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The present study evaluated the pharmacokinetics of three different grapefruit flavanone forms in dog plasma and demonstrated their absorption

after an oral intake of a grapefruit extract; pharmacokinetic parameters of these forms were also determined. Ten healthy beagles were adminis-

tered 70 mg citrus flavonoids as a grapefruit extract contained in capsules, while two additional dogs were used as controls and given an excipient.

The grapefruit flavanone naringin, along with its metabolites naringenin and naringenin glucuronide, was detected in dog plasma. Blood

samples were collected between 0 and 24 h after administration of the extract. Naringin reached its maximun plasma concentration at around

80 min, whereas naringenin and naringenin glucuronide reached their maximun plasma concentrations at around 20 and 30 min, respectively.

Maximum plasma concentrations of naringin, naringenin and naringenin glucuronide (medians and ranges) were 0·24 (0·05–2·08), 0·021

(0·001–0·3) and 0·09 (0·034–0·12) mmol/l, respectively. The areas under the curves were 23·16 l (14·04–70·62) min £ mmol/for nariningin,

1·78 (0·09–4·95) min £ mmol/l for naringenin and 22·5 (2·74–99·23) min £ mmol/l for naringenin glucuronide. The median and range values

for mean residence time were 3·3 (1·5–9·3), 2·8 (0·8–11·2) and 8·0 (2·3–13·1) h for naringin, naringenin and naringenin glucuronide, respectively.

The results of the present study demonstrate the absorption of grapefruit flavanones via the presence of their metabolites in plasma, thus making an

important contribution to the field since the biological activities ascribed to these compounds rely on their specific forms of absorption.

Absorption: Flavanone: Bioavailability: Dog: Grapefruit: Pharmacokinetics: Plasma

Flavonoids are a group of polyphenolic compounds with
health-related properties that are widely distributed in fruits,
vegetables, fruit juices, cocoa, teas and wines. Citrus fruits
are rich in flavonoids that have been investigated for their bio-
logical activity. The use of citrus flavonoids as anti-inflamma-
tory, anticarcinogenic and antitumour agents has been reported
(Middleton & Kandaswami, 1994; Benavente-Garcı́a et al.
1997; Montanari et al. 1998). Recent research shows that
the citrus flavonoid naringenin stimulates DNA repair in pros-
tate cancer cells (Gao et al. 2006), whereas the flavanone gly-
coside naringin has proved to be a potent inhibitor of
angiogenic peptide vascular endothelial growth factor, which
is released in human tumour cells (Schindler & Mentlein,
2006). These studies suggest a novel mechanism for mammary
cancer prevention, which is considered the most common
cancer in female dogs.

Several studies have shown that grapefruit juice elevates the
blood levels of some orally taken drugs, primarily by inhibit-
ing intestinal CYP3A4-mediated first-pass metabolism (Fuhr
et al. 2002; Dahan & Altman, 2004; Lilja et al. 2004; Paine

et al. 2004, 2005), CYP3A4 being a type of cytochrome
P450. These studies suggest a potential therapeutic benefit
from using the active constituents of grapefruit to increase
drug bioavailability. Lowering the effective dose will also
reduce drug costs, although potential clinical problems
remain (Dahan & Altman, 2004).

One of the most common flavonoids found in grapefruit
(Citrus paradisi) is the flavanone glycoside naringin (narin-
genin 7-O-neohesperidoside; Fig. 1). Naringin is also known
to be the agent responsible for the bitterness of grapefruit
juice. Narirutin and naringenin (Fig. 1) are also present in
grapefruit but to a lesser extent (Macheix et al. 1990).

