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NEMITSKY OPERATORS BETWEEN

ORLICZ-SOBOLEV SPACES

GRAHAME HARDY

A theorem on Nemitsky operators between Sobolev spaces,

contained in a 1973 paper of Marcus and Mizel, is extended

to Orlicz-Sobolev spaces.

1. Introduction

Let fi be a domain in R , and let the function g(x,t) be defined

for x e Q., t e R . The Nemitsky operator G is defined on functions

u : Q •+ R by
m

(1.1) (Gu)(x) = g(x,u (x),. . ,}u (x)) for x £

The two papers [6] and [7] of Marcus and Mizel contain theorems giving

conditions under which a Nemitsky operator G is a mapping between

Sobolev spaces. One of these theorems, Theorem 2.1 in [J\, is extended to

Orlicz-Sobolev spaces in Hardy [41. In the present paper, we extend

another theorem of the same type, Theorem 2.2 in [(, ] .

Part of the proof of this theorem involves estimates of the terms of

a chain rule for Gu. Marcus and Mizel derive a suitable chain rule (see

Lemma 2.1 and Theorem 2.1 in [£] , and also Equation 3.23 below) under the
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assumptions that (i) g is locally Lipschitz on ft x R , and (ii) g

possesses a total differential except for a certain null set. (As the

complete statement of (ii) is rather long, and moreover is not of direct

concern to us, we refer the reader to [(>] for details.)

For brevity, we shall refer to conditions (i) and (ii) of Lemma 2.1

in [61 (i.e., (i) and (ii) above) collectively as condition (*).

For g and ft as described above. Theorem 2.2 in [6] can then be

stated as follows:

THEOREM 1.1. (Marcus and Mizel) Let ft C R be a bounded domain

satisfying the cone condition, and suppose g satisfies the condition

(*).

Let v > 1, 1 < p < n, r = vnp/(v-l) (n-p), [r = °° for v = 1],

q = vnp/[n + (v-l)pl , and \t\ = \t±\ + ... + |tj.

Suppose that, for every (x,t) e ft x R where any derivative mentioned

below exists,

(1.2) \dg(x,t)/dx.\ < a (x) + b \t\V , i = 1,...,n,
tr X J-

(1.3) \dg(x,t)/dt.\ < ajx) + bAt\V~X , j = 1,... ,m,

where b and bo are constants, a e L (W , and a9 e L (9.).

Then

(1.4) G : W. ja)m •* (/, (SI)

and

,v
(1.5) Hff"llp/ ,fi, S constri+Owll w ^m) for all u e

1,P l*q

where the constant depends on ft , a , a9 , b , b9 ;

g(x,0) = f(x) , but not on n .

For our extension of this theorem (see Theorem 3.1 below), we also

assume that g satisfies condition (*), but make the following changes to

the bounds given in (1.2) and (1.3):
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(a) the power function \t\ is replaced by an tf-function M,

assumed to satisfy a A_-condition, and to have an increasing derivative;

(3) the Lebesgue spaces L , L , L^ are replaced by suitable

Orlicz spaces L , L , and L .
P Q R

We then find that, with the Sobolev spaces replaced by Orlicz-

Sobolev spaces, the conclusion (1.4) still holds. We also obtain an

estimate analogous to (1.5).

We conclude with two examples. The first. Example 4.1, shows that

our Theorem 3.1 contains Theorem 1.1 (for V > 1 only) as a particular

case. The second, Example 4.2, shows that our Theorem 3.1 contains

results not included in Theorem 1.1.

2. Preliminaries

2.1. ORLICZ SPACES. We shall use the properties of #-functions and

Orlicz spaces as given in Krasnosel'skii and Rutickii [5]. In some

places, all of which occur in the list of facts below, our notation

differs from that in [5], and sometimes, for later convenience, we have

introduced a more specific notation. We shall only need to consider

Orlicz spaces defined on bounded domains fJ C R .

Let M be an N-function, and let M' denote the right derivative

of M . Then

(i) vM'+(-u) > MCu) for u > 0,

and

(ii) M(au) < aM(u) for 0 < a < 1.

The inequality is reversed if a £ 1 .

M is said to satisfy the & -condition if there exists a constant

u. > 0 and a constant (> 2), here denoted by K^ , such that

(iii) M(2u) £ K^i(u) for u > uQ.

