A dimension formula relating to algebraic groups

Su-shing Chen

An upper bound is given of the dimension of certain spaces of cusp harmonic forms of arithmetic subgroups Γ of semisimple algebraic groups G in terms of the multiplicities of corresponding irreducible unitary representations of the group $G_{\rm R}$ of real rational points of G in the space ${}^{\rm O}L^2(G_{\rm R}/\Gamma)$ of cusp forms.

1. Introduction

Our formula can be considered to be related to the duality of Gel'fand and Pyateckii-Shapiro of a discrete subgroup Γ of G_R such that G_R/Γ is compact [3]. An essential point of the duality in [3] is that $L^2(G_R/\Gamma)$ is a countable direct sum of irreducible unitary representations of G_R . If G_R/Γ is not compact, then $L^2(G_R/\Gamma)$ contains continuous and discrete spectrum in general. However, the closed invariant subspace $^{O}L^2(G_R/\Gamma)$ of $L^2(G_R/\Gamma)$ is still a countable direct sum of irreducible unitary representations of G_R [4]. Consequently, we can obtain an upper bound of the Garland space of cusp harmonic forms which is a closed invariant subspace of the space studied in [2] by Garland. For basic definitions and facts about algebraic groups and their arithmetic subgroups, we refer to [1].

Received 10 November 1970.

241

2. The formula

We assume that G is a connected semisimple linear algebraic group which is defined and simple over Q. Moreover, we assume that G has Q-rank 1, that is, $\dim S_Q = 1$, where S_Q is a maximal Q-split torus of G. Let \underline{G}_R denote the Lie algebra of G_R and \underline{G} denote the complexification of \underline{G}_R . Denote by Δ_G the Casimir operator which is a unique element of the center of the universal enveloping algebra of \underline{G} .

The space ${}^{O}L^2(G_R/\Gamma)$ of cusp forms consists of elements of $L^2(G_R/\Gamma)$ satisfying

$$\int_{U_{\mathsf{R}}/U_{\mathsf{R}}\cap\Gamma} f(xu)du = 0$$

for almost all $x \in G_R$, where U is the unipotent radical of an arbitrary parabolic subgroup P of G.

We fix a certain maximal compact subgroup $K \subseteq G_{\mathsf{R}}$. Let V be a finite dimensional complex vector space with a positive definite hermitian inner product. Then let $\sigma: K \to \operatorname{Aut} V$ be a representation of K which is unitary with respect to the given inner product. We let d_{σ} denote the complex dimension of V and let ξ_{σ} denote the character of σ . Let dkdenote the Haar measure on K normalized so that $\int_{V} dk = 1$.

For $\nu \in {\sf C}$, the Garland space $\mathit{G}(\sigma,\,\nu)$ of harmonic forms is defined by

$$G(\sigma, v) = \left\{ f \in L^2(G_{\mathsf{R}}/\Gamma) \cap C^{\infty}(G_{\mathsf{R}}/\Gamma) \middle| \Delta_G f = vf , \\ d_{\sigma} \int_{\mathcal{K}} \xi_{\sigma}(k) f(k^{-1}x) dk = f(x), x \in G_{\mathsf{R}}/\Gamma \right\} .$$

If $G(\sigma, \nu) \neq 0$ and G has Q-rank 1, then ν is real and dim $G(\sigma, \nu) < \infty$ ([2]). The Garland space ${}^{O}G(\sigma, \nu)$ of cusp harmonic forms is defined by

$${}^{O}G(\sigma, v) = \left\{ f \in G(\sigma, v) \cap {}^{O}L^{2}(G_{R}/\Gamma) \right\}$$

