A dimension formula relating to algebraic groups

Su-shing Chen

Abstract

An upper bound is given of the dimension of certain spaces of cusp harmonic forms of arithmetic subgroups Γ of semisimple algebraic groups G in terms of the multiplicities of corresponding irreducible unitary representations of the group G_{R} of real rational points of G in the space ${ }^{\circ} L^{2}\left(G_{R} / \Gamma\right)$ of cusp forms.

1. Introduction

Our formula can be considered to be related to the duality of Gel'fand and Pyateckii-Shapiro of a discrete subgroup Γ of G_{R} such that G_{R} / Γ is compact [3]. An essential point of the duality in [3] is that $L^{2}\left(G_{R} / \Gamma\right)$ is a countable direct sum of irreducible unitary representations of G_{R}. If G_{R} / Γ is not compact, then $L^{2}\left(G_{R} / \Gamma\right)$ contains continuous and discrete spectrum in general. However, the closed invariant subspace ${ }^{\circ} L^{2}\left(G_{\mathrm{R}} / \Gamma\right)$ of $L^{2}\left(G_{\mathrm{R}} / \Gamma\right)$ is still a countable direct sum of irreducible unitary representations of G_{R} for an arithmetic subgroup Γ of G_{R} [4]. Consequently, we can obtain an upper bound of the Garland space of cusp harmonic forms which is a closed invariant subspace of the space studied in [2] by Garland. For basic definitions and facts about algebraic groups and their arithmetic subgroups, we refer to [1].

Received 10 November 1970.

2. The formula

We assume that G is a connected semisimple linear algebraic group which is defined and simple over Q. Moreover, we assume that G has Q-rank 1 , that is, $\operatorname{dim} S_{Q}=1$, where S_{Q} is a maximal Q-split torus of G. Let G_{R} denote the Lie algebra of G_{R} and \xlongequal{G} denote the complexification of $\underline{\underline{G}}_{\mathrm{R}}$. Denote by Δ_{G} the Casimir operator which is a unique element of the center of the universal enveloping algebra of G.

The space ${ }^{\circ} L^{2}\left(G_{R} / \Gamma\right)$ of cusp forms consists of elements of $L^{2}\left(G_{R} / \Gamma\right)$ satisfying

$$
\int_{U_{\mathrm{R}} / U_{\mathrm{R}} \cap \Gamma} f(x u) d u=0
$$

for almost all $x \in G_{R}$, where U is the unipotent radical of an arbitrary parabolic subgroup P of G.

We fix a certain maximal compact subgroup $K \subset G_{R}$. Let V be a finite dimensional complex vector space with a positive definite hermitian inner product. Then let $\sigma: K \rightarrow A u t V$ be a representation of K which is unitary with respect to the given inner product. We let d_{σ} denote the complex dimension of V and let ξ_{σ} denote the character of σ. Let $d k$ denote the Haar measure on K normalized so that $\int_{K} d k=1$.

For $v \in C$, the Garland space $G(\sigma, \nu)$ of harmonic forms is defined by
$G(\sigma, \nu)=\left\{f \in L^{2}\left(G_{\mathrm{R}} / \Gamma\right) \cap C^{\infty}\left(G_{\mathrm{R}} / \Gamma\right) \mid \Delta_{G} f=\nu f\right.$,

$$
\left.d_{\sigma} \int_{K} \xi_{\sigma}(k) f\left(k^{-1} x\right) d k=f(x), x \in G_{R} / \Gamma\right\}
$$

If $G(\sigma, \nu) \neq 0$ and G has Q-rank 1 , then ν is real and $\operatorname{dim} G(\sigma, \nu)<\infty \quad([2])$. The Garland space ${ }^{\circ} G(\sigma, v)$ of cusp harmonic forms is defined by

$$
{ }^{\circ} G(\sigma, \nu)=\left\{f \in G(\sigma, v) \cap^{\circ} L^{2}\left(G_{\mathrm{R}} / \Gamma\right)\right\}
$$

