions that are useful for expressing which part
of a terms should be reduced, and subsection 4.2 uses these notions to state the
normal-order reduction semantics.

4.1 Redex and evaluation context

A term with no free variables is called closed. For every closed term £ two possibilities
exist with respect to normal-order reduction:

(i) t = ct\... tn, and then interpretation proceeds to the arguments* t\ ...tn;
(ii) t ^ ct\...tn, and then the leftmost outermost evaluation of term t forces a

unique call to be unfolded, or a unique conditional or case-expression to be

reduced to one of its branches.

For instance, evaluation of

case (/ t) o f []->f ' ; (x : xs) -> t"

forces the call / t to be unfolded to decide which branch of the case-expression to
choose. Thus in case (ii) the term will be decomposed into:

(1) a redex r - the next function call to unfold, or conditional or case-expression
to reduce to a branch; and

(2) an evaluation context e - the part of t surrounding r.

Above, r = / t and e = case o of [] —• t!; (x : xs) —* t". We write t = e(r) to denote
the result of replacing o in e by r, so in case (ii) the term t can be written uniquely
in the form e(r). We now define these notions more precisely.

Definition 2

Let b, o, r, e range over values, observables, redexes and evaluation contexts as defined
by the grammar in figure 5.

Based on the assumption that the user demands that the whole term's value be printed.

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

818 M. H. Sorensen, R. Gliick and N. D. Jones

b ::
o ::

r ::

e ::

e' ::

: c
c\\

= fh
case
iffc,

= o
case
ife'
if t.

= e |

...bn

...tn

••tn

o o f px - » t r , ••• ; p m

= b2 then t else t!

e of pi —* ti; . . . ; pm

= t2 then 3̂ else t4

= e' then (3 else t4

c b (. . . fc,_! e' f,+1... tn

->tm

-*tm

(value)
(observable)

(redex)

(evaluation context)

Fig. 5. Value, observable, redex and evaluation context.

A value b is a term without redexes. An observable 0 is a term with a known
outermost constructor. A redex r is a term in which the outermost construction
(function call, conditional or case-expression) can be reduced without reducing
subterms first. An evaluation context e is a term with a 'hole' o.

The rules for the evaluation context e state where one is allowed to reduce a
redex: (i) under a case-expression (so that the tested term can produce an outermost
constructor); (ii) in the leftmost tested term in a conditional (so that the tested term
can reduce to a value); (iii) in the rightmost tested term in a conditional, provided
the leftmost term has been reduced to a value.

Note that the rule for e' ensures that the tested terms in a conditional will be
evaluated to values, not just observables. One could imagine a different reduction
semantics which would allow choosing the false branch as soon as the two tested
terms are known to have different outermost constructors. For instance, if c\ ^ cj,
then the term

if c\ t\ = C2 t2 then si else S2

could be reduced to S2 directly, even if reduction of (1 never terminates. Whether
one prefers this semantics is perhaps a matter of taste, but it would complicate the
formulation of the reduction semantics.

It is easy to verify that any closed term t is either an observable o, or it decomposes
uniquely into the form t = e(r) (the unique decomposition property). This property
ensures that the clauses of the reduction semantics below are mutually exclusive,
and together exhaustive over all closed terms.

4.2 Normal-order reduction semantics

Definition 3
The reduction semantics is given in figure 6. The expression t{vt := (,}•!_, denotes
the result of simultaneously replacing all occurrences of vt in t by the corresponding
terms t,-. Term identity is indicated by =.

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

A positive supercompiler 819

(1)

(2)

(3)

(4)

(5)

J \ Cti...tnJ

, / H e{f t\ ...tn)]]

J\ e(case (c t{... tn) of pi -» s i ; . . . ; pm -

Jl e(if b = b' then t else t7)]

^H e(if fc = t' then t else f) J

= c(^Et,]|)...(^|[t.]|)

= / [^ { D , :=t,}J.,>]
where f v{...vn = t

where p;- = c yi . . . yn

if ft = fc'

if fc # 6'

Fig. 6. Normal-order reduction semantics.

5 Positive supercompilation

We shall express the positive supercompiler by rules for rewriting terms. The rules
can be understood as mimicking the actions of the normal-order reduction semantics
- but extended to continue the transformation whenever a value that is needed is
not available at transformation time. For example, if a case-expression cannot be
decided at transformation time then residual 'case' code will be generated to account
for every branch at run-time.

After generalizing the notions of redex and evaluation context (section 5.1),
we define driving (section 5.2), the core of the positive supercompiler, and add
folding (section 5.3). Then we consider the correctness of the positive supercompiler
(section 5.4), and compare positive supercompilation to deforestation (section 5.5).

5.7 Redex and evaluation context

Analogously to normal-order reduction of closed terms, two cases should exist for
every general term t with respect to normal-order transformation:

(i) t = c t\ ...tn, in which case transformation will proceed to the arguments; or
t = v, in which case transformation terminates;

(ii) t ffe c t\... tn and t^v, then leftmost-outermost evaluation of t forces a unique
call to be unfolded, or a unique conditional or case-expression to be reduced.

To describe transformation as opposed to reduction we thus need to extend the
notions of 'observable', etc. Compared to notions for reduction, the only difference
is that variables are added to the clauses for observables b and values o; this of
course indirectly affects the definition of redexes and contexts. We use the same
names 'value, observable, redex, context' for these extended notions.

Definition 4
Let b, o range over values and observables as re-defined by the grammar

b ::= cb\...bn \ v

o : := ctx...tn | v

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

820 M. H. Sorensen, R. Gluck and N. D. Jones

= r I) n

where

(4) &"\ e(case (

where

(5) 0>\ e(case v
= rcase i

(6) 0>l e(if b =
£®fT alt
** U. "\t
if ft, fo'

(7) ^ [e(if ft =

if fe.fc'

(8) <?[e(iffe =
= r i f t =

if ft, 6'

I

/ t) i . . . U n = t

c t i . . . t B) o f pi - » s i ; . . . ; p m - > s m >]

p ; = c D i . . . vn

of pi —• s i ; . . . ; p m - > s m)]

; of p, -^ &>l (e(si)){» := pi}] ; ... ;pm -> &>l (e{sm)){v := pm}] n

b' then r else t7)]

are closed and b = V

b' then t else 0 J

are closed and b ^k b'

b' then (else 0 J
= b' then 0>l (e{t))MGU{b,V) 1 else ̂ »[e(f)]""
are not both closed

Fig. 7. Positive driving.