A condition equivalent to (iii) is that there exists a real-valued
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function, here denoted by k, , and a constant u~ S 0 , such that, for

I > 1 ,

(iv) M(lu) < kJl)M(u) for u > un .

From (ii), k^di) 2 1 , and a modification of the proof of (iv)

given in [5] shows that kM may be chosen to have the form kMCL) = CfL 3

where C > 1 and \l > 1 .

Suppose ¥ is a function which is right-continuous, non-decreasing,

and positive, for positive values of its argument (for example, M'), and

for which an inequality of the form (iii) holds. We shall still say that

V satisfies the A_-condition, even if V is not an N-function.

Conditions (iii) and (iv) are still equivalent, but now we do not

necessarily have ky(Z) 5 1 for t > 1 .

If M satisfies the A -condition, there exists a constant UQ > 0

such that

(v) uM'(u)/M(u) < KM for all u > uQ .

(vi) If the function Q is convex and even for large values of u and

if lim Q(u)/u = °° , then there exists an W-function M such that

M(u) = Q(u) for large values of u , and in this case Q is said to be

the principal part of M .

(vii) If M is an N-function, we may characterise the Orlicz space

£.., = L,.(&) as the set of all measurable functions u , defined almostMM

everywhere on Q. , such that there exists a constant X > 0 such that

M[\u(x)\dx < °° .

We shall use the Luxemburg norm, here denoted by II *D = II •!

(viii) If Dull > 0 , M[u(x)ArAM\dx < 1 .

(ix) Let A/_ and M9 be N-functions. If there exist constants un

and K such that M0(u) £ Mn(Ku) for w > un s we write Wo < A/, ., and
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in this case there exists a constant C such that

II wll < CUwll for u e L .

(x) Let P j Q and R be ff-functions, and suppose that there exist

complementary /^-functions $ and 9 such that

_7
§ •< P Q

and

i <p~ ° R .

Then there exists a constant C such that

(The notation "<" is still meaningful even if P " Q and P ° R are

not #-functions.)

Here, and elsewhere in this paper, we shall use the convention made on.

page 8 of [5] to define the inverse of an /^-function. (The convention is

also made that P~ (v) denotes P~ (\v\).)

2.2. ORLICZ-SOBOLEV SPACES. We shall use the definitions and

properties of Orlicz-Sobolev spaces as given in Donaldson and Trudinger

[2], See also Adams [/]. We shall only need to consider these spaces

defined on bounded domains fiC R satisfying the cone condition.

Let Q be an W-function. Then the Sobolev conjugate N-function Q^

of Q is defined by

(i) Q'J(s) = [ Q'1(t)-t~2~1/n dt
>0

values of t (obtaining an equivalent //-function) so that

(ii) [ 071(t) •t'1'1^ dt <

where it is assumed that, if necessary, Q(t) is redefined for small

an equivalent //-

[ 071' (t) •t'1'1^
0

From the stronger result Q « Q^ , proved in Gossez [3], we have

(iii) Q < Q^ .
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The Orlicz-Sobolev space wLg(Q.) is defined as the set of all

functions in L~(Q,) whose distributional derivatives 9.u also belong to

La(Q) . A norm IIuD = DuB 7 - _ may be defined on W2Ln(W by

(iv) lul^-maxd!*^ 1 3 ^ ..., S 3 ^ } .

In the case that lim QA (s) = °° , there exists a constant C such that

We shall denote the set of vector-valued functions w = (u~,. ..3u ), each

of whose components belong to uLg(Si) , by W Lg(Q) _, and use the norm

(vi) IIMII- 0 rfn = max IIM.O

on this space.

Following [6], let i4(W denote the set of all functions u ,

measurable on ft , such that for almost all lines T parallel to any

coordinate axis x-j i = 1} . . .sn 3 u is locally absolutely continuous on

T O Q, . The Orlicz-Sobolev spaces W Lp(Q) may be given an alternative

characterisation in terms of the class A(Q.) 3 as follows:

(vii) Let ft be a bounded domain in R with the cone property, and

let P be an N-function. A function u defined on ft is in

if and only if there exists u e A (to) such that

(a) u = u almost everywhere in ft ;

re; 32/3^ e LP(Q) , a = i,...,n).

