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ABSTRACT. Ice-flow modeling requires a flow law relating strain rates to 
stresses in situ, but a flow law cannot be measured directly in ice sheets. Microscopic 
processes such as dislocation glide and boundary diffusion control both the flow law 
for ice and the development of physical properties such as grain-size and c-axis fabric. 
These microscopic processes can be inferred from observations of the physical 
properties, and the flow law can then be estimated from the microscopic processes. 

A review of available literature shows that this approach can be imperfectly 
successful. Interior regions of large ice sheets probably have depth-varying flow-law 
"constants", with the stress exponent, n, for power-law creep less than 3 in upper 
regions and equal to 3 only in deep ice; n probably equals 3 through most of the 
thickness of ice shelves and ice streams. 

INTRODUCTION 

The flow law relating strain rate to stress, temperature 
and ice properties is to glaciology what the Holy Grail 
was to chivalry - an important goal but one that may 
not be attainable. As Lliboutry and Duval noted (1985, 
p.219), "any attempt to determine the creep law of 
polycrystalline ice is illusory". This is because various 
processes always compete in deformation: dislocation 
glide, dislocation climb, boundary diffusion, bulk dif­
fusion, etc., and their importance varies within the range 
of natural environments. The "flow law" either must 
include all of these processes explicitly, becoming un­
manageably complicated, or it must change as the 
dominant processes change. 

It nonetheless is true that we need some sort of flow 
law to conduct ice-flow modeling for ice-core dating and 
studies of ice-sheet evolution. Furthermore, it is true that 
the large ice sheets of Greenland, East Antarctica and 
West Antarctica, and some cold small ice sheets and 
mountain glaciers, show consistent patterns of physical 
behavior. For example, most ice on Earth forms as firn 
and densifies without melting, undergoes normal stresses 
(usually vertical compression and longitudinal extension) 

. in upper zones of ice sheets, switches to basal shear deeper 
and eventually switches back to normal stresses in ice 
streams and ice shelves. It is possible that one could write 
different expressions relating stresses and strain rates for 
different regimes, and in fact this is done today (e.g. ice­
flow modelers often use a different activation energy for 
creep above and below -lOoG, and often use different 
enhancement factors for Wisconsin an ice compared to 
Holocene ice in Greenland and Arctic Canada). Such an 
expression is an approximation of "the" flow law, and 
properly should be referred to as such or as "a" flow law; 
commonly, however, glaciologists have referred to such 

an approximation as "the" flow law. 
Approaches to approximating the flow law within any 

one regime can include theory, laboratory experiment 
and field observations. All are valuable, but all suffer 
drawbacks as well. Theoretical studies of microscopic 
processes (e.g. dislocations) lead directly to flow-law 
parameters, but often must rely on poorly known physical 
quantities. Laboratory studies allow control of all relevant 
variables, but cannot avoid the fact that the time-scale for 
natural ice deformation is centuries to millennia, but 
heroics are needed (and have been utilized) to extend 
laboratory work to years. Field observations have just the 
opposite problem; the time-scale is correct, but the 
boundary conditions and in situ stresses are difficult to 
constrain accura tel y. 

One possible way to minimize the problems of field 
studies of the flow law, as suggested by D. D. Blankenship, 
j. F. Bolzan and coworkers (PIREX Workshop, 1990), is 
to use formal geophysical inverse techniques to analyze 
concentrated borehole and surface observations on an ice 
sheet. Data on accumulation rates, ice geometry, 
temperature, fabric and texture would provide inputs 
for forward models of ice velocities (vertical and 
horizontal). Free parameters in the forward models 
would be adjusted using an extension of Newton's 
method to optimize the fit between the predicted and 
observed velocities, and the goodness-of-fit would be 
determined statistically. Different hypotheses of the flow 
law would be tested as forward models, and the favored 
approximation of the flow law would be that hypothesis 
that provides the best fit to the data. Such an experiment 
must start with hypotheses for the flow law, based on the 
available laboratory, field and theoretical information. 

Ice deformation, grain growth and fabric develop­
ment all arise from microscopic processes (dislocation 
motion, diffusion) that are difficult or impossible to 

245 
https://doi.org/10.3189/S0022143000003658 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000003658


Journal of Glaciology 

observe directly. Of these, grain growth and fabric 
development are easier to observe than ice deformation. 
I t thus seems possible to use the observations of grain 
growth and fabric development as a probe to infer the 
microscopic processes operating and, from these micro­
scopic processes, to approximate the flow law. Here, I 
combine this technique with a brief review of other 
available information to produce hypotheses for the 
power-law exponent and the fabric-enhancement factor 
in the usual power-law approximation of the flow law. 
The effort is interesting, though imperfectly successful. 

Unless otherwise stated, I restrict consideration to 
typical ice-sheet conditions: strain rates, stresses and 
cumulative strains within observed ranges; -70°C < tem­
perature < pressure-melting point; and typical dust and 
impurity levels (dirty basal ice and ice containing visible 
volcanic dust are special cases not considered here). I 
begin by presenting results of earlier research on the flow 
law, grain growth and fabric development. With each 
result, I provide a personal opinion on the level of support 
for that result, on a scale of {O} to {5}, in which {5} is 
virtually certain (e.g. Newtonian physics as a large-body 
approximation) and certainty decreases to {O}, an 
interesting idea with no support. Following this, I 
consider the energy involved in the important micro­
scopic and macroscopic processes, and then I combine the 
information on deformation, grain growth, fabric and 
energy for different regimes in the ice sheet. This leads to 
hypotheses for the flow law for each regime. 

RESUL TS - FLOW LAW 

A. Ice deforlI'ls primarily by dislocation glide on 
the basal plane {4} 

Many mechanisms can contribute to deformation, and 
there almost certainly are situations in which ice enters 
other deformation fields. If grain-size were small enough, 
diffusional creep (Nabarro-Herring or Coble creep) 
would become important (Duval and others, 1983). In 
low-density firn, grain-boundary sliding may be domin­
ant (Alley, 1987). However, for conditions thought to 
occur in densified, ice-sheet ice, direct laboratory 
observations and theory strongly support dislocation glide 
on the basal plane (Weertman, 1973, 1983; Duval and 
others, 1983; Fukuda and others, 1987). Other glide 
systems are 100 to 1000 times "harder" than basal glide. 