Any term t is either an observable o or it decomposes uniquely into the form
t = e(r). This implies that the clauses of driving, defined in the next subsection, are
mutually exclusive and together exhaustive over all terms.

5.2 Positive driving

Definition 5

The transformation rules for driving are given in figure 7. Quine's 'quasi-quotes'
r and ~* are used to bracket code that will appear in the transformed program.
Subexpressions, such as "̂H e(f/)]] appearing inside r~', are to be replaced by the
code they generate (without quotes), e.g. in the conditional in clause (8).

The notation MGU(b,b') denotes the most general unifier {vt := t,-}"=1,(n > 0) of
b, b' if it exists, and fail otherwise. It is convenient to define tfail = t. The unifier
must be chosen to be idempotent, which is always possible - see Sorensen (1994a).

To avoid name capture, in clause (3) the definition of / should always be renamed
so that the variables in patterns in case-expressions are fresh.

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

A positive supercompiler 821

&\ append

= n

= 91

= 9\

= 1 :

= 1 :

= 1 :

(1 : xs) ys]

case (1 : xs) of
[] - ys

(x' : xsO — x'

1 : append xs ys J

11 : &\ append xs

&\ case xs of
[] -

(x' : xs') -*

case xs of

[] -» n
(x' : xs') -> ^[[

case xs of
[] - ys

(x' : xs1) -> ̂ >[[

append xs1 ys J

ys
x' : append xs7 ys]]

^]
x' : append xs1 ys J

x' J : ̂ [append xs7 ys]

(3)

(4)

(2)

(1,3)

(5)

(1,2)

Fig. 8. Positive driving 2?\ append (1 :xs)ys\.

It is instructive to compare the transformation rules for driving with the rules
for normal-order reduction. Clauses (1, 5, 8) for 0> have no counterpart in J since
SP deals with general terms whereas J deals with closed terms. In these cases 2P
generates a residual expression to account for the different run-time possibilities.
Note the substitutions {v := p,} and MGU(b, b') in clauses (5) and (8). The assumed
outcome of case and equality test is propagated to the terms on the right hand side.

Otherwise, the clauses (2, 3, 4, 6, 7) of 9 are identical to the clauses (1-5) of J.
An induction proves that J and & give the same result on closed terms.

Note the difficulty that would arise in rule (5) if our language was higher-order:
instead of simply having a variable v in the test, we might have a stuck application
v v', in which case no direct instantiation can be made in the branches.

5.5 Folding

The driving algorithm hardly ever terminates. The reason is that rule (3) unfolds all
function calls regardless of whether the same term has been encountered before or
not. Figure 8 shows what happens when we apply 2P to the term append (1 : xs) ys.
Transformation of append xs ys leads to transformation of the same term, modulo
variable renaming, and the transformation process continues ad infinitum.

This is not to say that there is a problem with the driving algorithm, but rather
that it would not make sense to consider driving in isolation. Similarly, one does

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

822 M. H. Serensen, R. Gliick and N. D. Jones

&\ append (1 : xs) ys J

= &1 case (1 : xs) of
[] - ys

(x' : xs') —> x' : append xs1 ys J

= Sf\ 1 : append xs ys]

= 0>l\]:0>l append xs ys]

= 1 : h xs ys

h xs ys

= £?"[[case xs of
[] - ys

(x' : xs') —> x' : append xs1 ys J

= case xs of
[] - nysl

(x' : xs7) - • 0>l x' : append xs1 ys J

= case xs of
[] - ys

(x' : xs1) -> &\x"\:9\ append xs' ys I

= case xs of
[] - • ys

(x! : xs') —* x' :hxs! ys

(3)

(4)

(2)

(l,definition)

(3)

(5)

(1,2)

(l,fold)

Fig. 9. Positive driving 0>\ append (1 : xs) ys J with folding.

not consider the transformation rules for deforestation presented in Wadler (1990)
in isolation; in both cases one adds folding.

Specifically, when we encounter the term append xs ys while transforming, we de-
fine a new function h xs ys = ^ \ append xs ys\, and fold when the term append xs ys
is encountered again, as illustrated in figure 9. The result of transforming the term
append (1 : xs) ys then is the term 1 : (h xs ys), where h xs ys = case xs of [] —>
ys; (x : xs?) —• x : (h xs1 ys).

This folding strategy, called a-identical folding, works in general as follows. In
every step where clause (3) is applied, the result of transformation is a call to a new
function:

where u i . . . um are the free variables of e{f t\... tn) in order of their first occurrence.
At the same time one adds to the residual program a definition of/ ' satisfying:

f'u1...um=Ple(t{v, := t,}r=i> I

where fv\... vn = t. If, during the execution of ^ [e{t{vt := u}"i=l) J, the transformer

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

A positive supercompiler 823

encounters a renaming (e{f t\... tn))o of (e(f ti... („)), it uses the rule

All this is left implicit in the subsequent examples.
The reason for folding only on terms with a function call in the redex is that

any infinite sequence of transformation steps must include such a term. The same
approach is taken in Wadler (1990).

5.4 Correctness

There are three issues of correctness for 0>: preservation of operational semantics,
non-degradation of efficiency, and termination.

Preservation of operational semantics. The output of & (if any) should be seman-
tically equivalent to the input. That each step of the transformation rules for &
preserves normal-order graph reduction semantics is easily proved, but extending
rigorously the proof to account for folding is more involved. A general technique
due to Sands (1995a) can be used to prove this for deforestation as well as positive
supercompilation - see Sands (1995b).