Further du/dx • = 3 -u almost everywhere in ft .

(vii) is an immediate consequence of Lemma 1.5 in [6] and Theorem 3.1

in Hardy [4].
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3. A theorem on Nemitsky operators

We need the three lemmas which follow. The notation introduced in

§2 will be used without further comment.

LEMMA 3.1. Suppose the N-function M satisfies the A,,-condition,

so that, for targe enough u ,

(i) M(1u) < kJl)M(u) for I > 1 .

Then

Cii) M' satisfies the kg-condition ,

and further, there exists a constant C such that, for large enough

u > 0 ,

(Hi) U'+(lu) < lCkM(l)/l]M(u) for I > 1 .

(Thus we may take k t(l) as C kM(l)/l .)

Proof. From 2.1(v), 2.1(iii), and 2.1(i), we have, for sufficiently

large u > 0 ,

which proves ( i i ) .

For % > 1 and suff ic ient ly large u > 0 ,

ru ,U
Z M'(H)dt = M(iu) < kJl)M(u) = kjl) M'(t) dt)Q + M M ) 0 +

+ ku(l)uU'+(u)

and then, for large enough W = u/2 ,

M'+(9M>) < \ . 2 k M ( V / % \ M ' + ( 2 w ) < 2 K M , \ M +

on using (ii). This proves (iii).

Note. I n o u r applications of the next lemma, ¥ will be either an N-

function M or its derivative M' , where it is supposed that M' exists

and is strictly increasing. To avoid trivial complications, we shall make
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the convention that M'(u) denotes A/'(|w|.> if u < 0 , and that the

conventions of 2.1(x) apply to 41 .

LEMMA 3.2. Let P be an N-function, and let V(v) be an even

function which is continuous and strictly increasing for all v >_ 0 , and

such that V(0) = 0 and V(v) •+ <*> as v -*• °° . Suppose further that

P ° V~ is an N-function.

Then, if 9, is a bounded domain in R ,

(i) u e Lp(Q) implies that Vfu) e L^^fto) if and only if V

satisfies that A_-condition;

(ii) in the case that ¥ satisfies the A,-condition, there exists a

constant C such that

(3.1)

where the function k^ is as in 2.1(iv).

Proof. Suppose first that V satisfies the A_-condition. Since

(3.1) is obvious if Hwllp = 0 , we have only to consider the cases (A)

and (B) below.

(A) o < M p Q < I .

Then

PLu(x)ldx < Plu(x)/%u$ vldx < 1 ,

using 2.1(viii), and so

1 e {X > 0: | (P o r1)L}V(u(x))/Xldx < 1} ,

and since this implies that »^(u)»p a^_2 - 1 i (3.1) follows in this

case.

(B) 1 < 0«B < oo .

Let u~ and k = k^, be as in 2.1(iv) . Let
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nQ = {x e fi;

and l e t

For x e SI. , because V(v) increases with v ,

s k(\\u\\p)V(u0)

and then, (denoting Lebesgue measure by |•| )

(3.2) f (P o y-1'){WM(x)l/k(lu*p)}dx < \nQ\ P(uQ)

For x e J2j , since then |wfxj |/OMO > u.

Vlu(x)l =

and so

(P o ^^{vEMfx^Ari iMi ip ;}^ < f fp

(3 .3 )

I P\.u(x)/Wu\\pidx < 1 .

nn
Adding the inequalities (3.2) and (3.3) and using 2.1(ii), we have

\(P ° 'V~1

n
which completes the proof of (3.1), from the definition of the

Luxemburg norm.

Now suppose that ¥ does not satisfy the A.,-condition. Then there

exists a positive increasing unbounded sequence {M •} such that
3
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We may divide f2 into disjoint measurable sets Q. such that
J

(3.4) l̂ -l = P(u1)\^l\A2h(u.)^3 3 = h2,....

We now define u : Q •* R by

2u. for x e fl . , j = 1, 2, .. .,
u(x) = • ° °

0 otherwise in SI ,

and then, on using (3.4), we find that

00

P[u(x)/21dx = I P(u.)\Q.\ < °° .

Therefore u/2 and hence u e L_(W .