Most of the molecular forms of flavonoids that reach the
peripheral circulation and tissues are different from those pre-
sent in foods (Day & Williamson, 2001; Day et al. 2001;
Graefe et al. 2001; Natsume et al. 2003; Zhang et al. 2003).
In general, the predominant forms in plasma are conjugates
(glucuronates or sulphates, with or without methylation).
These conjugates are chemically distinct from their parent
compounds, differing in size, polarity and ionic form.
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Consequently, their physiological behaviour is likely to be
different from that of the native compounds (Kroon et al.
2004), and their biological effect will ultimately depend on
the cellular effects of their circulating metabolites (Harada
et al. 1999; Spencer et al. 2001a, b).

Very little is known about the biological activities of these
conjugated metabolites. Glucuronides of isoflavones and epi-
catechin have been shown to have a much weaker oestrogenic
activity and to provide no protection against oxidative stress
in cells grown in vitro (Zhang et al. 1999; Spencer et al.
2001a, b), whereas additional studies have shown that the 5-
O-b-D-glucuronide of catechin and epicatechin excreted in
rat urine does not interfere with their antioxidant properties,
as assesed by their ability to scavenge superoxide (Harada
et al. 1999; Okushio et al. 1999), thus suggesting that in
plasma they may still act as antioxidants. Although glucuro-
nides do not readily enter cells, it is also possible that they
might be cleaved by the action of b-glucuronidases located
in human tissues such as the liver (O’Leary et al. 2001) or
by neutrophils that release b-glucuronidases when activated
(Shimoi et al. 1998; Simio et al. 2001).

Initially, only free flavonoids without a sugar molecule, so-
called aglycones, were considered to be able to pass across the
gut wall (Hollman & Katan, 1997). However, the absorption
of quercetin glycosides from onions in human subjects (Holl-
man et al. 1995) and the presence of the flavanone glycoside
naringin in plasma and urine after oral administration (Ishii
et al. 2000; Fang et al. 2006) have now been demonstrated.

Liquid chromatography (LC)-MS/MS has emerged as the
preferred technology for the quantitative determination of
metabolites in different biomatrices, due to its sensitivity
and selectivity through MS/MS experiments and the fact that
it enables structural identification (Murphy et al. 1994). Ion-
spray ionization, together with tandem MS for structural
characterization, has become a popular and versatile method

for flavonoid analysis (Roura et al. 2005; Urpı́-Sardà et al.
2005; Fang et al. 2006).

The use of dogs as a model has been shown to be helpful in
evaluating the absorption of flavonoids from green tea
(Swezey et al. 2003). Thus, the present study aims to assess
the major flavanone forms in plasma after the oral adminis-
tration of a grapefruit extract; and to evaluate the kinetics of
these metabolic forms in the plasma by considering biotrans-
formation, thus providing a general model that can be used
for studies on flavonoid bioavailability.

Methods

Chemicals

Naringin (naringenin-7-O-rhamnoglucoside) and blank dog
plasma were purchased from Sigma-Aldrich (St Louis, MO,
USA). Naringenin (40,5,7-trihydroxyflavanone), narirutin (nar-
ingenin-7-O-rutinoside) and the internal standard taxifolin
were purchased from Extrasynthese (Genay, France). Metha-
nol and acetonitrile, HPLC grade and formic acid were pur-
chased from Scharlau Chemie S. A. (Barcelona, Spain).
Ultrapure water (Milli-Q) was obtained from a Millipore
system (Millipore, Bedford, MA, USA).

Animals and study design

Animals. Ten healthy adult beagle dogs were randomly
chosen. The dogs had a mean weight of 13·97 (SD 2·96) kg
and were deprived of food overnight before the experiment.
Two capsules containing 200 mg grapefruit extract (70 mg fla-
vanones) were orally administered to the dogs; two additional
dogs were chosen as controls and were given an excipient con-
taining talc. The grapefruit extract contained naringin, nari-
rutin and naringenin as citrus flavanones. Blood was drawn

Fig. 1. Structures and molecular weights (MW) of (A) naringin, (B) narirutin and C naringenin.
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before capsule administration and at the following times after
administrations: 10 min, 20 min, 30 min, 40 min, 80 min, 2 h,
4 h, 6 h, 8 h and 24 h. The dogs were fed with a polyphenol-
free diet 2 h after the capsules were given. Blood samples
(5 ml) were collected in vacutainer tubes containing EDTA
as anticoagulant (Becton, Dickinson, Franklin Lakes, NJ,
USA). Plasma was obtained after blood centrifugation at
13 000 g for 15 min and stored in Eppendorf tubes at 2808C
until analysis.