The point is that the residual term and program terminates neither more nor
less than the original term and program. As an example, consider the term s =
e(if b = b' then t else t'), where b loops at run-time. Is it safe to transform s into
if b = b' then e(t)MGU(b,b') else e(t') which loops at run-time, since b loops? It is,
because the redex if b = b' then t else t' is needed in normal-order graph reduction of
s, so s too loops at run-time. In short, the residual program terminates as often as
the original program.

Conversely, some precaution is taken to ensure that the residual program termi-
nates no more often that the original program. For instance, it is tempting to use
rule (6) when the MGU of b and b' is the identity, even when b, b' are not closed.
However, this would not be sound; at run-time the term at the right hand side of
(6) might be more terminating than the one at the left hand side if b loops.

Non-degradation in efficiency. The output of & should be at least as efficient as the
input. There are several aspects of this problem.

First of all, there is the problem of avoiding duplication of computation. Since
rewriting to a non-linear right hand side can cause function call duplication, trans-
formation can change a polynomial time program into an exponential time program.
In Wadler's deforestation (1990) this is avoided by considering only linear terms.
Some weaker restrictions are adopted in partial evaluation (Sestoft, 1988; Bondorf,
1990) and other work on deforestation (Chin, 1992; Hamilton, 1993). We consider
this an issue in its own right which should be dealt with separately, and is beyond
the scope of this paper. The problem does not turn up in the examples we consider.

Definitions that were not used for folding during the transformation can be unfolded in
the residual program; this is done in some examples.

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

824 M. H. Serensen, R. Gluck and N. D. Jones

Second, there is the problem of code duplication. Unrestrained unfolding may
increase the size of a program dramatically. However, the size of a program does
not degrade its efficiency. Again, this is an issue in its own right, and is beyond the
scope of this paper.

Finally, one may ask conversely: how much can the efficiency of programs be
increased by positive supercompilation? — after all, improving efficiency is what we
are after. In Sorensen (1994a) it is shown that transformed programs arising from
deforestation and positive supercompilation run faster by at most a constant factor
(the factor may depend on the program's initial term). A related result for partial
evaluation is due to Andersen and Gomard (1992).

Termination. The algorithm & together with folding should always terminate, but in
fact does not, just as deforestation does not always terminate. However, an important
aspect of deforestation is that there is a syntactic class of function definitions, treeless
definitions (Wadler, 1990), such that deforestation of any composition of functions
with treeless definitions is guaranteed to terminate. This fact also forms the core of
the techniques of Chin (1992) and Hamilton (1993); different techniques are due to
Serensen (1994b) and Seidl (1996)

The problem is more complex for positive supercompilation - the extra power does
not come for free. The following term is treeless (though not linear) so deforestation
terminates, and yet positive supercompilation does not terminate.

/ xs xs
f ys zs = case ys of [] —> zs; (x : xs') —> / xs1 ys

The problem is that 0* encounters the successively larger terms

/ xs xs, / xs' (x' : xs'), / xs" (x' : x" : xs"), ...

Recent work by Sorensen and Gluck (1995) gives a general solution to this problem.

5.5 Deforestation versus positive supercompilation

We now describe deforestation and its relation to positive supercompilation. By <3)
we shall mean the algorithm obtained from 2? by replacing rules (5, 8) of driving
by (5d, 8d) - see figure 10. The resulting set of rules is identical to the rules for
deforestation as defined in Wadler (1990), except that 3> also deals with the equality
construct and that 3> is formulated using evaluation contexts as in Ferguson and
Wadler (1988). However, it should be noted that we are using S> beyond the original,
intended scope of deforestation, since we apply Q) to arbitrary terms rather than just
compositions of functions with treeless definitions. From now on, we shall identify
deforestation with algorithm 2) with a-identical folding in all examples.

The essential difference between positive supercompilation and deforestation is
thus revealed in clause (5) of the transformer 2P: the pattern pj is substituted in the
corresponding branches; in deforestation this is not the case. Similarly with rule (8).
Obviously, if v occurs neither in e nor in the branches s, of

e(case v of pi -> si; ... ; pm -> sm)

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

A positive supercompiler 825

(Sd)

(M)

@[e(case v of pi —> s j ; . . . ;
= rcase v of pi —> 3>\

3)\ e(if fe = b' then t else f")]]

if fc, t ' are not both

Pm —* Sm

[e (s i) l ;

closed

• •• ;Pm->

Fig. 10. The rules for deforestation.

there is no difference between deforestation and positive supercompilation. More
generally, an easy induction shows that for a linear term comprising only calls to
function definitions with linear right-hand sides, deforestation and positive super-
compilation give exactly the same result.

It may seem that the difference in clause (5) and (8) only manifests itself in 'naive'
programs, and that this can be corrected by a simple change in the program before or
after the actual transformation. In the next section we will see that this assumption is
wrong. Situations may arise during transformation where positive supercompilation
can take advantage of sharing between different arguments of certain calls. The
seemingly small difference between rules (5, 8) and (5d, 8d) drastically increases the
power of & compared to 3): the former passes the KMP test, while the latter does
not.

6 KMP Test of the positive supercompiler and deforestation

In this section we show that & transforms naively specialized matchers into matchers
similar to the KMP specialized matchers. Even the matchers derived by 0* are not
entirely optimal; we explain why and show how S? can be extended to generate the
optimal versions.

We also show that 3) cannot derive KMP specialized matchers, and we explain
how hand rewriting the matcher using an idea due to Consel and Danvy (1989)
solves the problem.

6.1 Pattern matching with the positive supercompiler

Applying the positive supercompiler SP to the term match AAB SSQ returns the almost
optimal program in figure 11.

This is the desired KMP specialized matcher, disregarding the repeated innermost
tests A = s1 in IOOPAB and loops- But these redundant tests do not affect run-time
seriously: there is a constant c such that the total number of redundant tests in
the entire evaluation of loopp ss for any pattern p and subject string ss is bound by
c • \ss\ (Serensen, 1994a). In the terminology of section 3.2, 0> passes the KMP test.

