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G. C O N T O P O U L O S 
University of Chicago, Chicago, III., U.S.A.* 

Abstract. The basic ideas and some of the most important recent developments of the gravitational 
theories of spiral structure are described. A separation between linear and non linear effects is made. 
The linear self consistent problem consists of the problem of modes and of the initial value problem, 
which is discussed here in some detail. More emphasis is put on the non linear problem near resonances 
and in particular the inner Lindblad resonance. The linear density response to a slightly growing spiral 
potential (trailing or leading) near the inner Lindblad resonance is always trailing, while non linear 
effects form a density distribution with a roughly quadruple symmetry. 

1. Introduction 

One of the main early difficulties of the gravitational theory of spiral structure was 
the problem of differential rotation. If the spiral arms were composed always of the 
same stars then, after a few revolutions, the spiral arms would be wound very tightly 
and practically disappear. The way out of this difficulty is the notion of spiral arms as 
waves. Stars move through the spiral arms, but they stay there longer, on the average, 
so that the spiral arms are, at every moment, the maxima of density; they are not 
material arms, but spiral waves. 

The idea of spiral waves is due to B. Lindblad. In a series of papers, starting in the 
early forties, he developed many of the elements of the present day theory of spiral 
waves (Lindblad, 1941, 1942, 1948, 1950; Lindblad and Langebartel, 1953; see also 
Coutrez, 1947). This is particularly remarkable, in view of the fact that no experience 
from similar problems in plasma physics was available at that time. 

However, although B. Lindblad is the father of the gravitational theory of spiral 
structure, his views were never widely accepted by astronomers in general. Two reasons, 
I think, were responsible for that. First the fact that Lindblad's papers are difficult to 
follow, introducing many assumptions and approximations at every step, and second 
Lindblad's insistence on leading spirals (except in his last papers before his death). 
In his paper with Langebartel (1953) it is pointed out that spiral patterns can be both 
leading or trailing. The authors stress that their "general conclusions ... do not depend 
on which one of the two alternatives will ultimately prove to be most important". 
This statement is known to-day to be correct in the general case away from resonances, 
and, in fact, most of the recent work in spiral wave theory does not discriminate 
between leading and trailing spirals. However, after making this statement, Lindblad 
and Langebartel go on discussing in detail only leading spirals. 

Thus, the credit goes to C. C. Lin, who not only developed the theory of spiral 
waves in much more detail, but also presented it in a relatively simple form that made 
it acceptable to the rest of the astronomical world. The response to the work of Lin 
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and his associates has been an ever growing wave of research in this area, that has 
produced many important new results. 

In the present Report I will describe some of the main recent developments in 
this field, including my own recent work. 

2. Outline of the Theory of Spiral Waves 

One can divide the theories of spiral waves into two basic categories: local and global. 
Local theories deal with relatively small regions of the galaxy, considering the 

center to be at distance large with respect to the local dimensions. 
A local theory, referring to the gas, was developed by Goldreich and Lynden-Bell 

(1965) and another one, referring to stars, by Julian and Toomre (1966). Such theories 
explain the almost universal appearance of small, broken waves in spiral galaxies, 
which are trailing and may have a rather large inclination angle. Even in quite regular 
galaxies one sees such 'wavelets' as branches or bridges between the main arms. 

However, most of the recent work deals with global theories, which a im at explai­
ning the grand design of the more or less regular two-armed spirals that we see in 
abundance in the sky. Any irregularities in the spiral pattern are considered, in this 
approach, as higher order effects, to be introduced, eventually, at a later stage of the 
theory. 

The kinds of problems considered by the theory of spiral structure are given in 
terms of increasing difficulty, in Table I. 

TABLE I 
Theory of spiral waves 

1. Given spiral potential 
A. Linear 2. Self consistent problem 

2a. Modes 
2b. Initial value problem 

B. Non-Linear 1. Far from resonances 
2. Near resonances 

The first step in developing a theory of spiral waves is the linearization of the 
collisionless Boltzmann equation 

sl + y.ifJI.el=0. <D 
dt dx dx d\ 

This equation is known also as Vlasov's equation in plasma physics. Here / is the 
distribution function, while V is the potential of the spiral galaxy. We consider, first, 
a two-dimensional model of the galaxy; thickness effects can be introduced later. 