The study was carried out at Isoquimen S. L. (Barcelona), in
accordance with the Guide for the Care and Use of Laboratory
Animals (Committee on Care & use of Laboratory Animals,
1985). The study protocol was approved by the Isoquimen
S. L. Ethics Committee.
Sample extraction procedure for grapefruit flavanone and fla-

vanone metabolites. Flavanone compounds in plasma were
extracted by solid-phase extraction as previously described
(Roura et al. 2005).

Dog plasma samples were treated as follows: 24ml of IS
(8224 nmol/l) were added to 1 ml of plasma and then was mixed
with 370ml of antioxidant solution (containing 0·2 g/ml ascorbic
acid, 1 mg/ml EDTA). After 2 min of vortex-mixing, samples
were diluted with 3 ml water. Solid-phase extraction with
Waters Oasis HLB 3 cm3 (60 mg) cartridges (Waters Oasis, Mild-
ford, MA, USA) was applied to the mixture. Cartridge activation
was achieved by adding 1 ml methanol and 1·5 M formic acid in
water (mol/l), respectively. Sample clean-up was performed
with 2 ml 1·5 M formic acid in water (mol/l) and 2 ml water–
methanol solution (95 : 5 v/v). Flavonoid metabolites were
eluted with 1 ml acidulated methanol (0·1 % formic acid). The
eluted fraction was evaporated in a sample concentrator
(Techne, Duxford, Cambridge, UK) at 258C under a stream of
N gas and reconstituted with 300 ml mobile phase, before being
filtered through a 4 mm, 0·45mm PTFE filter (Waters) into an
amber vial insert for LC-MS/MS analysis.

Preparation of the standards and sample treatments were
performed in a darkened room with a red safety light to
avoid the oxidation of the analytes.
LC-diode array detection. The grapefruit extract was ana-

lysed in an HP 1050 (Hewlett-Packard, Palo Alto, CA, USA)
liquid chromatograph equipped with an automatic injector
(HP1050) and an HP diode array (1050 M) at 280 nm. The
conditions for HPLC corresponded to those previously
described by Mata et al. (2007).
LC-MS/MS. Grapefruit metabolites were identified and

quantified by LC-MS/MS plasma analysis. LC analysis was
performed using a Perkin-Elmer series 200 (Perkin-Elmer,
Norwalk, CT, USA) equipped with a quaternary pump and
an autosampler. A Luna C18 column (50 £ 2·0 mm internal
diameter, 5mm; Phenomenex, Torrance, CA, USA) was used
at room temperature, and the injected volume was 20ml. Gra-
dient elution was carried out with water (0·1 % formic acid)
and acetonitrile (0·1 % formic acid) at a constant flow of
600ml/min. A gradient profile with the following proportions
(v/v) of acetonitrile (0·1 % formic acid) was applied (time in
min, % acetonitrile): (0, 5), (2, 25), (7, 90), (9, 100) and
(12, 100). The column was equilibrated for 10 min between
runs.