Elaboration of the example. It is instructive to try to understand in detail why 0*
produces the program in figure 11. Application of the positive supercompiler to
the term match AAB sso begins as shown in figure 12. The occurrences of sso in

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

826 M. H. Sorensen, R. Gliick and N. D. Jones

loop AAB SS =

IOOPAB SS =

loops ss =

loop AAB SS0

case

case

case

ss of

[] -»•
-.ss1)-*

ss of
[] -*
-.ss1)-*

ss of
[] ->
•.ss1)^

False
if A=sr

then IOOPAB ss1

else loopAAB ss1

False
if A = sl

then /oopa
else if A

then
else

False
if B = s'
then True
else if A

then
else

ss1

= sl

l00pA B SS1

l00pAAB SS'

= sr

loops
if A
then
else

ss1

= s'
IOOPAB SS1

IOOPAAB SSf

Fig. 11. Almost KMP specialized matcher.

2P\ match AAB sso]

= ^>|[loop AAB

= 0>\ case sso oi
[]

(S\ '. SS\

= case sso of
[] - •

(s i :ssi) ->

SSQ AAB sso I

—> False
) -» if X =

then
else

False
if v4 = sj
then .^0
else ^ fl

= si
loop
next

loop
next

AB ssi AAB
AAB ss0

AB ssi AAB
AAB (s, : ss

ss0

)I

1

: ssi)]

(3)

(3,4)

(5,2,8)

Fig. 12. Positive driving 0*1 match AAB ss0 J.

the branches of the case-expression are instantiated to (si : ssi), and in the true
branch of the conditional, si is instantiated to A. Note that in the false branch of
the conditional, no instantiation of si is made.

Transformation of the call to loop proceeds as shown in figure 13, and transfor-
mation of the calls to next as in figure 14. Figures 12-14 with a-identical folding
together give the almost optimal program shown in figure 11.

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

A positive supercompiler 827

^ [loop AB ss{ AAB (A : ss{) J

— case s

^[[/oop B ss

Si Of

: ss2) -

_AAB

= case ss2 of

(s3 : ss{) -

&\ loop []ss i AAB

-> False
-» if A = s2

then "̂[[/oop
else 2PI next

(A : /I : ss2) I

B ss2

AAB

-> Fa/se
-• if B = s3

then 0>[[/oop [] ss3

else "̂(1 next A/4B

(A : A : B : ss}) J

AAB (A :
(A :s2 : ss

AAB (A :
(A: A: s3

True

A : ss2) I
2)1

A : B : ssj
: sSi) I

(3,4,5,2,8)

(3,4,5,2,8)

n

(3,4,2)

Fig. 13. Positive driving 0"\ match AAB ss0 I—continued (1).

Transformation of the call next AAB (A : A : S3 : ss^) in figure 14 corresponds to
the situation where the string starts with two A's and a symbol different from B.
This information is represented in the instantiations made to the original variable
sso, and these instantiations imply that the transformer can reduce away some of
the comparisons that would otherwise have taken place during run-time.

The reason for the redundant test A = s in loopAB and loops is that the positive
supercompiler ignores negative information (restrictions) that could be gathered
during transformation: when the transformer proceeds to the false branch of a
conditional, the information that the equality does not hold is not recorded. The
transformer maintains only positive information (assertions): in the true-branch of a
conditional a substitution is performed representing the information that the equality
test is assumed to come out true.

Representing negative information, i.e. the information that an equality does
not hold, requires a more sophisticated representation than positive information; we
return to this in section 7.2. A program transformer that has the capacity to eliminate
all unreachable branches in a program has perfect information propagation (Gliick
and Klimov, 1993). A perfect version of driving that propagates positive and negative
information is defined in the same work.

While both positive and negative information arise from an equality test, only
positive information arises from a case-expression case v of pi —> t\; ... ;pm -* tm. If
there were a 'catch-all' branch at the end of the case-expression, then in this branch
there would be negative information just as in the false branch of a conditional; the
difficulties in representing it would be the same as for equality tests.

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

828 M. H. Sorensen, R. Gliick and N. D. Jones

0>l next AAB (st :ssi)l

= 9\ loop AAB ssi AAB ssi]

0>l next AAB (A : s2 : ss2)]

= ^ d loop AAB (s2 : ss2) AAB (s2 : ss2)]

= if A = s2

then &l loop AB ss2 AAB (A : ss2)]
else 0>l next AAB (s2 : ss2)]

S?\ next AAB (A : A : s3 : SS))]]

= ^ I loop AAB (A : s3 : ss}) AAB (A : s3 : ss})]

= if A = 53
then ^ 1 Zoop B ss3 AAB (A : A : ss3)]
else 3s [next A/IB (4 : s3 : ss3)]

(3,4)

(3,4)

(3,4,4,8)

(3,4)

(3,4,4,8)

Fig. 14. Positive driving !?\ match AAB ss0 J—continued (2).

6.2 Pattern matching with deforestation

Applying 3> to the term match AAB sso gives the term and program in figure 15.
This program is only improved in the sense that the p argument has been

removed. (Incidentally, this again shows that deforestation can perform program
specialization.) But each time a match fails, the head of the string is ignored, and
the match starts all over again. Deforestation does not pass the KMP test.

There seems to be no simple change to the general matcher in figure 2, or to
the specialized matcher in figure 15, to obtain the result from figure 11 (the next
subsection contains a non-trivial change to do it, though). It is only after a number
of transformation steps that the extra power of rule (5) in positive supercompilation
comes into play.

Elaboration of the example. As for positive supercompilation, it is instructive to
understand the details of deforestation. Applying S) to the term match AAB SSQ
proceeds as shown in figure 16.

The occurrences of sso in the branches of the case-expression remain uninstanti-
ated; the information that si and ssi are the head and tail of sso is lost. The calls to
next have no instantiations recording assumptions about the string.

Transformation then proceeds as shown in figure 17 which, together with figure 16
and a-identical folding, gives the program in figure 15.

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

A positive supercompiler 829

l00pAAB SSo

lOOpAB SSi

loops SS2

loopAAB ss0

— case sso of
[

(s.