The basal plane has only two independent slip 
systems, but continuum deformation of a polycrystal 
requires four or five independent slip systems. The basal 
glide must be accommodated in some way: by hard, 
prismatic glide; by dislocation climb; by grain-boundary 
sliding; by Nabarro-Herring type diffusion; or in some 
other manner. Diffusional processes (grain-boundary 
migration, dislocation climb, N abarro--Herring creep) 
seem likely considering the low strain rates and relatively 
high temperatures (almost always > 70% of the absolute 
melting temperature, and often > 90% ) of most natural 
ice deformation. 

B. If strain rate, temperature, stress and cUlI'lul­
ative strain are large enough, strain rate increases 
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approxilI'lately with the third power of the stress 
{4} 

The (or a?) flow law for ice usually is written as 

i = Ao exp [ - ~] an . (1) 

Here E: is the strain rate, Ao is a prefactor that may 
depend on such factors as fabric, grain-size or impurity 
concentrations (and can be written as aA, where a is an 
enhancement factor on the "normal" behavior A, and 
may be a tensor quantity), Q is the activation energy, k is 
Boltzmann's constant, T is the absolute temperature, a is 
the stress deviator and n is the power-law constant. For 
uniaxial deformation, i and er refer to that deformation; 
more generally, they are the second invariants of the 
strain-rate and deviatoric-stress tensors. A weak depen­
dence on pressure often is ignored, or is allowed for by 
referring T to the in situ melting point (Weertman, 1968; 
Doake and Wolff, 1985). 

For dislocation glide, n should be equal to 3 based on 
the following analysis, summarized from the review by 
Weertman (1973). The strain rate is simply the product of 
the rate at which dislocations move through a material, 
their abundance and the deformation achieved per 
dislocation, or 

i = apbv (2) 

where 0: is a geometric factor of the order of I, P is the 
dislocation density, b is the Burgers vector of the 
dislocations (approximately the molecular spacing) and 
v is the dislocation velocity. The dislocation velocity is, 
both theoretically and observationally, 

(3) 

where, is a constant and er is the applied stress causing 
dislocation glide. The dislocation density, p, for steady­
state deformation is approximately that which gives an 
internal stress from the dislocations equal to the applied 
stress. The internal stress is {Lb/((3d) , where (3 is a constant 
of the order of 1, J..L is the shear modulus, and d is the 
dislocation spacing and is related to the dislocation 
densi ty by p ~ 1/ cf2. Then 

(4) 

Combining Equations (2)-(4) yields 

. 0:(32, [ Q] 3 
E: = J..L2b exp - kT a (5) 

which is essentially Equation (I) with a more physical 
statement of Ao and with n = 3. 

This result has broad support from laboratory and 
field observations, especially at high stresses (er >~ 1 bar) 
(Weertman, 1973; Hobbs, 1974; Budd and Jacka, 1989); 
results at lower stresses (a <~ 1 bar) are equivocal as to 
whether n = 3 or n < 3 (including n = 1), probably 
because of the great difficulty in conducting such tests (see 
Weertman, 1973; Budd and J acka, 1989). 
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C. If teInperature, stress and cUInulative strain are 
SInall enough but dislocation glide still dOIninates, 
the strain rate increases approxiInately with the 
first power of the stress {2} 

This is the regime of Harper- Dorn creep. From the 
equations above, it is evident that, if dislocation density is 
constant, then linear-viscous behavior is predicted. 
Constant (stress-independent) dislocation density may 
apply at very small strains before dislocation multi­
plication has begun, or at very small stresses and strain 
rates, which may not be large enough to cause dislocation 
multiplication above the initial annealed concentration 
(see Energetics, below) or which may allow recovery 
(principally diffusional ) processes to "heal" dislocations 
as fast as they are produced. 

There is little doubt that creep exists with n = l. 
There is greater uncertainty whether n = 1 creep is 
steady, and whether it occurs in ice under natural 
conditions (see Weertman, 1985). A number of workers 
have reported n = 1 for natural ice (or at least n < 3) (see 
references in Weertman, 1973; also Doake and Wolff, 
1985; Pimienta and Duval, 1987), but this point is by no 
means settled (Paterson, 1985; Budd and J acka, 1989). 

RESULTS - GRAIN GROWTH 

A. The average grain-size in an existing population 
of grains always increases (grain growth always 
occurs), although creation of new, sInaller grains 
Inay cause the average grain-size to decrease or 
reInain constant over tiIne {4} 

Grain growth in ice is driven primarily by two factors: the 
curvature of energetic grain boundaries, and differences 
in stored strain energy between grains. The curvature of 
grain boundaries that possess a surface tension causes 
what amounts to a pressure difference between adjacent 
grains, with the higher pressure on the concave side of the 
boundary (usually the smaller-grain side). Molecules tend 
to jump from the high-pressure side to the low-pressure 
side, causing the boundary to move toward the high­
pressure side. The process usually accelerates with time; 
as the boundary moves toward the cen ter of a small grain, 
that grain becomes smaller, the curvature of its boundary 
increases, and the migration speeds up until the smaller 
grain is consumed entirely. The average grain-size in the 
sample is increased every time one grain consumes 
another in this fashion. 

Boundary migration can be stopped or slowed by 
second-phase particles, pores or dissolved impurities at 
high concentrations; however, concentrations found in 
natural glacier ice rarely or never are high enough to stop 
grain growth (see review by Alley and others, 1986a, b). 
Grain growth also can be slowed significantly if 
boundaries assume special orientations that cause them 
to have low energy (see Grain Growth B, below), but this 
also does not stop grain growth. The tendency for 
boundary migration from curvature and tension exists 
and will always tend to cause grain growth until arrested 
by second-phase particles and other factors, which in 
typical ice-sheet ice would require average grains about 
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1 m across or larger (Alley and others, 1986b). If grain 
growth in a polycrystal with ordinary, high-angle grain 
boundaries is driven by the curvature and surface tension 
of boundaries and if the effects of contaminant materials 
are not large, then the cross-sectional area of grains 
increases linearly with time; this is the regime of normal 
grain growth (e.g. Gow, 1969; Alley and others, 1986a). 