A triple quadrupole mass spectrometer (API 3000; Applied
Biosystems, PE Sciex, Concord, Ontario, Canada), equipped
with a turbo IonSpray source was used to obtain the MS and

MS/MS data. TurboIonspray source settings were as follows:
capillary voltage, 23500 V; nebulizer gas (N2), 10 (arbitrary
units); curtain gas (N2), 12 (arbitrary units); collision gas
(N2), 10 (arbitrary units); focusing potential, 2200 V;
entrance potential, 10 V; drying gas (N2), heated to 4008C
and introduced at a flow rate of 8000 cm3/min. The decluster-
ing potential and collision energy were optimized for each
compound with infusion experiments: individual standard sol-
utions (10 ppm) dissolved in 80 : 20 (v/v) mobile phase were
infused at a constant flow rate of 5ml/min into the mass spec-
trometer using a model syringe pump (Harvard Apparatus,
Holliston, MA, USA).

Full scan data were acquired by scanning the mass-to-
charge ratio (m/z) from 100 to 600 in profile mode, using a
cycle time of 2 s. For MS/MS, a product ion scan utilising a
cycle time of 2 s was used. MS/MS product ions were pro-
duced by the collision-activated dissociation of selected pre-
cursor ions in the collision cell of the triple quadrupole
mass spectrometer and the mass analysed using the second
analyser of the instrument. Multiple reaction monitoring, the
method of choice because of having the highest selectivity
and sensitivity in quantitative LC-MS/MS, was used to moni-
tor five transitions for each analysis: naringin, m/z 579 ! 271;
narirutin m/z 579 ! 271; naringenin, m/z 271 ! 151; narin-
genin glucuronide m/z 447 ! 271; naringenin sulphate m/z
351 ! 271; taxifolin, m/z 303 ! 285. Both quadrupoles (Q1
and Q3) were operated at unit resolution. The criteria for iden-
tifying grapefruit metabolites, such as retention time, multiple
reaction monitoring transition as mentioned above and tran-
sitions 579 ! 271 and 271 ! 151 (at a higher declustering
potential value), were chosen to confirm the multiple reaction
monitoring trace for each metabolite in collisionally induced
dissociation-MS/MS experiments (Roura et al. 2005; Urpı́-
Sardà et al. 2005).

Pharmacokinetic analysis. Pharmacokinetic parameters
were determined by means of a non-compartmental analysis
using the WinNonlin Professional software version 3.3 (Phar-
sightw Corporation, USA). The linear trapezoidal method was
used to calculate the area under the plasma concentration
curve (AUC0 – t) from time 0 until the last detectable concen-
tration. The total area under the curve (AUC0 –1) was calcu-
lated by the expression: AUC0 – t þ AUCextr, where AUCextr

is the extrapolated area under the curve. The maximum
plasma concentration (Cmax) and the time needed to reach
Cmax were determined by visual inspection of the experimental
data. Mean residence time (MRT) was estimated by means of
the ratio AUMC/AUC, where AUMC is the first moment
curve. The parameter Cmax/AUC was also calculated.

Statistical analysis. The pharmacokinetic parameters for
naringin, naringenin and naringenin glucuronide were com-
pared by one-way ANOVA on ranks followed by a Scheffe’s
multiple comparison test. P,0·05 was considered significant.
The statistical analysis was performed using SPSS software
(Version 11.5; Japan Inc., Tokyo, Japan).

Quality parameters relating to the determination of citrus
flavanone metabolites in dog plasma. To determine selectiv-
ity, dog plasma without any placebo or extract was analysed to
discard any endogenous peaks at the same analyte retention
time. The linearity of the method was investigated by spiking
commercial blank dog plasma with known concentrations of
naringin and naringenin at seven concentration levels ranging
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from 8·62 to 1724·14 nmol/l for naringin, and from 9·19 to
367·65 nmol/l for naringenin. The sample concentration was
determined by weighted (1/X2) linear regression of the stan-
dard line (Kiser & Dolan, 2004). Extraction efficiency (%),
as the recovery, was investigated by spiking blank dog
plasma with known quantities of naringin and naringenin at
different concentration levels within the linear range of the
calibration curve (naringin, 8·62–1724·14 nmol/l; naringenin,
9·19–367·65 nmol/l). Replicate analysis of samples containing
known amounts of naringin, naringenin and taxifolin prepared
in blank dog plasma were conducted to determine precision
and accuracy. Repeatability and reproducibility for retention
time were also calculated.