Let X > 0 , and let m be a positive integer such that X > 1/2

Then

\(P o V~1){\Vlu(x)2}dx = J Ifi.IrP0 V"

oo

> I \a.\(p« r
i=i 3

\Q.\(P ° ¥ 1)Z23V(u.

3=m Q 3

where we have used (3.4), 2.1(ii), and the assumption that P ° V is an

iV-function. From 2.1(vii), V(u) £ Lp o ^,-1 < and the proof is complete.

REMARK. Suppose the function ¥ in Lemma 3.2 is also an ZV-function

satisfying the A'-condition, i.e., there exist constants c > 0 and

UQ > 0 such that

(3.5) VCuv) < cV(u)V(v) for u,v > uQ .
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Without loss of generality, we may assume that UQ i 1 . Then if

1 < I < uQ < u ,

and since the case in which H > u~ follows directly from (3.5), we have

V(lu) < c-V(l)V(u) for I > 1 , u > un ,

where c, = c ma.x{ljV(un)/V(l)} . Thus we may take kvl = o^V(i-) , so1 0 Y 1

that the estimate (3.1) takes the form

(3.6) ii*fwJ»p«,,,,_j ̂  constci + p

LEMMA 3.3. Suppose M , P , and Q. are N-functions satisfying the

following conditions:

(i) For all positive values of u , M'(u) is strictly increasing and.

continuous:

(ii) For Qf. as in 2.2(i)3 and for large v ,

(3.7) P~2(v) = M' o Q'/fv) - Q~1(v) ;

(Hi) R = Qt o (M')~ is an N-function.

Then

(iv) Q* ° M is the principal part of an ̂ -function,

(3.8) Qt° M-1 ~ P^ ,

and, if ft is a bounded domain in R , there exists a constant C such

that

(3-9) lWpa
whenever f1eLRQ and f£ e £ ^ .

P r o o f . From 2 . 2 ( i ) a n d ( 3 . 7 ) , we h a v e

( 3 . 1 0 ) (MoQ~2)'(v) = (P't)'(v)

for large enough U . Using (3.10) and the fact that P^ is an
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N-function, we then find that M ° Q^ (v) is concave for large enough V ,

and that M ° Q~* (v)/v -*• 0 as V •*• °° , which shows that Q* ° M~ is the

principal part of an N-function. On using Lemma 3.2 in [5] as well, we

obtain (3.8).

Substituting v = Q(u) in (3.7) we obtain, for some U' S 0 3

(p'1 ° Q)(U) = u • (Mf ° Q'1 - e;r«; M > ^

where (]) , defined by

(3.11) 4>(u) = W ° Q~2° Q)(u)

is continuous and increasing for u 2: U~ . For any U > U-, and u > U

u

<j>(t)dt < <p(u)(u-U) < uiif(u) -

U

and so

-1 -1 !U

(3.12) (P ° Q)(u) > (P ° Q)(U) +
)
U

From (3.8) and (3.11), for sufficiently large values of the argument,

-lo , -1 -1 -1 -1 -1 , -1

and therefore there exists £/„>(? such that

(P'1 ° R)(u) = uf2Cu) for u > U2 .

Therefore, for any u > £/,, , we have

(3.13) (P~2 " R)(u) > (I

From [5], pages 16 and 17, U may be chosen large enough so that there

exists an tf-function $ such that

(3.14) $CwJ = (P'1 ° Q)(U) + I $>(t)dt . u > U .
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It is evident from the construction referred to above that the

complementary function $ to $ has the representation

rU 1

= K + N > (s)ds, u > U3 ,

U3

where K > 0 and i/_ S 0 are constants. Then if w~ = max {Z/7J £/„,£/,}

and 0 < & < min{l,P~ lR(uQ)VK} , we have, for u £ uQ ,

(3.15)

\U -1J • <R)(uQ) + & | <f> '(s)ds

1< (P o R)(u) .

By (3.12), (3.14), and (3.15), $ < P'1 ° Q and $ < P 1 ° R , so that

(3.9) follows from 2.1(x).

We can now obtain our extension of Theorem 1.1. We shall assume that

the function k.. of 2.1(iv) is taken to be of the form
M

(3.16) kJZ) = CZV , (I > 1)

M

where C > 1 and \i > 1 are constants.