Let \hat{G}_{R} denote the set of irreducible unitary representations π of G_{R}. Let H_{π} be the representation space of $\pi, m(\pi)$ be the multiplicity of π in ${ }^{0} L^{2}\left(G_{\mathrm{R}} / \Gamma\right)$ and Δ_{π} be the Casimir operator of the representation π. Since π is irreducible, there exists a complex number ν_{π} such that $\Delta_{\pi} \varphi=\nu_{\pi} \varphi$ for φ in the domain of Δ_{π}, which is dense in H_{π}. Let $\hat{G}_{R}(v)$ denote the set of irreducible unitary representations π of G_{R} such that $\Delta_{\pi}=\nu_{\pi} \cdot l$ and $\nu_{\pi}=V$. Fix an irreducible unitary representation π and its representation space H_{π}. For any irreducible unitary representation σ of K, we define a linear transformation E_{σ} in H_{π} by

$$
E_{\sigma} v=d_{\sigma} \int_{K} \xi_{\sigma}(k) \pi\left(k^{-1}\right) v d k
$$

for $v \in H_{\pi}$. Then E_{σ} is a continuous projection. We let $H_{\pi, \sigma}=E_{\sigma}\left(H_{\pi}\right)$. The dimension of $H_{\pi, \sigma}$ is finite dimensional and is denoted by $d\left(H_{\pi, \sigma}\right)$.

We write ${ }^{\circ} L^{2}\left(G_{\mathrm{R}} / \Gamma\right)=\sum_{i=1}^{\infty} \oplus H_{i}$, where H_{i} is the representation space of the irreducible unitary representation π_{i}. Note that, for $\varphi \in C^{\infty}\left(G_{\mathrm{R}} / \Gamma\right) \cap{ }^{\circ} L^{2}\left(G_{\mathrm{R}} / \Gamma\right)$, the regular representation λ of G_{R} on ${ }^{\circ} L^{2}\left(G_{R} / \Gamma\right)$ satisfies $\Delta_{\lambda} \varphi=\Delta_{G} \varphi$. This follows from an easy computation. For any $f \in{ }^{\circ} G(\sigma, v), f \in{ }^{\circ} L^{2}\left(G_{R} / \Gamma\right) \cap C^{\infty}\left(G_{\mathrm{R}} / \Gamma\right), \Delta_{G} f=\nu f$ and $E_{0} f=f$. Let P_{i} be the projection of ${ }^{\circ} L^{2}\left(G_{R} / \Gamma\right)$ onto H_{i}. Since f is differentiable, for each $X \in \underline{G}_{R}$,

$$
\begin{aligned}
P_{i} \lambda(X) f & =\lim _{t \rightarrow 0} \frac{1}{t} P_{i}(\lambda(\exp t X) f-f) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(\lambda(\exp t X) P_{i} f-P_{i} f\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(\pi_{i}(\exp t X) P_{i} f-P_{i} f\right) \\
& =\pi_{i}(X) P_{i} f .
\end{aligned}
$$

Hence $P_{i} f$ is in the domain of $\Delta_{\pi_{i}}, P_{i} \Delta_{\lambda} f=\Delta_{\pi_{i}} P_{i} f$ and $\Delta_{\pi_{i}} P_{i} f=\lambda_{\pi_{i}} P_{i} f$. If $\pi_{i} \nmid \hat{G}_{R}(\nu)$, then $P_{i} f=0$. Hence $f=P_{i_{1}} f+\ldots+P_{i_{t}} f$. Since $E_{\sigma} \cdot P_{i}=P_{i} \cdot E_{\sigma}, P_{i} f \in H_{i, \sigma}$ for $i \in\left\{i_{1}, \ldots, i_{t}\right\}$. Consequently, we get the following

THEOREM. Let G be a connected semisimple linear algebraic group. which is defined and simple over Q. We assume that G has Q-rank 1 . Then

$$
\operatorname{dim}^{0} G(\sigma, v) \leq \sum_{\pi \in \hat{G}_{R}} \sum_{(v)} m(\pi) d\left(H_{\pi, \sigma}\right) .
$$

References

[1] Armand Borel, "Linear algebraic groups", Algebraic groups and discontinuous subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), 3-19. (Amer. Math. Soc., Providence, Rhode Island, 1966.)
[2] Howard Garland, "The spectrum of noncompact G / Γ and the cohomology of arithmetic groups", BuZ2. Amer. Math. Soc. 75 (1969), 807-811.
[3] I.M. Gel'fand and 1.1. Pyateckil-Šapiro, "Theory of representations and theory of automorphic functions", Amer. Math. Soc. Trans 2. (2) 26 (1963), 173-200.
[4] R. Godement, "The spectral decomposition of cusp-forms", Algebraic groups and discontinuous subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), 225-234. (Amer. Math. Soc., Providence, Rhode Island, 1966).

```
University of Florida,
Gainesville,
Florida, USA.
```