Boundary migration also can be caused by differences 
in stored strain energy across grain boundaries. Disloc­
ations and other defects introduced into a crystal lattice 
by strain increase its energy. Because boundary migration 
reconstitutes the ice through which the boundary moves, 
the ice just behind a moving boundary has not been 
deformed and thus is unstrained and has low energy. (For 
very rapid migration, excess vacancies may enter the 
lattice behind a moving grain boundary, raising its 
energy and slowing the boundary (Gleiter, 1979), but 
this is unlikely to be a significant factor under typical 
conditions in ice sheets (Alley and others, 1986a).) When 
a boundary separates strained from unstrained ice, the 
free energy of the strained side is higher, and the total 
energy can be lowered if the boundary migrates into the 
strained grain. Once started, the migration of a boundary 
in deforming ice will tend to continue because the ice 
immediately behind it is unstrained and that in front is 
older and thus more strained. Eventually, a strained grain 
being consumed in this fashion will become small enough 
that curvature effects also are important, and it will be 
consumed rapidly. (Initially, sufficiently large differences 
in stored strain energy can cause a boundary to move 
away from its center of curvature, away from a smalll 
unstrained grain into a large strained grain, in the 
opposite direction of that expected from curvature alone. 
As the strained grain becomes small, both strain energy 
and curvature work in the same direction, causing the 
strained grain to be consumed. Consumption of any grain 
always increases the average grain-size. ) 

It thus appears that ifgrain boundaries are not pinned 
by second-phase particles, they always migrate. And, if 
new grains are not created, migration of boundaries 
inevitably leads to grain growth. The only ways to avoid 
this are if each grain consumes a neighbor at the exact 
same rate that another neighbor consumes it, or if all 
grains have the same strain energy and are perfectly the 
same size and shape and perfectly packed, so that all 
boundaries are exactly straight. Real materials always are 
imperfect and have some randomness, so grain growth 
always occurs. 

B. If the average grain-size is not increasing (or is 
not increasing as rapidly as expected for norInal 
grain growth), then existing grains are being 
subdivided (polygonization) or entirely new 
grains are being created (recrystallization) {4} 

Consumption of some grains by others without increase in 
the average grain-size in a constant-density material 
requires that new grains are formed to replace those lost. 
Two mechanisms are believed to dominate such new­
grain formation: polygonization and recrystallization 
("rotation recrystallization" and "migration recrystal­
lization", respectively, in the terminology of Poirier 
(1985, chapter 6)). 
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Polygonization is the formation of new grains by 
subdividing the old grains. If different parts ofa grain are 
subjected to different stress states (virtually guaranteed by 
grain-grain interactions in a polycrystal), then the grain 
can become bent or twisted. Dislocations tend to organize 
between relatively undeformed regions called sub-grains 
to form sub-grain boundaries that relieve this bending or 
twisting and lower the energy of the system. If a sub-grain 
boundary becomes sufficiently strong (or a sub-grain 
becomes sufficiently rotated), then the boundary becomes 
a full grain boundary; the division between sub-grains 
and grains is somewhat arbitrary. Low-angle grain 
boundaries produced by polygonization initially cause a 
small mismatch between grain lattices, which means that 
the boundaries have low energy and migrate slowly under 
curvature-induced stress. Continued deformation can 
increase the angle of · mismatch. Polygonization often 
can be identified by occurrence of more nearest-neighbor 
grains with small misorientations than would occur 
randomly in a sample. (Poirier (1985) distinguished 
between the formation of new grains by subdividing, 
which he called "creep polygonization", and the 
refinement of this structure by further deformation, 
which he called "rotation recrystallization". Here I use 
"polygonization" to refer to both. ) 

Recrystallization ("migration recrystallization" of 
Poirier (1985)) is the production of new grains at 
initially high angles to their neighbors. The new grains 
typically nucleate from existing grain or sub-grain 
boundaries separating regions with different stored strain 
energy, with the boundary bowing out toward the more 
strained side. The stored strain energy in the region ahead 
of the migrating boundary must be large enough to 
overcome the increase in grain-boundary energy caused 
by this bowing out of the boundary (see Energetics, 
below). The new grains in recrystallization usually form 
in energetically favored orientations with their coaxes at 
high angles (~45°) to compressional axes (e.g. Kamb, 
1972). 

C. Growth selection does not fornl fabrics over 
broad ranges of nornlal grain growth {3} 

The energy of grain boundaries is nearly independent of 
relative grain orientations, except for certain favored 
orientations (e.g. twin boundaries, small misorientations) 
which may reduce the boundary energy by more than an 
order of magnitude (see review in Verhoeven, 1975, 
chapter 7). This opens the possibility that, if two grains 
with similar orientations grow together, one will not 
consume the other rapidly because of the low boundary 
energy. Repetition of such growing together of similarly 
oriented grains could yield regions in which grains exhibit 
a preferred orientation. However, simple calculations 
show that the favored orientations are sufficiently rare 
that this is unlikely to matter in natural ice, and indeed, 
no strong fabrics are observed during normal grain 
growth. 

Growth selection may contribute to fabrics when 
stored strain energy is higher than in normal grain 
growth. For example, polygonization produces low-angle 
boundaries, and the grains across such boundaries are 
consumed only slowly. However, the new grains will 
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occur within an area that started as a single grain, and 
boundaries between such areas are high-angle grain 
boundaries that can grow. In this way, relatively large 
areas of grains may develop with similar orientations. 
Also, it is possible that grains in some orientations will 
store more strain energy than those in other orientations. 
The high-energy grains would be consumed in grain 
growth , leaving grains with a preferred orientation. In the 
first case, any fabric measurement that averaged over a 
large enough area would be unaffected by growth sel­
ection . The second case might matter, but is essentially 
unexplored in ice. 

RESULTS - FABRIC FORMATION 

A. During ice defornlation, coaxes always rotate 
toward cOnlpressional axes and away froIn ten­
sional axes {4} 

Deformation parallel to the basal plane in ice is 100-1000 
times easier than in any other direction (Weertman, 
1973). An applied stress thus causes basal glide for almost 
any orientation, which tends to cause grain deformation. 
However, in a polycrystal, the probability that adjacent 
grains will deform in exactly the same direction is 
vanishingly small (except in the limit of large strains in 
simple shear) (Fig. I). Even if the deformation is in the 
same direction in adjacent grains, the active slip planes 
are unlikely to match exactly across the grain boundary. 
Adjacent grains then interfere with the deformation of 
any given grain. This interference can be avoided if the 
grain rotates at the same time that it deforms in basal 
glide. The adjustment between two grains is taken up by 
slip along the grain boundary, which allows sliding easily 
(Ignat and Frost, 1987). The result is grain deformation 
on the basal plane, grain elongation, and rotation of the 
normal to the glide plane (the c-axis in ice) toward 
compressional and away from tensional axes (Figs 1 and 
2). This result is general for essentially any crystal 
deforming by dislocation glide and constrained by a 
testing apparatus or adjacent grains in a polycrystal (e.g. 
Verhoeven, 1975, chapter 3). 