We assume that V is composed of an unperturbed, axisymmetric, part, K 0 ( r ) , and 
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a spiral part, Vl9 which is small with respect to V0. Thus we can write 

V=V0+Vl9 

and (2) 

/ = /o + fi + / 2 + - , 

where f0 is the distribution function of the axisymmetric substratum. If we write 
Equation (1) as 

D(f9V) = 0 (3) 

we notice that the operator D is linear in / and in V, therefore, if we introduce the 
value (2) and equate to zero the terms of various orders of Equation (3), we find, first, 

D(fo,Vo) = 0; (4) 

this means that f0 is a function of the (isolating) integrals of motion of the unperturbed 
problem. In general, i.e. away from resonances, the only isolating integrals of motion 
are the angular momentum J0 = r2& and the energy E0 = i(r2 -\-JQ/ r2)-\- V0, therefore 

fo = fo(Eo,Jo). (5) 

The next equation, derived from Equation (3), is 

D(fuVo)+ D(fo,Vi) = 0; (6) 

this is the basic linearized collisionless Boltzmann equation, used extensively in 
galactic dynamics. 

The first problem now consists in finding the response of a galactic disk to a given 
potential of the form (2). 

If the spiral part of the potential, Vl9 is given, the solution of Equation (6) can be 
written explicitly for every / 0 . In fact Equation (6) is a partial differential equation, 
with characteristics the unperturbed orbits of the axisymmetric field V0(r), and its 
solution is 

(7) 

where P is an operator linear in f0 and Vl9 and the integration is along the unperturbed 
orbits; T is an auxiliary parameter, namely the time along unperturbed orbits, appear­
ing only in trigonometric terms (except in resonances) and after the integration it is 
expressed in terms of the coordinates.* 

In a similar way one can f i n d / 2 , etc.; thus the distribution func t ion /can be found, 
step by step, as a formal s e r i e s ; / i s an integral of motion of the same form as the 
' third ' integral, found in other galactic problems. In particular if f0 — E0 we find a 
'generalized energy' E=E0 + EL-\—, and iff0 = Jo we find a 'generalized angular 
momentum' J=J0 + Jl-\— (Contopoulos, 1967). In the case of a spiral pattern 

* This method of solution of the linearized collisionless Boltzmann equation is used extensively in 
stellar dynamics and plasma physics (see, e.g., Contopoulos, 1960; Shu 1968). 
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rotating as a rigid body with angular velocity Qs the Hamiltonian 

H = E-QSJ = i(r2 + J0

2/r2) + V - QSJ0 (8) 

is known to be an analytic integral of motion. 
A more difficult problem is the self-consistent (or self-gravitating) problem. In 

this case Vx has to be found, together with fu through Equation (6) and Poisson's 
equation 

V2V, = AnGd(z) a, = 4nGd(z) J fxdv9 (9) 

where <5(z) is Dirac's delta function, and <rl the perturbed surface density. 
Lin and his associates (Lin 1966a, b, 1967a, b ; Lin and Shu 1964, 1966, 1967; 

Lin et al.9 1969) have considered in detail the problem of modes. This problem deals 
with spiral solutions of Equations (7) and (9), of the form 

V\ = V* exp [i(cot - m # ) ] , 

fi = / r e x p [ / ( c o r - m S ) ] , (10) 

ox — <T* exp [/(cor — m#)] , 

where Vx is the spiral component of the potent ia l , / ! the corresponding distribution 
function, and <rt the surface density; here m is the number of spiral arms (usually 
m = 2), 9 the angle in an inertial frame, and 

co = mQs. (11) 

The functions V*9 G* depend only on r, w h i l e / * depends on r and the velocities. 
If we integrate the solution (7) of Equation (6) over all velocities we find the surface 

density cr,. At the same time we replace Vx in Equation (7) by a solution of Poisson's 
Equation (9). Then, if we eliminate the factor exp [i(cot — mS)']9 we find an integral 
equation of the form 

ra*(r) = J Kmtto(r9 r') r'a*(r') d r ' , (12) 

where the kernel K is a complicated function, depending on m and co. This is the basic 
integral equation of galactic dynamics. It is of the general form of an homogeneous 
Fredholm equation of the second kind (the difference is that the dependence on the 
parameter co is not linear, and the equation may be singular). Its eigenvalues co are 
the modes of the self consistent problem and its eigenfunctions ro\ give the corre­
sponding perturbed surface density. This integral equation was given first by Kalnajs 
(1965) and then in the formalism used in Lin's theory by Shu (1968). 