= case ss

[
(s2

= case si

[

] ->

Ml) -*

i of
] ->

ss2) ->

2 Of

] - >

SS3) —•

False
if A--
then
else

False
if A =
then
else

False
if B--
then
else

loopAB ssi
case ssi of

[] ->

(s : ss) —»

= s2

/00pfl SS2

case ssi of
[] - •

(s : ss) —>

= s3

True
case .W| of

[] ->

(s : ss) —>

False
loop's ss

False
loopAAB ss

False
loopAAB ss

Fig. 15. Inefficient specialized matcher.

SHI match AAB ss0 I

= ®[loop AAB sso AAB sso I

= ^ [case ss0 of
[]

(s, :ss,)

= case sso of
[] ->

(s, :ss,)->

—• Fa/se
- • if A =

then
else

False
if A = s,
then ^Q
else ^ |

= Sl

loop AB s
next AAB

loop AB s
next AAB

Si AAB sso
ss0 I

Si AAB ss0 J
SSo I

(3)

(3)

(5)

Fig. 16. Deforesting 2>\ match AAB ss0 J.

6.5 Two alternative ways to pass the KMP test

There are two ways of overcoming insufficient transformational power: the inter-
pretive approach, and binding-time improvements.

In the interpretive approach an interpreter is specialized with respect to the source
program, instead of transforming the source program directly. It is a surprising
fact that, given an appropriate interpreter, this method may drastically increase the

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

830 M. H. Sorensen, R. Gltick and N. D. Jones

©H loop AB ssi AAB ssQ J

= case ssi of

(s2 : ss2) -

2>l loop B ss2 AAB

= case ss2 of

(s3 :ss3)-

21 loop [] ss3 AAB

S>[next AAB sso]

= case sso of

(o : os) —>

-> False
-> if A = S2

then @[[loop B ss2

else @[[next AAB

SSo I

-» False
-> if B = s3

then S[[foop [] ss3

else S I next AAB

ss0] = True

False
3>l loop AAB os AAB

AAB ss0 I

AAB sso 11
ss0 I

OS]]

(3,4,5,2,8)

(3,4,5,2,8)

(3,4,2)

(3,5,2)

Fig. 17. Deforesting Q>\ match AAB SSQ]] - continued.

power of the overall transformation. The interpreter may use various techniques
such as fixing a non-standard evaluation order and manipulating various kinds of
information. The overall effect is the same as if the transformer had adopted these
techniques.

More specifically, Gliick and Jergensen (1994) show that partial evaluators can
produce KMP specialized matchers by specializing an information propagating in-
terpreter with respect to the general matcher and a fixed pattern. We conjecture that
the same approach works for deforestation (although not within the original scope
of deforestation since the interpreter is not treeless).

Binding-time improvements are semantics-preserving transformations on source
programs. Instead of extending the transformer with more powerful techniques, or
specializing an interpreter with these techniques to the source program as in the
interpretive approach, one internalizes the extra techniques in the source program.

The reason that deforestation does not pass the KMP test is that information
about tests is lost during the transformation; the same holds for partial evaluators.
Consel and Danvy (1989) show that partial evaluators can derive specialized KMP
matchers if the general matcher is rewritten so as explicitly to maintain the infor-
mation that positive supercompilation gathers during transformation. The program in

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

A positive supercompiler 831

match pp ss
= loop pp ss pp [] []

loop pp ss op bb ob
= case pp of

[] -
(p : pp) ->

next op ss ob
= case ob of

[] -»
(o : ob) ->

True
case bb of

[]

(b : bb)

loop op os
loop op os

—> case

- if p
then
else

op [] [}
op ob ob

ss of
[]
: ss)

= b
loop
loop

-> False
- if p

then
else

pp ss op
op ss op

= s
loop pp ss op [] (append ob [p])
next op ss ob

bbob
(tl ob) (tl ob)

Fig. 18. Information propagating matcher.

figure 18, inspired by Consel and Danvy (1989) and Jones et al. (1993), does this
(where tl takes the tail of a list).

The formal parameters pp, ss, op, ob of loop have the following meaning:

pp is the current pattern: the suffix of the original pattern that has not yet been
matched with the string.

op is the original pattern, and pp is always a suffix of op as in the general matcher
(figure 2).

ss is the current string: the suffix of the original string that has not yet been
matched with the pattern.

ob is the backup: the prefix of the original string that has been successfully
matched with the pattern. The original string is always the concatenation of
ob and ss. The backup is maintained by appending the head of the current
pattern to the backup after every successful match.

ob ss

A. . .C

pp

op

The parameter bb is [] until a mismatch occurs, and then ob is set to its own tail,
and bb is set to ob. We then start matching the original pattern against bb until the
latter becomes empty. When this happens we proceed by matching the remaining

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

832 M. H. Sorensen, R. Gliick and N. D. Jones

part of the pattern against the current string ss, maintaining the backup ob. If a
mismatch occurred while matching bb against the pattern, we set ob to it own tail,
set bb to ob, and restart the process with the tail of ob, thereby skipping an element
of the original string.

Applying deforestation (or positive supercompilation) to the term match AAB ss
with this new program yields the almost KMP specialized matcher from figure 11.
Note that the new program in figure 18 is not more efficient than the general matcher
in figure 2 (actually, on the contrary); it simply manipulates more information.

7 Other optimization techniques

In this section we relate, more briefly, information propagation as used in pos-
itive supercompilation and deforestation to that in partial evaluation, Turchin's
supercompiler, GPC and partial deduction.

7.1 Partial evaluation of functional programs

Partial evaluation as in Jones et al. (1993) propagates only the values of static
variables, namely constants. Partial evaluation can specialize programs but is strictly
weaker than positive supercompilation, Turchin's supercompiler, GPC, and partial
deduction since it propagates no information obtained from predicates or pattern
matching. This explains the result found in Consel and Danvy (1989), that partial
evaluation does not pass the KMP test.