Results

Flavanone composition of grapefruit extract

The quantiative results of LC-diode array detection for grape-
fruit extract flavonoids were as follows: naringin (21·1 %),
narirutin (12 %) and naringenin (2·1 %). A quantity of grape-
fruit extract measuring 200 mg was administered; this con-
tained 42·1 mg naringin, 24 mg narirutin and 4·3 mg
naringenin.

Identification and confirmation of citrus flavanones and
flavanone metabolites in plasma

The flavanones and their metabolites quantified in dog plasma
after the oral administration of a grapefruit extract were narin-
gin (m/z 579 ! 271), naringenin glucuronide (m/z 447 ! 271)
and naringenin (m/z 271 ! 151). The chromatograms of these
compounds, along with their retention times, are shown in
Fig. 2. Although the extract administered contained narirutin

as a flavanone glycoside, only the flavanone glycoside
naringin could be quantified in its native form in all samples.

Product ion scan mode was also applied as a second exper-
iment in order to confirm the identity of the naringenin glucur-
onide peak, selecting m/z 447 as the parent ion; product ion
scan spectra for 447 produced an ion at m/z 271 due to the
loss of 176 units, which corresponded to a glucuronic acid.
The position of the glucuronide group could not be determined
owing to the lack of a reference standard. Nevertheless, narin-
genin has three possible sites for conjugation: 7-, 40- and
5-OH, with 5-OH being the least reactive owing to its low
acidity (Zhang & Brodbelt, 2004). Analysis was also under-
taken for sulphate metabolites, but these were not detected.

Citrus flavanones and their metabolites were not present in
dog plasma at time 0, prior to consumption of the grapefruit
extract, or in the control subjects that had been given an
excipient.

Quality parameters relating to the determination of citrus
flavanone metabolites in dog plasma

The seven-point calibrator concentration showed a linear and
reproducible curve with correlation coefficients of 0·9975
and 0·995, respectively. Limits of detection and limits of
quantification for naringin were 0·74 and 2·48 nmol/l, respect-
ively, whereas the values for naringenin were 2·06 and
6·91 nmol/l. Recovery (%) of known amounts of naringin
and naringenin were 80 (SD 0·11) % and 89 (SD 0·14) %,
respectively. The precision and accuracy of the method were
determined and have been accepted at all concentration
levels (US Department of Health & Human Services, 2001).
The repeatability and reproducibility of the retention time
were also calculated. Within-day precision (n 10) was 0·9,
1·1 and 6·6 % for naringin, naringenin and taxifolin respect-
ively. Between-day precision, evaluated over a period of 3 d
(n 30), was 7·7, 9·5 and 7·8 %, respectively.

Pharmacokinetics of citrus flavonoids after oral intake
of grapefruit extract

A flavanone in its native form and two flavanone metabolites
were identified in canine plasma after the oral intake of a
grapefruit extract. Fig. 3 represents the plasma concentration
curves for naringin, naringenin glucuronide and unconjugated

Fig. 2. Multiple reaction monitoring chromatogram of dog plasma after an

intake of grapefruit extract. (A) naringin (Rt 7·28 min); (B) naringenin glucuro-

nide (Rt 7·49 min); (C) naringenin (Rt 8·24 min).

Fig. 3. Time v. plasma concentration curves for naringin (†), naringenin

glucuronide (D) and unconjugated naringenin aglycone (W) for ten beagles

receiving 70 mg grapefruit flavanones. Data were expressed as mean values

and standard deviations.
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naringenin aglycone. Values were expressed as means and
standard deviations.