The general solution of this equation is extremely difficult. Thus Lin introduced an 
'asymptotic' approximation that simplifies the problem considerably and makes it 
tractable. The 'asymptotic' approximation consists in assuming the radial wavelength 
X of the spiral pattern as small and omitting all higher order terms in X. Then the 
integral equation is reduced to an algebraic relation between co, the wave number 
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k = 2n/X9 and r, 
2nG(Tn r V7 i n 

D(a>9 fc, r) ss 1 - — - £ 1 - © v ( ;c .) = 0 . (13) 
|fc| <r z > [_ sin V7T J 

Here <70 is the surface density of the basic, axisymmetric, distribution, < f 2 > * the 
velocity dispersion, v is the 'relative frequency' defined by 

V = (CO-2Q)/K9 (14) 
with Q the angular velocity of the galactic rotation and K the 'epicyclic frequency' at 
distance r, 

X* = k2(r2>lK2 (15) 
and 

©v(**)= cosvy exp [ - * * ( ! + cosy) ]dy . (16) 

The relation (13) is Lin's dispersion relation (Lin, 1966a) for a Schwarzschild distri­
bution of unperturbed velocities. 

By solving this equation for a given o we find k = k0i(r). Then the spiral arms, in 
a frame of reference rotating with the spiral field, are given by 

S' = i J k<o (r) dr + const ( + n), (17) 

where 
S' = 3 - Q , f . (18) 

Lin found which spirals of the form (17) fit best the spiral arms of our Galaxy and 
in this way he derived a value of Qs = co/2 near 13 km s _ 1 k p c " 1 . 

A confirmation of this value of the angular velocity of the spiral pattern, Qs9 came 
from a rather different approach by Fujimoto at Columbia University. Fujimoto 
(1968) studied in particular gaseous spiral arms, using the hydrodynamic equations 
instead of the collisionless Boltzmann Equation. He solved the linearized equations 
numerically and found the density response to various imposed spiral potentials. 
Imposing self-consistency, i.e. agreement between the phase and amplitude of the 
response with the density responsible for the spiral field he could find a value of Qs 

similar to that of Lin, and, further, a relation between the inclination of spiral arms 
and the proportion of gas in them; more open spirals contain more gas. 

Accurately speaking a linear theory cannot give the absolute value of the amplitude 
of the wave, because if <r* is a solution of Equation (12), or of a similar linear equation, 
so is also co*9 where c is an arbitrary constant. Thus Fujimoto considered only the 
relative variations of the response with the radius r. The absolute value of the ampli­
tude can be found only by a non-linear theory. This has been done recently by Van-
dervoort and will be reported during this Symposium. 

Kalnajs has recently solved numerically the integral Equation (12) and has found 
values of £>s of the order of 30 km s " 1 k p c - 1 . His spirals are rather open and cannot 
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be treated by an 'asymptotic' theory, like Lin's. Most of Kalnajs' original work is 
contained in his Thesis (1965), while his recent work will be reported during the 
present Symposium. The problem of open spirals is quite difficult and more effort 
should be turned in this direction. 

Let us now turn to the initial value problem. This is the problem of the evolution 
of a given initial perturbation (given at time t = 0). 

This problem is well known in plasma physics. In the case of an homogeneous 
plasma its solution by Landau (1946) is by now classical. However in the galactic 
case only Kalnajs (1965) mentioned it briefly. 

One can solve, in principle, the initial value problem after the problem of modes 
has been solved. The solution is found by a variation of Landau's method of Fourier 
transforms in space and a Laplace transform in time. Namely we perform a Fourier 
analysis in the angle followed by a Laplace transform in time, omitting a Fourier 
transform in r. 

It is obvious that any perturbation of an axisymmetric galaxy, being a periodic 
function in the angle 9, with period 2n, can be Fourier analyzed into a one-armed 
perturbation, a two-armed perturbation, etc. Let us consider only two-armed pertur­
bations. Then we can write 

Vi = K n e x p ( - 2 i a ) , 
fx = / n e x p ( - 2 i a ) , (19) 
ai = al! exp(— 2i&). 