B. Rotation of existing grains in polycrystals is 
described to good approxinIation by the results of 
AZUnla and Higashi (1985) {2} 

Azuma and Higashi (1985) deformed thin ice specimens 
uniaxially and found that the strain in each grain was 
approximately proportional to the resolved shear stress 
along its basal plane, with the bulk strain equal to the 
strain of individual grains averaged over the entire 
sample. They then found that this model predicts the 
observed fabric development at Dye 3, Greenland, in the 
region of normal grain growth, where such a model for an 
existing population of grains should apply. More recently, 
Lipenkov and others (1989) have found that the Azuma 
and Higashi (1985) model, modified for uniaxial tension 
following Fujita and others (1987), accurately describes 
fabric observations in the Vostok, East Antarctica, core. 

Briefly, under uniaxial tension or compression, the 
resolved shear stress on the basal plane of an ice crystal is 
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Fig. 1. Cartoon showing grain rotation from deformation 
of a polycrystal. In (a), uniaxial tension ax causes 
resolved shear stresses on the basal planes, ba, of two 
grains, which cause mutual interference for basal glide. 
Deformation is achieved by basal glide plus rotation of c­
axes, c, away from the tensional axis, leading to the 
situation in (b). 

proportional to the geometric factor S = cos ifio sin ifio, 
where ifio is the angle between the c-axis of a grain and the 
unique stress axis. A grain that elongates from length 10 to 
length I has incremental strain deg = (1- 10 )/10 and its c­
axis rotates from angle ifio to angle ifi according to 
cos ifi = cos ifiolo/l for uniaxial tension and sin ifi = 

sin ifiol/lo for uniaxial compression. An incremental 
strain de averaged over the entire sa~ple caus~s strain 
in an individual grain dEg = dES / S where S is the 
average of the geometric factor S over all grains in the 
sample. Combining these relations yields 

cosifio 
cos ifi = 1 + (deS / S) (6a) 

for rotation of a grain in uniaxial tension, and 
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Fig. 2. Schematic evolution of c-axis fabrics as a function 
of stress state and active processes. An initial random 
distribution (toP) yields solid-cone distributions (left) if 
rotation alone is active, and girdle/surface-cone distrib­
utions (right) if recrystallization also is active. 

sin ifi = sin ifio ( 1 + de~) (6b) 

for rotation in uniaxial compression; pure shear is the 
superposition of these, and simple shear js pure shear plus 
a rigid-body rotation. The parameter S is the geometric 
softness of an ice sample to deformation, arising from the 
average resolved shear stress on basal planes. Numerical 
integration of Equations J6a) or (6b) for uniaxial 
deformation shows that S generally decreases with 
increasing strain, but that strains in excess of 100% are 
needed to halve S (Alley, 1988); we will find later that 
uniaxial deformation without recrystallization usually 
does not persist to strains significantly greater than 100%, 
so that the fabric effects from uniaxial deformation are not 
large, but that simple shear does reach larger strains and 
affect ice hardness significantly through fabric develop­
ment. 

The main principle underlying Equations (6) is that 
the strain in any grain is proportional to the resolved 
shear stress on its basal plane; the rest of the derivation is 
simply geometry. This is not a necessary result; in some 
materials at some temperatures, the strain in individual 
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grains may be nearly independent of orientation, or the 
strain may be such as to minimize differences in 
deformation between adjacent grains, or some intermed­
iate behavior (e.g. Etchecopar, 1977; Lister and others, 
1978). Strain proportional to resolved shear stress would 
be most likely at relatively high temperatures and low 
stresses, as in ice. Under these conditions, diffusional 
processes can accommodate differences in strain between 
adjacent grains (Duval and Lliboutry, 1985), allowing 
grain elongations to be nearly independent of neighbors, 
although still with constraint from neighbors sufficient to 
force rotation . This adds some theoretical support to the 
laboratory and field results that Equations (6) do describe 
grain rotation in ice. However, further data on this point 
would be desirable. 

C. In polygonization, new grains form within a few 
degrees of old grains, so that fabrics are not 
affected greatly {4} 

This is almost true by definition. If a new grain forms by 
progressive sub-grain rotation, and is defined to have 
formed when it has reached an angle of a few degrees, 
then the new grain will plot very close to the grain from 
which it formed on a c-axis fabric diagram, causing little 
change in the overall fabric. Polygonization does not 
remove the old grains, and the boundary between a new 
grain and its parent may have low enough energy to slow 
consumption of one by the other. 

D. New grains in recrystallization form with c­
axes midway between cornpressive and tensile 
axes, causing formation of new grains to change 
fabrics {3} 

During recrystallization, new grains are believed to form 
in energetically favorable postions with c-axes approx­
imately bisecting the angle between compressional and 
tensional axes, so that resolved shear stress on basal planes 
is maximized (see Kamb, 1972). This produces a girdle 
about the unique axis in compression and tension, and 
two concentrations in the plane containing the compres­
sional and tensional axes in pure shear and simple shear 
(and usually with greater scatter of positions perpen­
dicular to this plane than parallel to it. For simple shear, 
this means that one of the concen trations is normal to the 
shear plane, and the other is almost, although generally 
not exactly, in the shear plane) (Fig. 2). 

The new grains are relatively strain-free and consume 
older grains by boundary migration. The new grains also 
accumulate strain energy while rotating and deforming, 
and eventually are consumed by newer grains. Recrys­
tallization thus tends to replace an existing population of 
grains with a new population of grains which have c-axes 
that on average are rotated a little toward compressional 
axes from nucleation positions midway between tensional 
and compressional axes. 

ENERGETICS 

The energies involved In normal grain growth, steady­
state creep and nucleation of new grains provide 
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considerable insight into how these processes proceed. I 
discuss these next. 

The driving stress for migration of a typical, 
spherically curved grain boundary of radius of curvature 
r separating grains with equal strain energies is 

E 
_ 2,gb 

gb--­
r 

(7) 

where 19b = 0.065 J m -3 is the grain-boundary energy for 
high-angle boundaries (Hobbs, 1974, p . 440 ) . If 
r = 1 mm, this amounts to 130Jm-3

. 