7.2 Turchin's supercompiler

Recall that S? is an extension of the rewrite interpreter J: when SP and «/ unfold a
function call they replace the call by the body of the called function and substitute the
actual arguments into the term being transformed or interpreted. Alternatively, one
can think of an environment based interpreter which creates bindings of the formal
parameters to the actual arguments and a corresponding environment based version
of 0>, as in Gliick and Klimov's formulation (1993) of Turchin's supercompiler.*

The driving mechanisms in the positive supercompiler and in Turchin's supercom-
piler are essentially identical with respect to the propagation of positive information
(assertions) about unspecified entities, except that the former uses substitution and
the latter environments. The technique using environments has the advantage that
negative information (restrictions) can be represented as bindings which definitely
fail, and this is done in Turchin's supercompiler. A technique using substitutions
does not seem possible.

There is no difference between using environments or substitution for positive

Gliick and Klimov (1993) consider perfect driving for a tail-recursive functional language.
The connection between driving and deforestation is not shown since the language has no
intermediate data structures, at least not in the form of nested calls.

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

A positive supercompiler 833

information with respect to transformation power.* If one applies Turchin's su-
percompiler to the general matcher, but using only positive information, one gets
the same program that 2? produces; applying Turchin's supercompiler unrestricted
yields the desired optimal program (Gliick and Klimov, 1993). That a supercompiler
can pass the KMP test on a similar general matcher was first shown in Gliick and
Turchin (1990).

We should note that supercompilation, as defined by Turchin, is a normal-order
transformation that is applied to applicative-order programs and that transformed
programs are again interpreted call-by-value. As a result, supercompilation may
make programs terminate more often. On the other hand, the positive supercompiler
transforms programs with normal-order graph reduction semantics into programs
with the same semantics and termination properties (assuming that the transformer
itself stops). The same holds for deforestation.

7.3 GPC

GPC extends partial evaluation as follows. Whenever a conditional (or something
equivalent) testing whether predicate P holds is encountered during the transforma-
tion, P is propagated to the true branch and the predicate -<P is propagated to the
false branch. Whenever a test is encountered, a theorem prover checks whether more
than one branch is possible. If only one is possible, only that branch is taken. GPC
is a powerful transformation method because it propagates predicates rather than
just value information, and it assumes the (unlimited) power of a theorem prover. It
was shown in Futamura and Nogi (1988) that this information suffices to pass the
KMP test on a general matcher.

Supercompilation and GPC are related, but differ in the propagation of infor-
mation. While GPC propagates arbitrary predicates (logical formulas) requiring a
theorem prover, supercompilation propagates structural predicates (assertions and
restrictions about atoms and constructors).

Takano (1991) concretized GPC for the language of section 2. His formulation
includes an environment-based version of our rule (5):

G[[case v of pi ->•tx;... ;pn -» tn JE =
rcase uof p, -> G[t, J £ , ; ... ; p n - • G[tn I £ H

n

where £,• = £ U {v <-> p,}

where the £'s are sets of equalities which are used in the manner described in more
general terms in Futamura and Nogi (1988); concretely, they represent positive
information arising from pattern matching.

In self-application of an offline partial evaluator one does a binding-time analysis of the par-
tial evaluator itself; such an analysis usually gives better results for the environment-based
version because it has a better separation of static/dynamic data. However, supercompila-
tion and deforestation do not employ binding-time analysis and do not divide objects into
being completely known or completely unknown, so in this setting the difference seems
immaterial.

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

834 M. H. Sorensen, R. Gluck and N. D. Jones

append [A,B] (append xs (C.ys))

append xs ys = case xs of [] —• ys; (x : xs) —• x : append xs ys

A:B :a xs ys

a xs ys = case xs of [] —» C : ys; (x : xs) —• x : a xs ys

Fig. 19. Specialization by positive supercompilation.

7.4 Partial deduction

Gliick and Sorensen (1994) show that unfolding in partial deduction and driving in
positive supercompilation are essentially the same. The essential aspect of partial
deduction, in this case, is the way goals are unified and the resulting substitutions
are applied to the goals in the next step of transformation, much like in clauses (5)
and (8) of positive driving. This explains why, unlike the situation in the functional
case, partial deducers for Prolog can derive KMP matchers from a general Prolog
matcher similar to our general matcher (Smith, 1991).

8 More applications of positive supercompilation

We consider more applications of positive supercompilation: specialization (sec-
tion 8.1), composition, (section 8.2) and other effects (section 8.3).

8.1 Specialization

Positive supercompilation can perform program specialization. For instance, apply-
ing positive supercompilation to append [A,B] (append xs (C :ys)) yields the new
term A :B :a xs ys where a has no computations involving A, B, or C - see figure 19.

The same effect is achieved by partial evaluation (with partially static structures),
deforestation, GPC, Turchin's supercompiler and, for a logic programming version
of the program, partial deduction.

8.2 Composition

Positive supercompilation can perform program composition. For instance, ap-
plying positive supercompilation to append xs (append ys zs) yields the new term
da xs ys zs where da does not construct an intermediate data structure - see figure 20.

The same effect is achieved by deforestation and Turchin's supercompilation. In
contrast, it is well-known that partial evaluation does not, in general, eliminate
intermediate data structures (Consel and Danvy, 1991). The reason is that in order
to eliminate intermediate data structures, the transformer must use normal-order
transformation order, whereas partial evaluation typically uses applicative-order
(Nielsen and Sorensen, 1995). Partial deduction of a logic programming version also

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

A positive supercompiler 835

append xs ys =

da xs ys zs =

append xs
case xs of

da xs ys zs
case xs of

(append ys zs)

[] -*ys; (x :xs)-

[] —> append ys zs;

•* x : append xs ys

(x : xs) —• x : daxs ys zs

Fig. 20. Composition by positive supercompilation.

fails to eliminate the intermediate data structure. The reason is that partial deduction
does something that corresponds, in the functional setting, to transforming the two
calls to append independently, thereby preventing the intermediate data structure
constructed by one call to be consumed by the other. Other transformers for logic
programs can do this optimization (Proietti and Pettorossi, 1991).