The initial perturbation, at / = 0, is also written 

/ i ; o = / i % e x p ( - 2 i a ) , (20) 

where f*0 is a function of r and the velocities. We can write 

/ i % = / o *exp (/(/>), (21) 

where f0 is the unperturbed distribution function, a a relative amplitude and <j> a, 
phase angle. 

Then we take the Laplace transforms of Vll9fn and an 

0 0 

/ * = J / i i e x p ( - i © O d * (22) 
o 

and similar expressions for V* and cr*. Thus Equation (6) gives a differential equation 
for / x * 

r* A 17* 

\ » - ? ) f " + ' - S T " d „ > ^ r - f + £j + /,%, (23) 
under the restriction 

lim [ / M e x p ( - icotj] = 0 . (24) 
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Equation (23) is the same as the equation for the modes (Shu, 1968) except for the 
last t e r m / * 0 . If we solve it f o r / * and integrate over all velocities we find an integral 
equation very similar to Equation (12), namely 

r * * ( r ) = j Km,a(r9 r ' ) r '<x?(r ')dr ' + s 1 0 ( r ) , (25) 

Where s10(r) is a known function, depending on the initial conditions. This is of the 
general form of a nonhomogeneous Fredholm equation of the second kind, and its 
solution can be given once the solution of the homogeneous Equation (12) is known. 

In the asymptotic case the solution can be given by using the formalism of Lin 
and his associates. In the Appendix we derive the solution for the perturbed density 
GX in the form 

0 0 + tCOl 

1 (* 1 (5 ( ) 
GX = G0 a exp [/(</> - n/2 - 2#)1 — — - — — exp (/cor) dco, 

2UK J s i n v 7 r D 
- oo + iai\ 

(26) 

where D is the function (13) and icoY is the imaginary part of co = coR + icol along the 
line of integration; this line is drawn below all singularities of the integrand, which 
are assumed to be poles. 

Following Landau we move the line of integration in the integral (26) parallel to 
itself, so that it comes at /co' with co '>0. Then it is known that for large t the only 
contribution to GX comes from the poles of the integrand. If we are not at a resonance 
(i.e. when s i n v 7 i ^=0) the only poles are the roots of the equation Z> = 0, i.e. Lin's 
modes. Thus the problem of the origin of spiral waves becomes, in some sense, trivial. 
Because practically any two-armed initial perturbation excites Lin's modes. (Of course 
the appearance of other modes also is not excluded, especially in open spirals.) 

However, there is a difference between this result and Lin's original picture of the 
modes. The value of co, which is a solution of Equation (13), is not unique. In fact 
the solution GX (Equation (26)), gives the wave number A: as a function of r and r, 

k = k(r,t), (27) 

thus Equation (13) gives also co as a function of r and t, 

co = co(r,t). (28) 

Relations of this form have been used as the starting point of Toomre's recent 
work (1969) on the evolution of the density waves in a galaxy. The fact that co is not 
constant along a spiral wave produces a differential rotation, affecting the wave itself, 
which tends to produce the ultimate dissolution of spiral waves. 

Toomre finds that the 'group velocity' of the spiral waves, dco/d/:, is directed inwards 
in the main part of the galaxy and of the order of l O k m s " 1 . Any information 
contained in the spiral waves moves inwards with this group velocity. Toomre found 
that certain quantities, like the wave number and the action density (energy density 
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divided by the relative frequency v) are preserved, as they are transmitted with the 
group velocity. Thus the whole wave pattern moves towards the inner Lindblad 
resonance. Toomre suspects that the energy of the wave is transformed there to thermal 
energy of the stars, and the wave is damped. In a numerical example he found that 
the amplitude of the wave decreases as the wave moves inwards, and tends to zero 
near the inner Lindblad resonance. This damping of the wave happens in about 10 9 

years, therefore a mechanism is needed to regenerate the spiral waves. Various sug­
gestions of 'exterior' forcing mechanisms were proposed by Toomre, including the 
Magellanic Clouds or a small bar near the center of the Galaxy. 