A boundary will migrate away from its center of 
curvature only if some other driving stress exceeds this . 
Recrystallization requires that small grains grow into 
large grains, and thus that the stored strain energy in old 
grains exceed Egb, or around 100 J m -3. And, if the nuclei 
of new grains are smaller than assumed here, as seems 
likely, then the stored strain energy must be even higher 
to drive recrystallization. (Duval and others (1983) 
conducted this analysis and assumed r = 0.1 mm, 
obtaining a necessary stored strain energy for recrystal­
lization of near 1000J m-3

. Typical grain-sizes in 
re crystallization are near 2 mm (although with some 
variation as a function of temperature and deviatoric 
stress; J acka, 1984a), so the nuclei cannot be much bigger 
than 1 mm and easily could be smaller. ) 

In steady-state creep, a density of dislocations, p, 
contributing to deformation is expected that gives an 
internal stress from the elastic fields of the dislocations 
equal to the magnitude of the applied stress, as given in 
Equation (4) (Weertman, 1973). The stored energy 
associated with this density, Ed, is for screw dislocations 
(Weertman and Weertman, 1964, p.46-47) 

(8) 

where fJ, = 3 X 109 Pa is the shear modulus, b = 
4.5 X 10-10 m is the Burgers vector, R is the radius over 
which the strain energy acts, and a dislocation core of 
radius 5b has energy ec which typically is 10-20% of the 
elastic strain energy represented by the first term in 
Equation (8). Poirier (1985, p.52 ) suggested using 
R=1/po.5; Weertman and Weertman (1964, p.47 ) 
favored either the grain-size or the sub-grain-size for R, 
yielding a larger energy. However, because R appears in 
a logarithmic term, this difference is not critical. For an 
applied stress of u = 1 bar, a grain-size of 1 mm, a sub­
grain-size assumed to lie between the grain-size and the 
mean dislocation spacing, and the core energy ec taken as 
10-20% of the elastic energy, Equations (4) and (8) yield 
a steady-state dislocation strain energy of between 2 and 
4J m- 3

. This would be increased by 50% for edge 
dislocations (Weertman and Weertman, 1964, p.50). In 
general, then, the steady-state strain energy at 1 bar is less 
than that needed to drive recrystallization by more than 
an order of magnitude, and possibly by twO. orders of 
magnitude. A stress of 2 bar would allow average strain 
energy to drive recrystallization only if the calculations 
here err in the proper directions by an order of 
magnitude, and a stress of about 7 bar would be needed 
to drive recrystallization if the calculations here are 
correct. However, Jacka (1984b) found good evidence for 
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recrystallization at stresses as low as l.3 bar at -18°C. 
Clearly, there is a possible problem here. 

At least four mechanisms may contribute to solving 
this problem. First, the factor J3 in Equation (4) is not 
known accurately, and enters the calculation of stored 
strain energy as a squared term, so relatively large errors 
in these calculations are possible. For example, data 
shown by Weertman (1968, fig. 12) for iron suggest that 
J3 = 2 is more accurate than (3 = 1, although for an iron­
silicon alloy J3 = 1 appears more accurate. 

Secondly, Duval and others ( 1983) pointed out that 
stored energy is likely to be higher in some grains than in 
others, and nucleation of strain-free grains would occur 
adjacent to the most strained grains. Thus, recrystal­
lization requires not that the average grain have large 
stored strain energy, but that the extreme grains do. 

Thirdly, the steady-state dislocation density of 
Equation (4) refers to dislocations of one sign contribut­
ing to creep deformation. If dislocations of opposite signs 
accumulate in tangles or sub-grain boundaries, then they 
contribute to the stored energy field for grain growth but 
not to the long-range internal elastic stress field balancing 
the applied stress, and thus not to the steady-state density 
of Equation (4). Stored energy then can increase above 
that calculated for steady-state creep. For example, 
Equation (4) with a stress of 105 Pa ( I bar) and J3 = 1 
yields a dislocation density of 5 x 109 m-2, and with a 
stress of 104Pa yields a density of only 5 x 107 m- 2. 
Annealed ice with especially low dislocation densities may 
have around 108m-2 (Hobbs, 1974, p.250- 51 ), but lower 
values are difficult to achieve and typical annealed 
materials usually have dislocation densities in the range 
109_1OIom-2 (Dieter, 1976, p. 144). Thus, except at high 
stresses, the typical dislocation density may exceed the 
value calculated from Equation (4) needed to balance the 
applied stress, increasing the stored strain energy above 
that calculated from Equations (4) and (8). (If the elastic 
stress fields from the residual dislocations in annealed ice 
exceed the applied stress, as seems possible in ice at low 
stresses, then they may slow or stop dislocation multi­
plication. This would lead to the constant dislocation 
density needed for n = 1 creep, or to a weaker 
dependence of density on stress than in Equation (4) 
and thus n < 3 creep. ) 

Finally, it remains possible that the recrystallization 
nuclei form in twin orientations to the grains into which 
they grow (Matsuda and Wakahama, 1978). This could 
reduce the grain-boundary energy, "(gb, by more than an 
order of magnitude (Verhoeven, 1975, p.188), thus 
allowing recrystallization at a lower driving stress. 
Good, quantitative theories are not available for any of 
these mechanisms in natural ice, but it seems likely that 
some combination of these mechanisms can explain the 
apparent contradiction of recrystallization observed at 
stresses that are not calculated to be large enough to store 
enough strain energy to cause recrystallization. 

Before finishing this section on energetics, it is worth 
noting that the stored strain energy needed for polygon­
ization is not constrained well. Polygonization requires 
production of new (but low-angle and low-energy) grain 
boundaries, and thus the introduction of their grain­
boundary energy. However, this provides no information 
on how strain energies vary in sub-grains between sub-

Alley: Flow-law hypotheses for ice-sheet modeling 

grain boundaries, where Equation (4) is presumed to 
apply. 

SYNTHESES 

The discussions above focus on individual phenomena 
(ice creep, grain growth, fabric development), but all are 
occurring at the same time within a material. Here I 
briefly re-organize the discussion above to show the inter­
relationships of these processes. These interrelationships 
are shown graphically in Figure 3. 

A. If norInal grain growth is occurring (that is, if 
the cross-sectional area of grains is increasing 
linearly with tiIne, the grain-size distribution is 
uniInodal and grains are equant and convex, with 
no strain shadows at least initially) then: 

n=1 

No new grains are being added to the population. 

Stored strain energy is small compared to grain­
boundary energy. 

c-axis fabric development occurs by grain rotation, 
probably following the Azuma and Higashi (1985) 
hypothesis as extended by Alley (1988). 