The following pharmacokinetic parameters corresponding
to each of the flavanone metabolites (Cmax, AUC0!24,
MRT0!t, time to Cmax and Cmax/AUC0!24) are summarised
in Table 1. Values are expressed as median and range,
together with the results of the statistical analysis carried
out. There were no significant statistical differences between
most of the pharmacokinetic parameters corresponding to nar-
ingin, naringenin and naringenin glucuronide. This was not the
case, however, with AUC0!24, whose values showed signifi-
cant differences between naringenin and naringin, and
between naringenin and naringenin glucuronide. Naringenin
had the lowest extended exposure (AUC0!24) in plasma,
whereas naringin in its native form presented the highest
maximum plasma concentration (Cmax) values, as well as the
highest extended exposure (AUC0!24). As shown in Table 1,
naringenin glucuronide presented the highest MRT
(MRT0!24; 8 h), followed by naringin (3.3 h) and naringenin
(2.8 h). However, interindividual variations in the pharmaco-
kinetic parameters values were observed.

Discussion

The metabolic forms that reach the peripheral circulation and
tissues may be different from those present in foods, and their
biological activity is consequently likely to be different
(Kroon et al. 2004). The identification and measurement of
flavonoid conjugates are key prerequisites to understand the
role of these compounds, since these are the forms that will
reach tissues and exert their biological effect. Previous studies
of naringin (naringenin-7-O-rhamnoglucoside) metabolism
have suggested that sugar moiety cleavage, by gut microflora
a-rhamonosidases, is the first step of this pathway, leading to
the formation of naringenin, which undergoes rapid glucuroni-
dation or sulphatation in the intestine or liver (Fuhr & Kum-
mert, 1995; Felgines et al. 2000; Scalbert & Williamson,
2000). Most studies have applied enzymatic hydrolysis with
sulphatase and glucuronidase in order to identify the aglycone
naringenin, and thus the individual metabolic profiles are lost
during the hydrolysis procedure (Fuhr & Kummert, 1995;
Ishii et al. 1996, 1997; Hollman et al. 1999; Erlund et al.
2001; Bugianesi et al. 2002; Manach et al. 2003; Zhang &
Brodbelt, 2004).

In the present study, a method without prior sample
hydrolysis and based on LC-MS/MS technique has been
developed. The method is capable of identifying non-trans-
formed naringin and flavanone metabolites in dog plasma
after the oral administration of 70 mg citrus flavanone con-
tained in a grapefruit extract. The results of this study corro-
borate the suggestion that both flavonols and flavanone
glycosides can be absorbed as glycosides. However, narirutin
(naringenin-7-O-rutinoside), a flavonoid rutinoside also pres-
ent in the grapefruit extract, could not be detected, probably
because of its sugar moiety, which, as previously reported,
affects flavonoid absorption (Erlund et al. 2000; Olthof et al.
2000; Rowland et al. 2000; Arts et al. 2004; Manach et al.
2004; Nielsen et al. 2006).

In recent years, a greater understanding of flavonoid absorp-
tion and metabolism has been achieved. Flavonoid glycosides
are thought to reach the small intestine intact, and it is
believed that they may require deglycosidation for absorption
across the intestine (Scalbert & Williamson, 2000; Manach
et al. 2004). The presence of naringin in the plasma demon-
strates that the deglycosidation of naringin is not always
necessary for its absorption. Previous studies (Fang et al.
2006) have administered naringin as a pure compound,
whereas in the present study citrus flavanones were adminis-
tered in the form of a grapefruit extract (as it occurs in
nature), in a dose equivalent to that of half a grapefruit. The
influence of food matrices must always be considered when
interpreting results; it should be borne in mind that they
could have been different had pure compounds been used.
Other compounds present in the extract could affect the mech-
anisms involved in the absorption, distribution and elimination
of the flavanones studied.