However Toomre's conclusion is not generally accepted. An alternative assumption, 
invoking a reflection of the wave near the inner Lindblad resonance, will be presented 
by Lin during this Symposium. At any rate near the inner Lindblad resonance 
strong non-linear phenomena take place and as we will see presently, any linear 
theory is not applicable there except for short times. 

Away form resonances non-linear effects appear only as small corrections in / , 
(higher order terms / 2 , etc.). Their main function is in stopping the growth of a 
finite, growing, wave, so that it reaches a stationary state. Then one can calculate the 
amplitude reached by the wave (Vandervoort). 

Non-linear effects are extremely important near resonances. There the whole linear 
theory is inapplicable for long times. In fact in the response integral (7), as given by 
Lin and his associates, there is a denominator sin V7T, and this becomes very small if 
v is near an integer. Then fx is larger than f0 and the whole approximation scheme 
implied by the linearization is not valid. In particular, if v is exactly an integer, fx 

contains a secular term; therefore the linear theory can be applied only for a short time. 
Whenever v is an integer (or a rational number) we have a resonance between the 

frequency of rotation in a frame of reference rotating with the spiral pattern, and the 
epicyclic frequency; the unperturbed orbits in the rotating frame are closed, periodic, 
orbits. The most important resonance in a galaxy is the inner Lindblad resonance, 
where 

In order to solve the collisionless Boltzmann equation in this case we cannot start 
with f0 a function of the energy E0 and the angular momentum J 0 , because then f0 

contains secular terms, except in the quite special case that f0 is a function of the 
Hamiltonian only. 

However, in the case v = — 1 we have one more isolating integral of the axisymmetric 
problem, namely the initial phase difference between the motion around the center 
of the galaxy and the radial (epicyclic) motion. We use this integral in the form 

3. Non-Linear Theory 

v = - 1. (29) 

S0 s i n 

C 0 co s v 7 
(30) 
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where # t and T , are the angle and the corresponding time of a pericentron passage. 
We can now find a function f0 of E0, J0 and S0 (or C 0 ) , such that it does not produce 

secular terms in fx. This means that f0 cannot be a Schwarzschild distribution 
function, but has a more complicated form. The main result (Contopoulos, 1970a) 
is that f0 has a 4$ ' dependence, where is the angle (17) in the rotating frame. 
Namely the main term off0 contains cos [ 4 3 ' - { - ^ ( r ) ] , where <PX is a phase function. 

This quadruple symmetry of f0 is evident in the form of the orbits near the inner 
Lindblad resonance. Away from resonances the orbits fill rings around the center 
(Figure 1); for every given value of the Hamiltonian (8) there is one almost circular 

jo 
x 

Fig. 1. A ring-type orbit. 

periodic orbit, and all the rest form rings with boundaries on each side of the periodic 
orbit. Near the inner Lindblad resonance, however, for every value of the Hamiltonian 
there are two resonant periodic orbits, like ellipses with their center at the center of 
the Galaxy. Orbits near the resonance (e.g. starting at a distance up to 2 kpc from the 
resonance, with appropriate values of the Hamiltonian) form tube orbits around the 
two resonant periodic orbits (Figure 2). Orbits starting further away from the reso­
nance form rings, as in Figure 1, but of larger width; the set of such orbits, however, 
is small.* 

* The other resonances, besides the inner Lindblad resonance, are less important, because they 
involve much smaller sets of orbits. A particularly interesting resonance is the particle resonance, 
where v =0 , which will be discussed by Barbanis. 

Resonances are encountered also in many problems of stellar dynamics and celestial mechanics. 
Tube orbits in a meridian plane of an axisymmetric galaxy were found by Torgard and Ollongren 
(1960) (see also Ollongren, 1965). Their theoretical explanation, as resonance phenomena, was given 
by means of the 'third' integral (Contopoulos, 1965) and follows the lines discussed above. Excellent 
agreement was found between theory and numerical experiments, by using an extra integral, like 
So (or Co), in the resonant case. The analogy with the present problem is discussed in more detail in a 
forthcoming paper (Contopoulos, 1970a). 

In celestial mechanics the same problem is known as the problem of 'small divisors'. Resonances 
appear in the gaps of the asteroids, in satellite orbits at the 'critical inclination', etc. 
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The superposition of all the orbits near the inner Lindblad resonance gives the 
density response. This has also a rough quadruple symmetry. In fact, in some of the 
galaxies shown by Morgan during this Symposium, one could see nuclei showing a 
rough quadruple symmetry. 