.,., 
n=3 0' =: - -- 1~n~3 .} Qi 

=: 

. : Rotation with rbcrystallization ~}.,., Rotation alone ,; III 

; Rotation with : ~ 
- -?- - -'- - -?- - - - - - - -?- ->-

. ! polygonizationi . 
! I 

C) 

Normal ! Recrysta'lIization ~ } ~ 
grain ~! ! ~ 

growth Polygonization i 0 
--?--T - - -?--:-- - - -?-->- ~ 

::r 

Dislocation } -c 
I 0 oss= ) 0 

Dislocation fm. :& 
VI 
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Increasing loss> I 

-dislocation ;, !Dislocation fm' l 
tangles) ! 1 

Onset i --"i _____ ---;~ 
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recrystallizatiqn t 
=3-10x 

Fig. 3. Schematic curve of strain rate versus cumulative 
strain for constant-stress deformation of polycrystalline ice, 
following Budd and Jacka (1989) . Flow-law exponents, 
fabric controls, grain-growth behavior and microscopic 
processes are indicated. 
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The density of dislocations causing shear on the 
basal plane is not known in comparison to the 
steady-state density of Equation (4-); hence, the 
power-law exponent, n, is not known and could be 
1, 3 or some intermediate value. 

Ifa nearly constant strain rate is maintained in the 
field or the laboratory without rigid-body rotation 
(e.g. if uniaxial deformation or pure shear is 
maintained but not simple shear), this regime 
eventually must break down. Grain rotation 
progressively aligns grains toward a position in 
which they have no resolved shear stress on their 
basal planes, req uiring increasing stress to main­
tain the strain rate and eventually causing re­
crystallization. However, strain of about 100% is 
needed to cause a doubling of the ice hardness 
(Alley, 1988). 

B. If c-axis fabrics are tightening, strain shadows 
and sub-grains appear, and grain growth is slower 
than norlllal (including zero or negative growth), 
then: 

Either (i) polygonization is occurring, allowing 
fabric development to continue to follow the 
Azuma and Higashi (1985) hypothesis closely; or 
(ii ) recrystallization is occurring, but is sufficiently 
slow compared to grain rotation that the rotation 
dominates the fabric development. 

And, strain energy has not reached the level of D, 
below, but may be less than, equal to or greater 
than the value of Equation (4), so that n is not 
constrained well. 

This regime must change as the fabric tightens in 
uniaxial deformation or pure shear if strain is to 
continue. 

C. If a strong single-Illaxilllum fabric develops in 
silllple shear, together with slow, zero or negative 
grain growth and with strain shadows or sub­
grains, then: 

Either (i) polygonization is occurring, or (ii) re­
crystallization is occurring, but is sufficiently slow 
compared to grain rotation that the rotation 
dominates the fabric development. 

And, the level of stored strain energy relative to 
Equation (4) is unknown, as is the value ofn. 

A steady state of deformation is possible. 

D. If a girdle fabric develops during active 
deforlllation, together with zero grain growth and 
with strain shadows, then: 

Recrystallization is occurring. 

Stored strain energy is steady and large. 
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Active dislocations almost certainly satisfy Equat­
ion (4), giving n = 3 in power-law creep. 

A steady-state of deformation is possible. 

ICE-SHEET OBSERVATIONS 

The different regimes described above occur in natural ice 
sheets and have been delineated based on this occurrence. 
It next is useful to describe their occurrence. Data are 
available from a number of locations, including (but not 
limited to) Byrd, Little America (Gow and Williamson, 
1976), Vostok (Pimienta and Duval, 1987), Mizuho 
(Fujita and others, 1987) and Law Dome (Russell-Head 
and Budd, 1979) in Antarctica; Camp Century (Herron 
and Langway, 1982) and Dye 3 (Herron and others, 
1985) in Greenland; and the Barnes Ice Cap in Arctic 
Canada (Hooke and Hudleston, 1980). However, 
considering the broad range of glacial environments 
with differing temperatures, stress states and histories, this 
is a very small sample. Recent reviews and syntheses 
include Hooke and Hudleston (1980), Lliboutry and 
Duval (1985) and Budd and J acka (1989). 

As a general rule, the upper layers (typically 100-
lOOOm thick) of the central regions of large ice sheets 
exhibit normal grain growth. Below this is a region where 
grains do not grow but girdle fabrics do not form. This is 
followed downward by a single-maximum, simple-shear 
region with small grain-size, which often (although not 
always ) corresponds to WisconsinanjWeichselian ice. If 
the basal ice is warm, this may be replaced downward by 
a region of very large grains with a multiple-maximum 
girdle fabric, which may be caused by annealing 
associated with fluctuating stresses (Budd and Jacka, 
1989). Ice shelves below the firn are characterized by re­
crystallization girdle fabrics (Fig. 4). 

Attempts to quantify the strain rates or stresses, 
cumulative strains, temperatures, etc. that delineate the 
boundaries of some or all of these different regimes have 
been presented, e.g. by Hooke and Hudleston (1980), 
Alley (1988) and Budd and Jacka (1989). These may 

Inland lel 

Noma! 

Ice Shelves 
and lee Streaml 

Fig. 4 Simplified model for grain growth, fabric 
development and flow-law exponent in a cold ice sheet. 

https://doi.org/10.3189/S0022143000003658 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000003658


provide useful guidelines, but the inadequacy of the data 
base and the complex interrelationships of the control 
parameters must be remembered at all times. 

The symmetries of c-axis fabrics observed in ice sheets 
can be described reasonably well with a simple model 
(Figs 2 and 4) : firn has nearly random fabrics , 
deformation under normal stresses causes rotation 
toward compressional axes and away from tensional 
axes, deformation plus rotation in simple shear causes 
rotation toward the normal to the shear plane, 
polygonization causes fabrics to evolve in a similar way 
to rotation alone, and recrystallization causes grains to 
nucleate with c-axes between compressional and tensional 
axes and then to rotate as above, with old grains 
consumed before they have rotated through large 
angles. Under normal stresses, existence of c-axes near 
compressive axes shows that recrystallization is inactive or 
slow; a girdle about compressive axes shows that 
recrystallization is fast. Under normal stresses without 
recrystallization, compression in one direction with equal 
tension in the other two directions (uniaxial compression) 
causes c-axis rotation toward the compression axis, 
tension in one direction with equal compression in the 
other two directions (uniaxia l tension) causes c-axis 
rotation toward the compression plane, and tension in 
one direction, compression normal to it, and neutral 
stresses in the third direction (pure shear) causes c-axis 
rotation toward the compressional axis with rotation 
fastest for c-axes in the plane of the compressional and 
tensional axes. Recrystallization causes girdles, around 
the compressional axis in uniaxial compression and the 
compressional plane in uniaxial tension, with a modified 
girdle about the compressional axis in pure shear, such 
that the girdle is elongated in the direction of the neutral 
axis but has few or no c-axes near the plane containing the 
compressional and neutral axes. Simple shear without 
recrystallization causes c-axis rotation toward the normal 
to the shear plane, and recrystallization in simple shear 
produces c-axes normal to the shear plane and near the 
shear plane nearly parallel to the shear direction . 
Excellent diagrams have been presented by Budd and 
J acka (1989) for many of these; also see Gow and 
Williamson (1976), Alley (1988) and Figures 2 and 4 in 
this paper. 