Previous studies using enzymatic hydrolysis have reported
plasma concentrations of 1·3–2·2mmol/l hesperitin metab-
olites with an intake of 130–220 mg given as orange juice
(Manach et al. 2003) and up to 6mmol/l naringenin metab-
olites with 200 mg ingested as grapefruit juice (Erlund et al.
2001). Fang et al. (2006) have reported plasma concentrations
of 3·8, 0·23 and 43·58mg/ml for naringin, naringenin and nar-
ingenin glucuronide respectively after an oral administration
of 746·7 mg/kg naringin as a pure compound. In the present
study, 70 mg flavanones given as a grapefruit extract were
orally administered, and several pharmacokinetic parameters
were calculated for naringin and for each of the flavanone
metabolites that have been found in dog plasma. The AUC

Table 1. Pharmacokinetic parameters of the grapefruit flavanone naringin and its metabolites (naringenin and naringenin glucuronide) in beagles after
an oral intake of grapefruit extract

(Median values and ranges for ten determinations)

Metabolite
Cmax

(mmol/l)
Time to

Cmax (min)
AUC0!24

(min £ mmol/l) MRT0!24 (h) Cmax/AUC0!24(min)21

Naringin 0·238 80 23·16* 3·3 0·0055
(0·05–2·08) (10–160) (14·03–70·62) (1·5–9·3) (0·003–0·054)

Naringenin 0·02 20 1·78 2·8 0·126
(0·001–0·3) (10–360) (0·09–4·6) (0·8–11·2) (0·004–0·060)

Naringenin glucuronide 0·09 30 22·48* 8·0 0·004
(0·03–0·12) (10–480) (2·74–99·23) (2·3–13·1) (0·001–0·026)

MRT, mean residence time.
* Values were significantly different from those for naringenin: P,0·05.
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parameter until the final experimental time (AUC0!24) was
used to compare the pharmacokinetic parameters because
AUCext values were not less than 20 % in all cases.

The differences between naringenin and naringin and between
naringenin and naringenin glucuronide in terms of AUC0!24

values suggest that the aglycone naringenin had the lower
extended exposure. As shown in Table 1, naringenin glucuronide
presented the highest MRT (MRT0!24), which indicates that this
metabolite remains in the body for a longer period of time.

Similar interindividual variations have previously been
reported, suggesting that these variations were caused by differ-
ences in the gastrointestinal microbiota responsible for the
hydrolysis of naringin (Erlund et al. 2000; Rowland et al.
2000). Interindividual variation is an important factor that
must always be taken into consideration when performing diet-
ary assessment studies.

The ratio Cmax/AUC0!24 represents the rate of absorption,
and, as expected, the aglycone naringenin was the most rapidly
absorbed, probably owing to its greater ability to cross the lipid
cell membrane (Mohsen et al. 2004). In contrast, naringin and
naringenin glucuronide reached their peak concentration at 80
and 30 min, respectively, whereas naringenin reached its Cmax

at 20 min. Although aglycones are known to be absorbed more
rapidly, the aglycone absorption was detected here at a much
earlier time (20 min) than that reported by Bugianesi et al.
(2002), who found that Cmax was reached 2 h after the ingestion
of tomato paste (which contains naringenin aglycone) in men.
This result could be due to differences in the species and to the
influence of the food matrix.

Three different flavanone forms were found in dog plasma,
thus demonstrating grapefruit flavanone absorption after an
oral intake of grapefruit extract: naringin in its native form,
naringenin and naringenin glucuronide. These results confirm
the bioavailability of grapefruit flavanones and their metab-
olites in beagles after the oral administration of 70 mg grape-
fruit flavanone. The aglycone naringenin showed the highest
rate of absorption but the lowest extended exposure and
lowest MRT in the body. Both naringin and naringenin glucur-
onide showed high extended exposure values, whereas narin-
genin glucuronide presented the highest values for MRT,
remaining in the body for approximately 8 h. This study
demonstrates the presence of grapefruit flavanone and its
metabolites in dog plasma, and the data could provide a
model for further studies, although a greater number of sub-
jects would be necessary to support these results.
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