It is obvious that if the spiral field is infinitesimal resonant effects are also infinitesi­
mal. In order to see the growth of a resonance we have calculated numerically orbits 
in a growing wave (Contopoulos, 1970a). Initially the spiral potential Vx is zero and 
the stars start moving along their unperturbed (epicyclic) orbits. However as the wave 
gradually grows, tending to its maximum amplitude, the orbits deviate gradually, 

Fig. 2. The areas covered by two tube orbits near the inner Lindblad resonance. The thick line gives 
the minimum of the spiral potential. 

tending to their final tube form around one or the other of the two resonant periodic 
orbits. In a particular example the field reaches 0.9 of its maximum amplitude in 
about 2 x 10 9 years, while the orbits reach almost exactly their final tube forms after 
at most 10 revolutions. Therefore the growth of resonances is an important factor 
in the evolution of a spiral wave. 

We must stress that any 'absorption' or 'reflection' of the waves near the inner 
Lindblad resonance is different from the corresponding linear phenomena, known 
from plasma physics, which happen away from resonances. Lin will mention the 
possibility of the excitation of a long outgoing wave near the inner Lindblad resonance 
which may be considered as a non-linear reflection. If such a wave exists it may also 
have important consequences for the dynamics of spiral waves. 

4. Preference of Trailing Waves 

It is generally believed to-day that spiral waves are trailing rather than leading. This 
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is well known for local, sheared, wavelets (Goldreich and Lynden-Bell, 1965; Julian 
and Toomre, 1966), but in the case of the grand design of spiral waves leading and 
trailing waves appear as equivalent. Some 'indications' for the amplification of 
trailing waves (Lin and Shu 1966; Lin 1967a) have not proved working (Toomre, 
1969). The only evidence for the preference of trailing waves has been provided by 
Kalnajs (1965), who states that the response to a trailing wave is trailing, while the 
response to a leading wave is both a leading and a trailing wave. Kalnajs' argument is 
correct, but difficult to follow, and applies to the general case of open spirals. 

Thus we made some calculations following Lin and Shu's formalism, for a slightly 
growing wave near the inner Lindblad resonance. Namely we calculated the linear 
response, near the inner Lindblad resonance, of a spiral wave of the form 

Fi = i 4 ( r ) c x p { i [ # ( r ) + c o r - 2 S ] } , (31) 

where co = coR + iu>Y has a small negative imaginary part, which gives a slightly growing 
wave (because Vt contains the factor exp (-co^))- The value of |co,| was taken equal to 
0.03 coR. The results of the calculation are shown in Figure 3. It is seen that near 
resonance the response to a trailing wave is trailing, while the response to a leading 
wave is also trailing. 

* l VI 

Fig. 3. Linear density response to a growing imposed field near the inner Lindblad resonance (thin 
circle). The thick solid line represents the minimum of the potential, which is trailing in (a) and leading 

in (b). The response (dash-dotted line) is trailing in both cases. 

It is known from Lin's theory that outside the inner Lindblad resonance the response 
is almost exactly in phase with the imposed potential, i.e. the maxima of density 
almost coincide with the minima of potential. Inside the Lindblad resonance the 
response is 90° out of phase. Therefore there cannot be a self consistent spiral wave 
inside the inner Lindblad resonance, at least in the linear theory. This can be well 
understood in terms of the initial value problem. As the Equation (13) has no solution 
inside the inner Lindblad resonance, the integrand of Equation (26) has no poles, 
therefore the solution (26) does not tend to a stationary spiral form after a long time. 

https://doi.org/10.1017/S0074180900000784 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900000784


314 G. CONTOPOULOS 

This is consistent with observations of the nuclear region of galaxies and with the 
numerical experiments of Miller and Prendergast. 

In the case of an imposed growing spiral field it is not at all evident how the in-phase 
response outside the inner Lindblad resonance is joined to the out-of-phase response 
inside it. However an exact linear calculation shows that in both cases of a trailing 
and of a leading wave the response precedes the imposed potential, and more strongly 
so in the case of the leading wave (Figure 3). Thus a leading wave is strongly distorted 
near the inner Lindblad resonance tending to become trailing. This effect discrimi­
nates strongly in favor of trailing waves. More details will be given in a future paper 
(Contopoulos, 1970b). It appears that permanent leading waves are impossible in 
galaxies possessing an inner Lindblad resonance. 