8.3 Other effects

Positive supercompilation can invert functions just like interpreters for logic pro-
grams, and can be used for theorem proving and problem solving (Turchin, Niren-
berg, and Turchin, 1982; Turchin, 1986). In general, to obtain these effects, the
additional power of positive supercompilation over deforestation is required. Most
of these examples have been considered for Turchin's supercompiler, but the positive
supercompiler can achieve similar effects (as demonstrated by the KMP example
above). Finally, positive supercompilation can, as partial evaluation, translate pro-
grams by specializing an interpreter.

9 Conclusion and future work

We have introduced positive supercompilation and compared this to deforestation
and, more briefly, to partial evaluation, supercompilation, GPC and partial deduc-
tion. We have shown which notions of information propagation they share, what
their differences are, and that the amount of information propagated is significant
for the transformations achieved by each methodology.

We have demonstrated how the positive supercompiler, using only positive in-
formation propagation, can derive an algorithm comparable in efficiency to the
matcher generated by the Knuth-Morris-Pratt algorithm starting from a simple and
general string matcher and a fixed pattern. Deforestation and partial evaluation for
functional languages cannot achieve this.

Thus, while deforestation and positive supercompilation have identical effects on
linear terms (comprising only calls to functions with linear right hand sides) there is
in general a difference between the two on non-linear terms. In some cases positive
supercompilation strictly improves deforestation, in other cases deforestation termi-
nates while positive supercompilation loops. It would be interesting to state general
results about the relationship between deforestation and positive supercompilation
on non-linear terms.

It would also be interesting to find a translation internalizing positive information

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

836 M. H. Serensen, R. Gltick and N. D. Jones

propagation. Such a translation could conceivably, as a special case, transform the
general matcher in figure 2 to that in figure 18; it would introduce some kind of
instantiation management explicitly into terms.

A direct comparison of methods is often blurred because of different language
paradigms and different perspectives. We believe that future work should aim at
bringing different methodologies closer.

Acknowledgments

Thanks to Sergei Abramov, Andrei Klimov, Andrei Nemytykh, Sergei Romanenko,
and last but not least, Valentin F. Turchin for many interesting discussions and
hospitality during visits in Russia and New York. We had interesting discussions
with Jesper Jergensen, Kristian Nielsen, and David Sands. Wei-Ngan Chin, Philip
Wadler and Stephan Diehl provided useful comments on an earlier version of the
paper, and the anonymous referees gave constructive feedback for improvements.
Finally, we are indebted to the members of the Topps group at DIKU for providing
an excellent working environment.

The first author is indebted to M. Hagyia for support during a visit to Japan. The
second author was supported by an Erwin-Schrodinger-Fellowship of the Austrian
Science Foundation (FWF) under grant J0780 & J0964. The work was partially
supported by the DART project funded by the Danish Natural Sciences Research
Council.

References

Andersen, L. O. and Gomard, C. K. (1992) Speedup analysis in partial evaluation. ACM Work-
shop on Partial Evaluation and Semantics-Based Program Manipulation, Technical Report
YALEU/DCS/RR-909, pp. 1-7.

Ariola, Z. M., Felleisen, M., Maraist, J., Odersky, M. and Wadler, P. (1995) A call-by-need
lambda calculus. 22nd ACM Symposium on Principles of Programming Languages 1995, pp.
233-246. ACM Press.

Augustsson, L. (1985) Compiling lazy pattern-matching. Conference on Functional Program-
ming and Computer Architecture, Jouannaud, J.-P. (ed.). Lecture Notes in Computer Science
201, pp. 368-381. Springer-Verlag.

Bird, R. (1984) Using circular programs to eliminate multiple traversals of data. Ada Infor-
matica, 21: 239-250.

Bird, R. S. and Wadler, P. L. (1988) Introduction to Functional Programming. Prentice-Hall.
Bondorf, A. (1990) Self-applicable partial evaluation. PhD thesis, DIKU-Rapport 90/17, De-

partment of Computer Science, University of Copenhagen.
Burstall, R. M. and Darlington, J. (1977) A transformation system for developing recursive

programs. J. ACM, 24(1): 44-67.
Chin, W.-N. (1992) Safe fusion of functional expressions. ACM Conference on Lisp and

Functional Programming, pp. 11-20. ACM Press.
Consel, C. and Danvy, O. (1989) Partial evaluation of pattern matching in strings. Information

Processing Letters, 30(2):79-86.
Consel, C. and Danvy, O. (1991) For a better support of static data flow. Conference

on Functional Programming and Computer Architecture, Hughes, J. (ed.). Lecture Notes in
Computer Science 523, pp. 495-519. Springer-Verlag.

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

A positive supercompiler 837

Feather, M. S. (1982) A system for assisting program transformation. ACM Trans. Program-
ming Languages and Systems, 4(l):l-20.

Ferguson, A. B. and Wadler, P. L. (1988) When will deforestation stop?. Glasgow Workshop

on Functional Programming, pp. 39-56.

Futamura, Y. and Nogi, K. (1988) Generalized partial computation. Partial Evaluation and
Mixed Computation, Bjorner, D., Ershov, A. P. and Jones, N. D. (eds.), pp. 133-151. North-
Holland.

Futamura, Y. (1988) Program evaluation and generalized partial computation. International

Conference on Fifth Generation Computer Systems, pp. 1-8, Tokyo, Japan.

Gliick, R. and Klimov, A. V. (1993) Occam's razor in metacomputation: the notion of a
perfect process tree. Static Analysis, Cousot, P., Falaschi, M., File, G. and Rauzy, A. (eds.),
Lecture Notes in Computer Science 724, pp. 112-123. Springer-Verlag.

Gliick, R. and Jergensen, J. (1994) Generating transformers for deforestation and supercom-
pilation. Static Analysis, Le Charlier, B. (ed.), Lecture Notes in Computer Science 864, pp.
432-448. Springer-Verlag.

Gluck, R. and Sorensen, M. H. (1994) Partial deduction and driving are equivalent. Program-
ming Language Implementation and Logic Programming, Hermenegildo, M. and Penjam, J.

(eds.), Lecture Notes in Computer Science 844, pp. 165-181. Springer-Verlag.