THEOREM 3.1. Let Q be a bounded domain in R^ satisfying the cone

condition, and suppose that the function g defined on Q x R satisfies

the condition C*) of Theorem 1.1. Let M and P be N-functions such

that

(a) M satisfies the hg-condition and M'(u) is strictly

increasing and continuous for u > 0 ;

(6) P~t (s) •*• °° a s s •*• °° .

Suppose that the N-functions Q and R are as in Lemma 3.3, so that
(3.17) P; ~ Qt ° M'1 j

(3.18) R = Q, ° CM')'1 ,
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and suppose that Q* ° M~ , as well as Q* ° (M')~ , is an N-function.

Further, suppose that for every (x3 t) e fl x R where any derivative

mentioned

(3.19)

(3.20)

where a-

Then

(3 .21)

and

(3 .22)

below exists,

^gix^nx.

\dg(x,t)/dt.
3

e Lp(Q.) , a^ e

|| G M | |

b2M(\t\) ;

and b. and i>g are positive constants.

G:

Proof. Since the proof (except for the derivation of the

inequalities (3.24), (3.25), and (3.26)) follows that of Theorem 2.2 in

Marcus and Mizel [6], it will only be given in outline.

Using 2.2(vii) (instead of Lemma 1.5 in [6]) we find that

f(x) = g(x3o) e t/lpCQ) 3 and that, if u e iTLg(9,)
m and v = Gu , the

chain rule

m
(3.23) 3.u = Zg(>,u)/lx. + I dg(-,u)/U.d.u. , i = l,...,n ,

1 3=1 3 % 3

holds almost everywhere in fi . Further, there exists u. e A(Q,) such
J

that u • = u. almost everywhere in Q,j=l,...,m. Let v = Gu .
J 3

Observing that (3.17) and (3) implies that Q^ (s) •* °° as s -*• °° , and

using Minkowski's inequality, 2.1(ix), 2.2(iii), 2.2(v), Lemma 3.2, and

(3.16), we have

(3.24)

const[2 + kM(l \u\lQ n S constEi
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Similarly we obtain (using (3.18) and Lemmas 3.1 and 3.3 as well)

m m

Pa 2 3y 9 *J p S const I lafj9ud/ixAQ

(3.25)

< constllwll . . jn j

and

m m
I *hM'(\Z\)du./Zx.K < cons t I BArrr|u|;n D du./dxJn

3=1 J % F 3=1 R 3 v Q

< c o n s t C i + ku,(i \Z\W
M

(3.26)

Combining (3.19), (3.20), (3.23), (3.24), (3.25) and (3.26) then gives

3u/3a:JD < const[2 + OyO ^i + kjiuh n nm)l
1 P l3Q,u M l,Q,Yl

(3.27)
< const[2

Finally, from the argument in [6] and (3.24), we obtain

(3.28) lly-f»p * constU + 1 Q tfn)l .

( 3 . 2 7 ) a n d ( 3 . 2 8 ) g i v e t h e e s t i m a t e ( 3 . 2 2 ) .

4. Examples

We shall now give two sets of W-functions M , P , Q , and R

satisfying the hypotheses of Theorem 3.1.

EXAMPLE 4.1. Let V>l,l<p<n,q= vnp/Zn+(v-l)pl , and

r = \mp/{v-l)(n-p) , as in Theorem 1.1. Then 1 < q < n, 1/r + 1/q = 1/p,

and if we let p* = np/(n-p) and q^ = nq/(n-q) , we have
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q^ = vpt = (v-l)r. Let M(u) = | u | V , Q(u) = q%\u\q , and P(u) = p ^ | w | P

From 2 . 2 ( i ) , Qt(u) = \u\q* , PJu) = \u\P* = \u\q*/v = Q* ° M'1 (u) , and

a s s + oo. L e t

For A/fwJ as above, ky(H) = I , and we obtain Theorem 1.1 (for

v > 1 only) as a particular case of Theorem 3.1.

EXAMPLE 4.2. Let v , p , r , q and Q be as in Example 4.1. For

uQ > 1 , let

(4.1) M(u) = |u|Vf2.n|w|+:Zj for |w| >_uQ.