HYPOTHESES 

The goal of this long tour through the texture, fabric and 
deformation of ice was to constrain possible flow laws for 
natural ice deforming in regimes not readily accessible to 
laboratory measurement. My central thesis is that the 
macroscopic processes of grain growth and fabric 
formation are easier to observe than the microscopic 
processes (dislocation glide, diffusion, etc. ) that control 
them, that these microscopic processes also control 
deformation behavior, and that we should be able to 
use the observed characteristics of ice cores to infer 
microscopic processes and, from them, the deformation 
behavior and flow law. 

We find a broadly consistent picture, but one which 
leads to a clear indication of the flow law only in certain 
special cases. For most glacial ice, my theoretical 
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understanding of the microscopic processes is not 
sufficiently advanced to allow the rather crude macro­
scopic indicators to distinguish between models. Here, I 
summarize my understanding of the macroscopic and 
microscopic regimes in broadly (and nebulously) defined 
regions , and I suggest hypotheses to test for the flow law. 

Normal grain-growth region - hypothesis: n = I, 
but I ~ n ~ 3 possible. Fabric enhancement from 
Alley (1988) 

In the upper 100- 1000 m of the central regions of cold ice 
sheets, stored strain energy is small compared to grain­
boundary energy. Deformation occurs by dislocation 
glide on basal planes and probably is accommodated by 
diffusion al processes. c-axes of grains rotate toward 
compressional axes during deformation . No new grains 
are produced. The c- axis fabric then records the 
cumulative strain (by its tightness about the compres­
sional axis ) and the stress state (by its shape and 
orientation), and affects the ice hardness (through the 
fabric effect on the prefactor Aa in Equation ( I )) , 
probably as sketched by Alley (1988) . 

The best estimate of the dislocation density needed for 
steady-state creep would not produce enough strain 
energy to affect normal grain growth; hence, we lack a 
direct probe to distinguish between the steady-state 
dislocation density (which gives n = 3 in Equation (I ) ) 
and the case where diffusional recovery processes or other 
processes balance or prevent dislocation multiplication 
and yield n = 1. I t is noteworthy, however, that recovery 
processes must be active or dislocation multiplication 
must be suppressed, because the normal grain-growth 
regime can persist to ;::::: 10- 100% strain or possibly more 
(Gow and Williamson, 1976; Herron and others, 1985; 
Lipenkov and others, 1989), whereas at higher stresses or 
temperatures in the laboratory ~ 1 % strain initiates 
recrystallization, reaching a 3teady state of deformation 
by ;::::: 10% strain U acka , J 984b). Recovery processes 
remove disloca tions and reduce dislocation density . This, 
combined with reasona bly good evidence for n = 1 at low 
stresses in laboratory experiments on other materials (see 
Weertman, 1985) and a suggestion of n = 1 from 
laboratory and field observations on ice (Weertman, 
1973; Doake and Wolff, 1985; Pimienta and Duval, 
1987), make n = 1 the leading candidate for the flow law 
during normal grain growth. However, 1 ~ n ~ 3 is 
possible, including the possibility that n lacks a physical 
meaning, but only is a curve-fitting parameter for creep 
controlled by a changing balance of processes. 

Polygonization region - hypothesis: n = I, but 
I ~ n ~ 3 possible. Fabric enhancement from 
Alley (1988) 

Deeper than the normal grain-growth regime, but still in 
approximately the upper one-half to two-thirds of the 
central regions of large ice sheets, grain-size from at least 
some sites (Cow and Williamson, 1976; Herron and 
others, 1985) is nearly independent of depth and age, 
abundant sub-grains and strain shadows occur, but 
fabrics are similar to and slightly tighter than those in 
the normal grain-growth region. This behavior probably 
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arises from polygonization. That is, dislocations organize 
into sub-grain boundaries to reduce their energy, and 
with increasing deformation these sub-grain boundaries 
strengthen until they cross an arbitrary threshold to 
become grain boundaries. The new grains have similar 
orientations to old grains, so fabrics can continue to 
tighten with deformation. Lack of girdle fabrics shows 
that old grains are not being consumed by new, high­
angle nuclei. The easiest explanation is that recrystalliz­
ation is slow or absent. Cumulative strains can approach 
or slightly exceed 100% in this region without causing 
rapid recrystallization, whereas 1-10% strain causes 
recrystallization during more rapid deformation in the 
laboratory U acka , 1984b; J acka and Gao, 1989), showing 
that recovery processes continue to be important; 
however, the sub-grains and polygonization attest to 
increasing stored strain energy compared to normal grain 
growth. Because recovery processes are active, n = 1 
remains possible, although the increasing stored strain 
energy makes n = 3 more likely than for normal grain 
growth. 

Laboratory experiments (e.g. Jacka, 1984b) show that 
uniaxial deformation causes ice to harden by a factor of 
roughly 2-10 with increasing strain up to about I %, prior 
to initiation of recrystallization, with this hardening 
probably caused by development of dislocation tangles 
(Fig. 3). If n = 1, then such tangles should not be 
significant in the interiors of sub-grains, and the ice 
hardness should be unchanged from the normal grain­
growth regime, except for fabric changes that can be 
treated in the same way as in that regime. If n > I, then it 
is likely that dislocations are building up within the sub­
grains, and they may become tangled and harden the ice. 
Then it is possible that Ao should be decreased somewhat 
independent of fabric. 

SiInple-shear region - hypothesis: n = 3, but 
I ~ n ~ 3 possible. Fabric enhanceDlent froIn 
Budd and Jacka (1989, fig. 9) 

Still deeper, the basal shear stress comes to dominate over 
the normal stresses, so simple shear occurs. The fabric is 
dominated by a strong vertical single maximum, with 
grain-size small and relatively constant. A critical 
question is whether a second, weaker maximum exists. 

As discussed above, laboratory experiments (e.g. 
Kamb, 1972) show that recrystallization in simple shear 
produces nuclei in two positions: one strong maximum 
with c-axes normal to the shear plane, and one weaker 
maximum with c-axes nearly parallel to the shear 
direction and nearly parallel to the shear plane. c-axes 
in the stronger maximum will tend to stay there and c­
axes in the weaker maximum will tend to rotate toward 
the stronger one. 