The above review of the recent developments in the theory of spiral structure shows 
that much progress has been made in recent years. However there are still some basic 
unsolved problems. Perhaps the most urgent at this moment is to find what is the fate 
of the groups of waves moving towards the inner Lindblad resonance with Toomre's 
group velocity. The complete exploration of the non-linear effects near resonances 
may give the answer to the basic problems of the origin and persistence of spiral waves. 

Appendix. The Initial Value Problem in the Asymptotic Approximation 

The solution of Equation (23) of the initial value problem can be found in the same 
way as the solution of the corresponding equation for modes (Shu, 1968). It is 

dE0 2 s in(a>T 0 — 23 0 ) 
TO 

X 

- t o 
{ V * { 2 ^ 0

 + a > d ^ J + i f * ^ c o s [ a , T " 2 9 ( t ) ] d T ' ( A 1 ) dE0 

Then, using a Schwarzschild distribution function 

JO = , . 2 \
 e X P ^ - ~ - 2 v f > ( A 2 ) 

™o(r 2 > 0 ( 2 < V > 0 J 
(where a zero subscript in Q, K, <7 2> means quantities calculated at r = r 0 ) and the 
approximate relation (Shu, 1968) 

2- h oo - = (A3) 
'dJ0 ^dEo < r 2 > 0 

we find, using the same approximations as Shu, 
71 

'* - - r k \ ~ v * + f \ v * ~ - ~ a c o s d y \ • 
< r 2 > 0 ( 2 s i n v 0 7 t J [_ V 0 K 0 J J 

(A4) 
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Integrating over all velocities we find the density response. If we assume that a and 
(f> depend only on r and not on the velocities, we find 

<r > ( s i n v 7 r J f c s i n v 7 r 

where © v (x*) is given by Equation (16), and x + i o ^ W ) 2
 < / 2 > / K 2 > where c6' = /caU = 0. 

If the last assumption about a and </> is not made the last term of Equation (A5) is 
slightly more complicated. 

If we replace V* by the lowest order solution of Poisson's equation, V\ = -2nx 
Ga*/\k\, and omit the second term of Equation (A5) we find Lin's dispersion relation 
(Equation (13)). 

In the initial value problem D is not zero, in general, because of the second member 
in (A5). The solution of Equation (A5) is 

„ 7rc7 0 aexp [/((/> - tc/2)] © v ( / * ; 0 ) 
cr{ = - . (A6) 

K s i n v 7 r D 

Then, inverting the Laplace transform (22), and using Equation (19), we find the 
solution of the initial value problem in the form (26). 

If we move the line of integration above the real axis of co, then, for large f, only 
the poles of the integrand give a contribution to GX. 

Let us consider the main root of the dispersion relation Z) = 0, say co = co (r, k). 
Then we find 

<r0a exp [i (</> - 28)] © v ( / * ; 0 ) 
ax = _ exp(/cof), (A7) 

s i n v 7 r cD/ov 

where it is assumed that sin vn^O. 
Equation (A7) gives the form of the perturbed density distribution for every (large) 

t, therefore it gives also the wave number k. We know that initially (for t = 0) it is 

*(r) = 0'(r). (A8) 

Let us disregard the transition period needed for a{ to reach the form (A7) and 
consider a new 'initial time', such that (A7) is satisfied approximately for every 
r ^ O . Then we have two possibilities. 

(a) If the initial perturbation satisfies Lin's dispersion relation for a fixed co, i.e. if 
k(r), defined by Equation (A8), satisfies the equation D (co, k(r), r ) = 0, then this mode 
is stationary, except for resonance effects. 

(b) If the initial perturbation does not satisfy the above condition, then, for / = 0, 
co is not constant, but a function of r. Equation (A7) gives at time At 

/c(r) = c> ,(r) + c o ' ( r ) ^ r , (A9) 

therefore the wave number changes in time. Then the dispersion relation gives co as 
a function of r and t, i.e. the spiral pattern has a differential rotation. 
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