Let

a(u) = uM^(u)/M(u) = v + l/(in u+1)

and let a. denote a(u ). We complete the definition of M by defining

an
(4.2) Mfw; = M(uQ) (I M i /u) for 0 ^ |u| <_ M .

From the arguments in [5], pages 16 and 17, W is a differentiable

tf-function which also satisfies the A -condition. Since a(u) 4- v as

u •*•<*> and v/qA = 1/p^ < 1 3 we may also assume that w. is chosen large

-1 q*
enough so that M o Q+ (v) is concave for 0 < v < un . Note that this

u

last relation is not disturbed if w~ is further enlarged.

For sufficiently large positive V , we have

(4.3) M o Q~2(v) = vv/q*(ln v1/q* + 1) = V1/v*(lnv+qii)/qii

and then

(M o Q~t)"(v) = v(1/p*)~2[-(l-l/pit)(!inv+qli+pJ+l)}/pi,qA ,

which is negative for sufficiently large v. Thus we may enlarge u« so

that M o Qi is concave for all positive values of the argument, i.e.,

(i) Qt o M is convex.

The limit
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(i i ) lim Q* ' M~1(u)/u = 0
UrfO+

follows from (4.2) and the fact that 1*/an is greater than 1. The limitan

( i i i ) lim Q* ° M~1(u)/u = «

follows from the equivalent limit

lim M o Qt~2(v)/v = 0 ,

obtained from (4.3). From (i), (ii), and (iii), it follows that Q* ° M~

is an #-function.

Similar arguments, using the fact that q^/(\)-l) = r > p* > 1 , show

that R = Q;. ° (M')~ is an N-function.

For large positive values of the argument, we define P by

P'-tfv) = M' ° IQ~J-(V)1 ' Q~2(v)

(v-D/q* 1/q* .
= v (vino + v + l)v H/q*

= v1 'pllnv + (v+Dpt(4.4)

We now observe that the second derivative of P is negative for

large enough positive values of the argument, that

lim u P'(u)/P(u) = lim P~1(v)/v(P~1) '(v) = p ,

and that 1 < p < n . From these facts it follows that we may choose u.

so that P(u) is defined and convex for u >_ u~ , and that

satisfies 1 < p < n . We can now complete the definition of P as an

N-function by using (4.4) to define P(u) for |w| > a- , and setting

(4.5) P(u) = P(u1)(\u\)/u1)
P for 0 < \u\ < i^ .
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Fina l ly , because 1 < p < n , we find from (4.5) tha t

0

and because 1 < p < n , (4.4) and an obvious comparison argument shows

that

lim
g-Mx>

Thus M , P j Q and R satisfy all the conditions on them which occur in

Theorem 3.1.

References

[J] Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, 65.

Academic Press (Harcourt Brace Jovanovich), New York,

San Francisco, London, 1975

[2] Thomas K. Donaldson and Neil S. Trudinger, "Orlicz-Sobolev spaces

and imbedding theorems", J. Funct. Anal. 8 (1971), 52-75.

[3] Jean-Pierre Gossez, "Non linear elliptic boundary problems for

equations with rapidly (or slowly) increasing coefficients",

Trans. Amer. Math. Soc. 190 (1974), 163-205.

[4] Grahame Hardy, "Extensions of theorems of Gagliardo and Marcus and

Mizel to Orlicz spaces", Bull. Austral. Math. Soc. 23 (1981),

121-138.

[5] M. A. Krasnosel'skii and Ya.B. Rutickii, Convex functions and Orlicz

spaces (translated from the first Russian edition by

Leo F. Boron. Noordhoff, Groningen, 1961).

[6] M. Marcus and V. J. Mizel, "Absolute continuity on tracks and

mappings of Sobolev spaces", Arch. Rational Mech. Anal. 45

(1972), 294-320.

https://doi.org/10.1017/S0004972700001945 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700001945


269

Nemitsky operators between Orlicz-Sobolev spaces

[7] M. Marcus and V.J. Mizel, "Nemitsky operators on Sobolev spaces".

Arch. Rational Mech. Anal. 51 (1973), 347-370.

Division of External Studies,

University of Queensland,

St. Lucia,

Queensland 4067,

Australia.

https://doi.org/10.1017/S0004972700001945 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700001945