Gliick, R. and Turchin, V. F. (1990) Application of metasystem transition to function inversion

and transformation. Proc. ISSAC90, pp. 286-287. ACM Press.

Hamilton, G. W. (1993) Compile-time optimisation of storage usage in lazy functional programs.

PhD thesis, University of Stirling.

Jones, N. D. (1988) Automatic program specialization: a re-examination from basic principles.
Partial Evaluation and Mixed Computation, Bjerner, D., Ershov A. P. and Jones N. D. (eds.),
pp. 225-282. North-Holland.

Jones, N. D., Gomard, C. K. and Sestoft, P. (1993) Partial Evaluation and Automatic Program

Generation. Prentice-Hall.

Jones, N. D. (1994) The essence of program transformation by partial evaluation and driving.
Logic, Language and Computation, Jones, N. D., Hagiya, M. and Sato, M. (eds.), Lecture

Notes in Computer Science 792, pp. 206-224. Springer-Verlag.

Komorowski, J. (1992) An introduction to partial deduction. Meta-Programming in Logic,

Pettorossi, A. (ed.), Lecture Notes in Computer Science 649, pp. 49-69. Springer-Verlag.

Knuth, D. E., Morris, J. H. and Pratt, V. R. (1977) Fast pattern matching in strings. SIAM J.

Computing, 6(2):323-350.

Launchbury, J. (1993) A natural semantics for lazy evaluation. 20th ACM Symposium on

Principles of Programming Languages, pp. 144-154. ACM Press.

Lloyd, J. W. and Shepherdson, J. C. (1991) Partial evaluation in logic programming. J. Logic

Programming, 11(3^4): 217-242.

Nielsen, K. and Sorensen, M. H. (1995) Call-by-name CPS-translation as a binding-time
improvement. Static Analysis, Mycroft, A. (ed.), Lecture Notes in Computer Science 983, pp.
296-313. Springer-Verlag.

Proietti, M. and Pettorossi, A. (1991) Unfolding - Definition - Folding, in this order for
avoiding unnecessary variables in logic programs. Programming Language Implementation
and Logic Programming, Lecture Notes in Computer Science 528, pp. 347-358. Springer-
Verlag.

Sands, D. (1995a) Total correctness by local improvement in program transformation. 22nd
ACM Symposium on Principles of Programming Languages, pp. 221-232. ACM Press.

Sands, D. (1995b) Proving the correctness of recursion-based automatic program transforma-
tions. TAPSOFT'95: Theory and Practice of Software Development, Mosses, P. D., Nielsen,

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

838 M. H. Sorensen, R. Gliick and N. D. Jones

M. and Schwartzbach, M. I. (eds.), Lecture Notes in Computer Science 915, pp. 681-695.
Springer-Verlag.

Seidl, H. (1996) Integer constraints to stop deforestation. Programming Languages and Systems
1996, to appear in Lecture Notes in Computer Science. Springer-Verlag.

Sestoft, P. (1988) Automatic call unfolding in a partial evaluator. Partial Evaluation and Mixed
Computation, Bjorner, D., Ershov, A. P. and Jones, N. D. (eds.), pp. 485-506. North-Holland.

Smith, D. A. (1991) Partial evaluation of pattern matching in constraint logic programming
languages. Symposium on Partial Evaluation and Semantics-Based Program Manipulation,
pp. 62-71. ACM Press.

Sorensen, M. H. (1994a) Turchin's supercompiler revisited. An operational theory of positive
information propagation. Master's Thesis, DIKU-rapport 94/9, Department of Computer
Science, University of Copenhagen.

Sorensen, M. H. (1994b) A grammar-based data-flow analysis to stop deforestation. Trees
in Algebra and Programming, Tison, S. (ed.), Lecture Notes in Computer Science 787, pp.
335-351. Springer-Verlag.

Sorensen, M. H., Gliick, R. and Jones, N. D. (1994) Towards unifying deforestation, supercom-
pilation, partial evaluation, and generalized partial computation. Programming Languages
and Systems, Sannella, D. (ed.), pp. 485-500. Springer-Verlag.

Sorensen, M. H. and Gliick, R. (1995) An algorithm of generalization in positive supercom-
pilation. Logic Programming: Proceedings of the 1995 International Symposium, Lloyd, J.
(ed.), pp. 465-479. MIT Press.

Takano, A. (1991) Generalized partial computation for a lazy functional language. Symposium
on Partial Evaluation and Semantics-Based Program Manipulation, pp. 1-11. ACM Press.

Turchin, V. F. (1979) A supercompiler system based on the language Refal. SIGPLAN Notices,
14(2): 46-54.

Turchin, V. F. (1980) Semantic definitions in Refal and automatic production of compilers.
Semantics-Directed Compiler Generation, Jones, N. D. (ed.), Lecture Notes in Computer
Science 94, pp. 441-474. Springer-Verlag.

Turchin, V. F, Nirenberg, R. M. and Turchin, D. V. (1982) Experiments with a supercompiler.
ACM Symposium on Lisp and Functional Programming 1982, pp. 47-55. ACM Press.

Turchin, V. F. (1986) The concept of a supercompiler. ACM Trans. Programming Languages
and Systems, 8(3): 292-325.

Turchin, V. F. (1988) The algorithm of generalization in the supercompiler. Partial Evaluation
and Mixed Computation, Bjorner, D., Ershov, A. P. and Jones, N. D. (eds.), pp. 341-353.
North-Holland.

Wadler, P. L. (1984) Listlessness is better than laziness. ACM Symposium on Lisp and Functional
Programming 1984, pp. 282-305. ACM.

Wadler, P. L. (1987) Efficient compilation of pattern-matching. The Implementation of Func-
tional Programming Languages, Peyton Jones, S. L. (ed.). Prentice-Hall.

Wadler, P. L. (1990) Deforestation: transforming programs to eliminate trees. Theoretical
Computer Science, 73: 231-248 (preliminary version in ESOP'88, Lecture Notes in Computer
Science 300. Springer-Verlag).

https://doi.org/10.1017/S0956796800002008 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800002008