If many nuclei are being formed near the horizontal 
position, they should be observable as a second 
maximum, even if weak and spread out through 
rotation. However, ifpolygonization is occurring without 
recrystallization, then only one maximum should exist. As 
discussed below, occurrence of two maxima argues for 
n = 3, whereas one maximum leaves open the question of 
n between I and 3, inclusive. 

Available data are equivocal. Some observations show 
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no clear evidence of a second maximum (e.g. 1302 m in 
the Byrd core; Cow and Williamson, 1976), but others do 
seem to show a weak second maximum (e.g. 1210, 1487 
and 1634m at Byrd). There seems to be no way to 
achieve such a secondary maximum without recrystal­
lization. Then either recrystallization occurs in some ice 
undergoing simple shear deep in ice sheets but not in 
adjacent ice (possibly from differences in ice or from 
waves of recrystallization), or else recrystallization occurs 
in all such simple-shear ice but varies in strength relative 
to rotation. (Or, the observing or contouring conventions 
chosen by field observers failed to highlight some weak 
secondary maxima that did exist.) 

It thus appears that at least a little recrystallization 
occurs in deep simple-shear zones of ice sheets, probably 
along with much polygonization, favoring n = 3 (see 
below). This would agree with analyses of ice-sheet shape 
and velocity that yield n = 3, because the shear zone near 
the bed largely controls the ice-sheet shape and velocity 
(Hamley and others, 1985). However, we cannot 
absolutely rule out n < 3. The best data on fabric­
enhancement factors in simple shear are probably those 
summarized by Budd and J acka (1989, fig. 9), so they 
should be used initially. 

Warm, basal Dlultiple fabrics - hypothesis: no 
good hypothesis 

It is not clear what flow law to use for the very coarse, 
interlocking grains with a multiple-pole, girdle-type 
fabric found in warm ice near the bed at Byrd Station 
(Cow and Williamson, 1976) and elsewhere. The very 
large grains argue against rapid deformation. The 
annealing hypothesis of Budd and J acka (1989; and 
earlier work) seems to pr~vide the best available 
explanation. If correct, then this texture and fabric 
indicate that the ice was deformed rapidly but now is 
nearly stagnant and at high temperature. When 
deformation stops, recrystallization in twin orientations 
is initiated and then "runs away", with grains growing 
very large. The suggestion of stagnant, or nearly so, ice 
indicates that there is no need for a flow law for this ice. If 
a flow law is needed, the girdle fabric shows that 
recrystallization has occurred, but the very large grains 
show that recovery processes have been active since the 
initiation of recrystallization. A recovery-dominated 
n = 1 might be slightly more likely, but the evidence is 
weak. 

Ice shelves and ice streaDlS - hypothesis: n = 3. 
Fabric effects from Jacka and Maccagnan (1984) 

With ice shelves, and probably with their inland 
extensions as ice streams, we finally reach a firmer basis 
for the flow law. Laboratory experiments show clearly 
that relatively high normal strain rates (high stresses or 
temperatures) cause girdle-type fabrics (i.e. no c-axes near 
compressional axes), a true steady state of deformation (a 
constant applied stress yields a constant strain rate, grain­
size and c-axis fabric , and thus almost certainly a steady­
state average dislocation density) and n = 3 (e.g. Jacka, 
1984a, b;Jacka and Maccagnan, 1984). Ice shelves under 
temperatures and normal stresses approaching laboratory 
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values develop girdle-type fabrics and are observed to 
spread with n = 3 (e.g. Thomas, 1973; Jezek and others, 
1985). Doake and WolfT (1985) argued that ice-shelf 
spreading is consistent with n = 1 or n = 3, but required 
that other workers significantly underestimated their 
errors and that the good, high-stress data from Amery 
Ice Shelf, Antarctica, be ignored to avoid the natural 
conclusion from the data that n = 3. A girdle-type fabric 
has been observed seismically on Ice Stream B in West 
Antarctica (Blankenship and others, 1989). 

The girdle-type fabrics of the ice shelves and ice 
streams show that recrystallization occurs. Because this 
requires high stored strain energy in the grain or sub­
grain into which a new boundary migrates, rather than 
just in sub-grain boundaries, this shows that grains 
contain a large dislocation density at least equal to the 
steady-state value, and thus argues for n = 3. Then n = 3 
is a good hypothesis wherever recrystallization occurs. (At 
higher stresses than occur in natural ice sheets, n > 3 is 
possible. ) 

J acka and Maccagnan ( 1984) showed how the angle 
of the girdle fabric varies between onset of recrystalliz­
ation and approach to steady state, and how the ice 
hardness depends on this angle. The values recommended 
by Jacka and Maccagnan provide a good starting point 
for modeling. 

Summary of hypotheses 

We thus sketch a crude picture of macroscopic and 
microscopic properties in cold natural ice. Rapid 
deformation under normal stresses in ice shelves and ice 
streams causes recrystallization and n = 3. Simple-shear 
deformation in deep ice probably causes recrystallization 
and n = 3, but the evidence is not as strong as for ice 
shelves and does not rule out n = 1 or some intermediate 
value. Polygonization probably dominates in somewhat 
shallower ice with normal stresses, and recovery processes 
must be important. The recovery processes suggest n < 3, 
including n = 1, but the evidence is weak. In very shallow 
ice with normal grain growth, recovery processes are most 
rapid relative to storage of strain energy, dislocation 
multiplication may be suppressed, and n = 1 (or at least 
n < 3) is most likely, but proof again is lacking. A 
reasonable approach to testing the flow law would be to 
divide the ice sheet into layers based on macroscopic 
observations of fabric and texture, and to assume n has a 
constant value (or a constant slope of variation) within a 
layer. 

The onset or re-orientation of recrystallization during 
progressive burial of ice or initiation of streaming flow 
require that the ice first harden from storage of strain 
energy and then soften from recrystallization removal of 
this strain energy, as shown in Figure 3. This should cause 
recrystallizating zones to be surrounded by bands of stifT 
ice, which may have important implications for ice flow 
(which I (Alley, 1990) have discussed briefly and hope to 

explore in a future manuscript). 
Progressive strain causes fabric formation . coaxes 

rotate toward compressive axes in normal grain growth 
and polygonization, in a process that cannot obtain a true 
steady state under normal stresses. coaxes rotate to the 
normal to the shear plane in simple shear, and form a 
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girdle around compressive axes in recrystallization, and 
can reach a steady state in these cases. The fabric effect on 
creep rates is a tensor property but reduces to a simple 
enhancement factor for deformation in one stress state. 
Laboratory experiments constrain the enhancement 
factor well for simple shear and recrystallization, and 
theory constrains the smaller variation in enhancement 
factor under normal grain growth and polygonization. 
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