Let \hat{G}_{R} denote the set of irreducible unitary representations π of G_{R} . Let H_{π} be the representation space of π , $m(\pi)$ be the multiplicity of π in ${}^{O}L^{2}(G_{R}/\Gamma)$ and Δ_{π} be the Casimir operator of the representation π . Since π is irreducible, there exists a complex number ν_{π} such that $\Delta_{\pi} \varphi = \nu_{\pi} \varphi$ for φ in the domain of Δ_{π} , which is dense in H_{π} . Let $\hat{G}_{R}(\nu)$ denote the set of irreducible unitary representations π of G_{R} such that $\Delta_{\pi} = \nu_{\pi} \cdot 1$ and $\nu_{\pi} = \nu$. Fix an irreducible unitary representation π and its representation space H_{π} . For any irreducible unitary representation σ of K, we define a linear transformation E_{α} in H_{π} by

$$E_{\sigma}v = d_{\sigma} \int_{K} \xi_{\sigma}(k)\pi(k^{-1})vdk ,$$

for $v \in H_{\pi}$. Then E_{σ} is a continuous projection. We let $H_{\pi,\sigma} = E_{\sigma}(H_{\pi})$. The dimension of $H_{\pi,\sigma}$ is finite dimensional and is denoted by $d(H_{\pi,\sigma})$.

We write ${}^{O}L^2(G_{\mathsf{R}}/\Gamma) = \sum_{i=1}^{\infty} \bigoplus H_i$, where H_i is the representation space of the irreducible unitary representation π_i . Note that, for $\varphi \in C^{\infty}(G_{\mathsf{R}}/\Gamma) \cap {}^{O}L^2(G_{\mathsf{R}}/\Gamma)$, the regular representation λ of G_{R} on ${}^{O}L^2(G_{\mathsf{R}}/\Gamma)$ satisfies $\Delta_{\lambda}\varphi = \Delta_{G}\varphi$. This follows from an easy computation.

For any $f \in {}^{O}G(\sigma, \nu)$, $f \in {}^{O}L^{2}(G_{\mathsf{R}}/\Gamma) \cap C^{\infty}(G_{\mathsf{R}}/\Gamma)$, $\Delta_{G}f = \nu f$ and $E_{\sigma}f = f$. Let P_{i} be the projection of ${}^{O}L^{2}(G_{\mathsf{R}}/\Gamma)$ onto H_{i} . Since f is differentiable, for each $X \in \underline{G}_{\mathsf{R}}$,

$$\begin{split} P_{i}\lambda(X)f &= \lim_{t \to 0} \frac{1}{t} P_{i}\left(\lambda(\exp tX)f - f\right) \\ &= \lim_{t \to 0} \frac{1}{t} \left(\lambda(\exp tX)P_{i}f - P_{i}f\right) \\ &= \lim_{t \to 0} \frac{1}{t} \left(\pi_{i}(\exp tX)P_{i}f - P_{i}f\right) \\ &= \pi_{i}(X)P_{i}f \ . \end{split}$$

Hence $P_i f$ is in the domain of Δ_{π_i} , $P_i \Delta_\lambda f = \Delta_{\pi_i} P_i f$ and $\Delta_{\pi_i} P_i f = \lambda_{\pi_i} P_i f$. If $\pi_i \notin \hat{G}_{\mathsf{R}}(v)$, then $P_i f = 0$. Hence $f = P_{i_1} f + \dots + P_{i_t} f$. Since $E_{\sigma} \cdot P_i = P_i \cdot E_{\sigma}$, $P_i f \in H_{i,\sigma}$ for $i \in \{i_1, \dots, i_t\}$. Consequently, we get the following

THEOREM. Let G be a connected semisimple linear algebraic group which is defined and simple over Q. We assume that G has Q-rank 1. Then

$$\dim^{O} G(\sigma, v) \leq \sum_{\pi \in \widehat{G}_{R}(v)} m(\pi) d(H_{\pi,\sigma}).$$

References

- [1] Armand Borel, "Linear algebraic groups", Algebraic groups and discontinuous subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), 3-19. (Amer. Math. Soc., Providence, Rhode Island, 1966.)
- [2] Howard Garland, "The spectrum of noncompact G/Γ and the cohomology of arithmetic groups", Bull. Amer. Math. Soc. 75 (1969), 807-811.
- [3] I.M. Gel'fand and I.I. Pyateckii-Sapiro, "Theory of representations and theory of automorphic functions", Amer. Math. Soc. Transl.
 (2) 26 (1963), 173-200.

 [4] R. Godement, "The spectral decomposition of cusp-forms", Algebraic groups and discontinuous subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), 225-234. (Amer. Math. Soc., Providence, Rhode Island, 1966).

University of Florida, Gainesville, Florida, USA.